摘要 隨著工件大尺寸化及鋸絲細(xì)線化,鋸切加工過(guò)程中的鋸縫越來(lái)越深且窄,切削液在鋸切過(guò)程中無(wú)法充分發(fā)揮作用,對(duì)切片質(zhì)量影響較大?;谟?jì)算流體力學(xué)(computational fluid dynamics,CFD)數(shù)值模擬,通過(guò)建立 CFD 鋸縫模型,對(duì)金剛石線鋸鋸切加工材料時(shí)鋸縫內(nèi)切削液流場(chǎng)進(jìn)行分析研究。仿真分析發(fā)現(xiàn):在小尺寸鋸縫內(nèi),隨著走絲速度增大至 25 m/s,切削液更能充分進(jìn)入鋸縫,在鋸絲與工件接觸區(qū)域及非接觸區(qū)域充滿液體后,接觸區(qū)域流體壓力在 0.179 0 MPa 左右,非接觸區(qū)域流體壓力在 0.159 0 MPa 左右;切削液黏度和表面張力在一定范圍內(nèi)的降低,有利于保證鋸縫內(nèi)切削液的相對(duì)飽和與穩(wěn)定,同時(shí)可以使鋸縫內(nèi)切削液壓力分布更為穩(wěn)定。
關(guān)鍵詞 金剛石線鋸;計(jì)算流體力學(xué);小尺寸鋸縫;切削液流場(chǎng)
中圖分類號(hào) TG58; TG74; O357 文獻(xiàn)標(biāo)志碼 A
文章編號(hào) 1006-852X(2024)06-0781-08
DOI 碼 10.13394/j.cnki.jgszz.2023.0235
收稿日期 2023-11-07 修回日期 2023-12-21
切削液在金剛石線鋸鋸切加工過(guò)程中具有非常重要的作用,其潤(rùn)滑冷卻作用可以減少鋸絲與工件的摩擦,吸收加工過(guò)程中產(chǎn)生的熱量,降低局部加工區(qū)域溫度,防止切片熱變形,提升鋸絲使用壽命[1] 。隨著鋸絲逐漸細(xì)線化,鋸切大尺寸工件時(shí),鋸縫越來(lái)越深且窄,切削液不能大量進(jìn)入鋸切區(qū)域,這使得金剛石線鋸鋸切加工過(guò)程中,切削液的潤(rùn)滑冷卻效果變差,進(jìn)而導(dǎo)致切片表面質(zhì)量下降[2] 。因此,為充分發(fā)揮切削液在鋸切過(guò)程中的作用從而保證切片質(zhì)量,需要對(duì)金剛石線鋸鋸切過(guò)程中切削液在鋸縫內(nèi)的流場(chǎng)進(jìn)行進(jìn)一步研究。
M?LLER 等[3]提出一種二維模型分析漿料的彈性流體動(dòng)力學(xué)行為,發(fā)現(xiàn)漿液的動(dòng)力學(xué)行為及其與鋸絲的相互作用是影響鋸切效果的重要因素。ZHU 等[4]將鋸絲振動(dòng)特性引入模型中,探究了鋸絲振動(dòng)與流體動(dòng)壓效應(yīng)的相互影響。GE 等[5]引入了自柔順系數(shù),通過(guò)有限差分法對(duì)一維模型進(jìn)行數(shù)值求解,分析了不同工藝下的彈性流體動(dòng)壓力分布和膜厚分布。ISHIKAWA等[6]采用高速攝像的方法分析游離磨粒線切割中的流體,觀察了漿料在線網(wǎng)上的成膜狀態(tài)以及在鋸縫內(nèi)的流動(dòng)狀態(tài)。NASSAUER 等[7]通過(guò)實(shí)驗(yàn)觀測(cè),發(fā)現(xiàn)隨著鋸絲的運(yùn)動(dòng),鋸切通道內(nèi)會(huì)出現(xiàn)氣泡的產(chǎn)生和潰滅現(xiàn)象。林麟[8]利用計(jì)算流體力學(xué)(computational fluid dy-namics,CFD)數(shù)值模擬,系統(tǒng)探究了切削液施加于鋸絲及鋸縫 2 種不同供液方式下,線鋸鋸切加工過(guò)程中的流體行為。除此之外,鄭忠利[9]以增加進(jìn)入鋸切區(qū)域有效切削液為基本思想,采用靜電噴霧供液方式代替?zhèn)鹘y(tǒng)的澆注式供液,發(fā)現(xiàn)靜電噴霧供液方式獲得的硅片質(zhì)量比澆注式供液獲得的硅片質(zhì)量好。QIU 等[10]采用將硅錠浸入水箱中(水浴鋸)的方法鋸切硅片,并與傳統(tǒng)澆注式供液方法在相同鋸切參數(shù)下比較,發(fā)現(xiàn)改進(jìn)的金剛石線鋸冷卻潤(rùn)滑方法能獲得表面質(zhì)量更好的硅片。施郁虎[11]將微量潤(rùn)滑技術(shù)應(yīng)用于金剛石線鋸鋸切加工中,發(fā)現(xiàn)硅片表面粗糙度下降,加工效率提高。此外,寧培桓等[12]研究了線鋸鋸切加工過(guò)程中切削液的掛線能力與其黏度和表面張力的關(guān)系,發(fā)現(xiàn)具有合適表面張力及黏度的切削液在線鋸鋸切加工過(guò)程中有助于提高切片效率,切出表面質(zhì)量更好的切片??梢?,在游離與固結(jié)磨料線鋸鋸切加工過(guò)程中,切削液在鋸縫內(nèi)的流動(dòng)狀態(tài)與鋸切效果密切相關(guān)。隨著鋸絲細(xì)線化以及工件大尺寸化,實(shí)際鋸切加工中將出現(xiàn)更小的流體尺度,但當(dāng)下對(duì)于細(xì)徑金剛石線鋸鋸切加工過(guò)程中,切削液充分進(jìn)入鋸縫以發(fā)揮潤(rùn)滑冷卻作用及其在鋸縫內(nèi)的分布狀態(tài)的研究較少。因此,在金剛石線鋸鋸切加工過(guò)程中,對(duì)切削液在小尺寸鋸縫內(nèi)流場(chǎng)的研究具有重要意義。本研究中通過(guò)建立 CFD 鋸縫模型,仿真分析了金剛石線鋸鋸切過(guò)程中切削液在小尺寸鋸縫中的流場(chǎng),為研究金剛石線鋸鋸切加工過(guò)程中切削液的冷卻潤(rùn)滑效果提供了理論基礎(chǔ)。
1
鋸縫流場(chǎng)仿真幾何模型
基于切削液噴射至鋸絲且由鋸絲運(yùn)動(dòng)攜帶切削液進(jìn)入鋸縫內(nèi)的供液方式建立鋸縫流場(chǎng)仿真幾何模型,如圖 1 所示。
圖 1 所示為帶有單根鋸絲的鋸縫流場(chǎng)仿真幾何模型。金剛石線鋸平推式鋸切加工工件時(shí),鋸絲在加工中形成的弓角很小,為簡(jiǎn)化分析往往忽略線弓的影響,因此將狹長(zhǎng)的鋸絲縫隙簡(jiǎn)化為平直縫隙[13] 。鋸縫寬度、鋸絲線徑的設(shè)定,參考使用芯線直徑為 36 μm 的電鍍金剛石線鋸鋸切 210 mm × 210 mm 單晶硅片時(shí)的參數(shù),鋸絲與工件間的接觸高度參考鋸絲表面磨粒的平均出刃高度,鋸縫流場(chǎng)仿真幾何模型參數(shù)如表 1 所示。
將鋸縫流場(chǎng)仿真幾何模型導(dǎo)入 ICEM-CFD 軟件,劃分為結(jié)構(gòu)化六面體網(wǎng)格,如圖 2 所示。通過(guò)在不同網(wǎng)格數(shù)量下仿真計(jì)算金剛石線鋸鋸切過(guò)程中切削液在鋸絲與工件接觸一側(cè)中間長(zhǎng)度位置的壓力,對(duì)網(wǎng)格進(jìn)行獨(dú)立性驗(yàn)證,結(jié)果如表 2 所示。
由不同網(wǎng)格數(shù)量下的計(jì)算結(jié)果可知:隨著網(wǎng)格數(shù)量的增多,切削液在鋸絲與工件接觸一側(cè)中間長(zhǎng)度位置的壓力趨于穩(wěn)定,以網(wǎng)格數(shù)量 3 518 680 條件下的計(jì)算結(jié)果為基準(zhǔn),計(jì)算得到網(wǎng)格數(shù)量 5 581 660 條件下的計(jì)算結(jié)果誤差僅為 1.67%,因此為縮短計(jì)算時(shí)間,后續(xù)計(jì)算時(shí)采用的網(wǎng)格數(shù)量為 3 518 680。
5
仿真結(jié)果
對(duì)于各方程的求解方法,動(dòng)量方程由基于壓力的求解器求解,通過(guò)隱式時(shí)間離散化求解連續(xù)性方程,對(duì)于壓力速度耦合,使用 PISO 算法,得到的結(jié)果如下。
5.1
走絲速度的影響
隨著工件大尺寸化及鋸絲細(xì)線化的發(fā)展,鋸縫尺寸越來(lái)越小,因此需要研究小尺寸鋸縫條件下如何使切削液充分進(jìn)入鋸切區(qū)域。進(jìn)入鋸縫的切削液流體主要是剪切流,在剪切流體中,影響流體運(yùn)動(dòng)狀態(tài)的因素主要為走絲速度,因此在小尺寸鋸縫(D w =60 μm)以及切削液入口供液量 Q=2.25 × 10?5 L 的條件下,對(duì)走絲速度的影響進(jìn)行了分析計(jì)算。
因鋸縫狹長(zhǎng),為能更好地對(duì)切削液在鋸縫內(nèi)的分布情況進(jìn)行觀察,在后續(xù)計(jì)算獲取切削液在鋸縫內(nèi)體積分?jǐn)?shù)分布云圖時(shí),重點(diǎn)觀察了鋸絲軸向方向平面上的鋸絲進(jìn)線端、鋸縫中部及鋸絲出線端的切削液體積分?jǐn)?shù)分布云圖。圖 3 為所觀察鋸縫位置的示意圖,圖 4為不同走絲速度條件下切削液在鋸絲與工件接觸一側(cè)及非接觸一側(cè)的體積分?jǐn)?shù)分布云圖,并且提取了最終進(jìn)入鋸縫內(nèi)部的切削液量,圖中用 V 表示。
鋸縫內(nèi)鋸絲與工件的接觸區(qū)域一側(cè)以及非接觸區(qū)域一側(cè)均未完全充滿液體,且在接觸區(qū)域液相體積分?jǐn)?shù)<100%,區(qū)域內(nèi)存在空氣層,這將對(duì)切片質(zhì)量產(chǎn)生不利影響,該結(jié)果也與文獻(xiàn) [7] 中實(shí)驗(yàn)觀測(cè)到的現(xiàn)象相吻合。隨著走絲速度的增大,進(jìn)入鋸縫的切削液也增多,當(dāng)v w gt;25 m/s 時(shí),接觸區(qū)域一側(cè)及非接觸區(qū)域一側(cè)均充滿液體,切削液的充分進(jìn)入將會(huì)提升切片質(zhì)量。
單晶硅等高硬脆材料的斷裂韌性越大,單位截面積所受的鋸切力也越大,因此降低鋸切力可以有效改善切片的表面質(zhì)量[17] 。金剛石線鋸鋸切加工過(guò)程中,切削液附著在鋸絲上并形成液體膜,由鋸絲運(yùn)動(dòng)帶入鋸縫,鋸縫內(nèi)部的切削液壓力會(huì)與鋸切力部分抵消,因此,為探究鋸縫中切削液的壓力分布,在鋸絲與工件接觸側(cè)和非接觸側(cè)進(jìn)行了壓力分布捕捉。如圖 5 所示,切削液的壓力將沿著線 1 及線 2 測(cè)量。
圖 6 及圖 7 為不同走絲速度條件下,切削液在鋸絲與工件接觸區(qū)域一側(cè)及非接觸區(qū)域一側(cè)的壓力分布曲線圖。
由圖 6 及圖 7 可知:鋸縫內(nèi)切削液壓力在鋸絲與工件的接觸區(qū)域一側(cè)和非接觸區(qū)域一側(cè)隨著走絲速度的增大總體上呈增大趨勢(shì),兩側(cè)的壓力差也總體上呈增大趨勢(shì),兩側(cè)壓力分布更加平穩(wěn),這將更有利于提高金剛石線鋸鋸切加工后切片的表面質(zhì)量。鋸縫兩側(cè)均充滿液體后,接觸區(qū)域一側(cè)壓力在 0.179 0 MPa 左右,非接觸區(qū)域一側(cè)壓力在 0.159 0 MPa 左右。接觸區(qū)域一側(cè)及非接觸區(qū)域一側(cè)的切削液壓力分布與液體在鋸縫中的分布狀態(tài)密切相關(guān),當(dāng)切削液在鋸切區(qū)域分布不均時(shí),鋸絲附近出現(xiàn)空氣層,這使得氣體存在區(qū)域與液體存在區(qū)域的壓力存在差值,從而引起壓力波動(dòng),對(duì)鋸切加工后的切片表面質(zhì)量產(chǎn)生不利影響。
5.2
切削液物理屬性的影響
切削液的物理屬性與其在鋸縫內(nèi)的流動(dòng)狀態(tài)密切相關(guān)。為了研究切削液物理屬性對(duì)金剛石線鋸鋸切加工過(guò)程中鋸縫內(nèi)切削液流場(chǎng)的影響,進(jìn)行了 5 種切削液(見表 3)在 v w =10 m/s 條件下的物理性質(zhì)仿真研究。
圖 8 為不同切削液物理屬性條件下,切削液在鋸絲與工件接觸區(qū)域一側(cè)及非接觸區(qū)域一側(cè)的體積分?jǐn)?shù)分布云圖。
由圖 8 可知:隨著切削液黏度及表面張力的逐漸減小,切削液逐漸充滿鋸縫,但當(dāng)切削液的黏度及表面張力過(guò)小時(shí),進(jìn)入鋸縫的切削液會(huì)有減少的趨勢(shì)。文獻(xiàn) [12] 發(fā)現(xiàn),切削液黏度及表面張力過(guò)大或過(guò)小都不利于切削液的掛線性能,合適的黏度及表面張力更有利于切削液黏附在鋸絲上。在金剛石線鋸鋸切加工過(guò)程中,切削液通過(guò)黏附在鋸絲上,由鋸絲運(yùn)動(dòng)攜帶進(jìn)入鋸縫,所以進(jìn)入鋸縫的切削液量越多,說(shuō)明切削液黏附在鋸絲上的量越多,因此仿真結(jié)果與文獻(xiàn) [12] 實(shí)驗(yàn)得到的不同黏度及表面張力液體掛線性能的規(guī)律相吻合,由此說(shuō)明本次仿真研究結(jié)果的正確性。
圖 9 及圖 10 為不同切削液物理屬性條件下,切削液在鋸絲與工件接觸區(qū)域一側(cè)及非接觸區(qū)域一側(cè)的壓力分布曲線圖。由圖 9 和圖 10 可知:鋸縫內(nèi)切削液壓力在鋸絲與工件的接觸區(qū)域一側(cè)和非接觸區(qū)域一側(cè)隨著切削液黏度及表面張力的減小總體呈增大趨勢(shì),且壓力分布更加平穩(wěn)。但黏度及表面張力過(guò)小時(shí),壓力也會(huì)產(chǎn)生一定的波動(dòng),這是因?yàn)榇藭r(shí)切削液不能很好地黏附在鋸絲上,進(jìn)入鋸縫內(nèi)的切削液減少,進(jìn)而會(huì)影響切片質(zhì)量。接觸區(qū)域一側(cè)及非接觸區(qū)域一側(cè)的壓力分布與鋸縫內(nèi)切削液分布密切相關(guān),對(duì)比分析 5 種切削液,在切削液 C 的物理屬性下,接觸區(qū)域一側(cè)及非接觸區(qū)域一側(cè)的切削液壓力分布更為平穩(wěn),接觸區(qū)域一側(cè)的最大壓力在 0.016 9 MPa 左右,非接觸區(qū)域一側(cè)的最大壓力在 0.013 2 MPa 左右。
6
結(jié)"論
(1)在小尺寸鋸縫下,走絲速度較小時(shí),切削液難以充分進(jìn)入鋸切區(qū)域發(fā)揮作用,隨著走絲速度的增大(v w gt;25 m/s),鋸絲與工件接觸區(qū)域及非接觸區(qū)域內(nèi)逐漸充滿液體,接觸區(qū)域與非接觸區(qū)域的切削液壓力及壓力差整體呈增大趨勢(shì),當(dāng)接觸區(qū)域及非接觸區(qū)域內(nèi)均充滿切削液時(shí),鋸縫內(nèi)切削液壓力分布較為穩(wěn)定,接觸區(qū)域的壓力在 0.179 0 MPa 左右,非接觸區(qū)域的壓力在 0.159 0 MPa 左右。
(2)液體黏度和表面張力在一定范圍內(nèi)的降低,有利于保證鋸縫內(nèi)切削液的相對(duì)飽和與穩(wěn)定,同時(shí)可以使鋸縫內(nèi)切削液壓力分布更為穩(wěn)定。綜合對(duì)比 5 組切削液的物理屬性,金剛石線鋸鋸切加工過(guò)程中切削液 C 的物理屬性(密度為872.5 kg?m?3 ,黏度為1.15 mPa?s,表面張力為 34.02 mN?m?1 ,與單晶硅表面接觸角為 20 °,與鋸絲表面接觸角為 33 °)更有利于其進(jìn)入鋸縫。
參考文獻(xiàn):
[1]葛培琪, 陳自彬, 王沛志. 單晶硅切片加工技術(shù)研究進(jìn)展 [J]. 金剛石與磨料磨具工程,2020,40(4):12-18.
GE Peiqi, CHEN Zibin, WANG Peizhi. Review of monocrystalline
silicon slicing technology [J]. Diamond amp; Abrasives Engineering,2020,40(4):12-18.
[2]BHAGAVAT S, KAO I. A finite element analysis of temperature
variation in silicon wafers during wiresaw slicing [J]. International
Journal of Machine Tools and Manufacture,2008,48(1):95-106.
[3]M?LLER H J. Basic mechanisms and models of multi-wire sawing [J].
Advanced Engineering Materials,2004,6(7):501-513.
[4]ZHU L Q, KAO I. Galerkin-based modal analysis on the vibration of
wire–slurry system in wafer slicing using a wiresaw [J]. Journal of Sound
and Vibration,2005,283(3/4/5):589-620.
[5]GE P Q, SANG B, GAO Y F. The numerical analysis on action
mechanism of slurry in free abrasive wiresaw slicing [J]. Key
Engineering Materials,2007(359/360):455-459.
[6]ISHIKAWA K I, SUWABE H, ITOH S I, et al. A basic study of the
behavior of slurry action at multi-wire saw [J]. Key Engineering
Materials,2003(238/239):89-92.
[7]NASSAUER B, HESS A, KUNA M. Numerical and experimental
investigations of micromechanical processes during wire sawing [J].
International Journal of Solids and Structures,2014,51(14):2656-2665.
[8]林麟. 磨粒線切割中的流體行為研究 [D]. 廈門: 華僑大學(xué), 2020.
LIN Lin. Study on fluid behavior in abrasive wire cutting [D]. Xiamen:
Huaqiao University, 2020.
[9]鄭忠利. 靜電噴霧金剛石線鋸切割液吸附特性及切割實(shí)驗(yàn)研究 [D].杭州: 浙江工業(yè)大學(xué), 2020.
ZHENG Zhongli. Adsorption characteristics and cutting experiments of
electrostatic spray diamond wire saw cutting fluid [D]. Hangzhou:
Zhejiang University of Technology, 2020.
[10]QIU J, LI X F, ZHANG S B. Research on an improved bath cooling and
lubrication method for diamond wire sawing [J]. The International
Journal of Advanced Manufacturing Technology,2021,112:1-10.
[11]施郁虎. 基于金剛石線鋸的微量潤(rùn)滑與工藝研究 [D]. 鎮(zhèn)江: 江蘇科技大學(xué), 2020.
SHI Yuhu. Micro lubrication and process research based on diamond
wire saw [D]. Zhenjiang: Jiangsu University of Science and Technology,2020.
[12]寧培桓, 周建偉, 劉玉嶺, 等. Si 單晶片切削液掛線性能的研究 [J]. 半導(dǎo)體技術(shù),2008,33(11):981-984.
NING Peihuan, ZHOU Jianwei, LIU Yuling, et al. Study on the
capability of adhesion of monocrystalline Si wafer cutting fluid [J].
Semiconductor Technology,2008,33(11):981-984.
[13]馮勇, 王曉宇, 徐振欽. 單晶硅料擺輔助多金剛線切片的鋸切力模型研究 [J]. 機(jī)械工程學(xué)報(bào),2021,57(19):260-272.
FENG Yong, WANG Xiaoyu, XU Zhenqin. Research on cutting force
model of diamond wire saw with single crystal silicon swing [J]. Journal
of Mechanical Engineering,2021,57(19):260-272.
[14]章梓雄, 董曾南. 黏性流體力學(xué) [M]. 北京: 清華大學(xué)出版社, 2011.
ZHANG Zixiong, DONG Zengnan. Viscous fluid mechanics [M].
Beijing: Tsinghua University Press, 2011.
[15]任玉新, 陳海昕. 計(jì)算流體力學(xué)基礎(chǔ) [M]. 北京: 清華大學(xué)出版社, 2006.
REN Yuxin, CHEN Haixin. Fundamentals of computational fluid
dynamics [M]. Beijing: Tsinghua University Press, 2006.
[16]L·普朗特. 流體力學(xué)概論 [M]. 郭永懷, 陸士嘉, 譯. 北京: 科學(xué)出版社,1984.
L PRANDTL. Introduction to fluid mechanics [M]. GUO Yonghuai, LU
Shijia, translated. Beijing: Science Press, 1984.
[17]雷娟棉, 譚朝明. 基于 Transition SST 模型的高雷諾數(shù)圓柱繞流數(shù)值研究 [J]. 北京航空航天大學(xué)學(xué)報(bào),2017,43(2):207-217.
LEI Juanmian, TAN Zhaoming. Numerical simulation for flow around
circular cylinder at high Reynolds number based on Transition SST
model [J]. Journal of Beijing University of Aeronautics and Astronautics,2017,43(2):207-217.
作者簡(jiǎn)介
通信作者: 葛培琪,男,1963 年生,教授。主要研究方向:金剛石線鋸技術(shù)。
E-mail: pqge@sdu.edu.cn
(編輯:李利娟)
Simulation"study"of"cutting"fluid"flow"field"in"kerf"of"fine"diameter
diamond"wire"saw
CHEN Jiahu
1 , GE Peiqi 1,2
(1. School of Mechanical Engineering, Shandong University, Jinan 250061, China)
(2. Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education,
Shandong University, Jinan 250061, China)
Abstract
Objectives:"Electroplated diamond wire saws are widely used in the field of slicing hard and brittle materi-als such as monocrystalline silicon and sapphire. Cutting fluid should give full play to its role in the sawing process,which is conducive to the improvement of wafer quality. As the size of the wafer increases and the diameter of the wiresaw decreases, the kerf in the sawing process becomes deeper and narrower, and the cutting fluid cannot enter the kerf inlarge quantities, resulting in worse lubrication and cooling effects during the sawing process, which leads to the declineof the surface quality of the wafer. Based on computational fluid dynamics (CFD) numerical simulation methods, thecutting fluid flow field in the cutting seam of the diamond wire saw was analyzed and studied. Methods:"In this paper,based on CFD numerical simulation methods, the cutting fluid flow field in the sawing seam of the diamond wire saw isanalyzed and studied. Firstly, according to the actual situation of the diamond wire saw cutting process, a 3D simulationgeometric model is established based on the liquid supply mode, where cutting fluid flows along the sawing wire and isbrought into the sawing area by the motion of the sawing wire. Heat transfer is not considered in this study, and the cut-ting fluid is assumed to be a viscous incompressible fluid. The governing equations of fluid flow include the continuityequation and the momentum equation. It is found from the equations that the main factors affecting the flow field distri-bution of cutting fluid in the kerf are wire speed and cutting fluid density. By calculating Reynolds number and Webernumber, the fluid model studied in this paper is selected as the Transition SST model. The VOF method is determined tocharacterize the fluid state of cutting fluid in the saw joint, and the CSF model is introduced into the VOF method tocharacterize the influence of surface tension. Considering the influence of physical properties of cutting fluid, the dens-ity, viscosity, surface tension, and wall contact angle of cutting fluid are measured experimentally. The momentumequation is solved by a pressure-based solver, the continuity equation is solved by implicit time discretization, and thePISO method is used for pressure-velocity coupling. Result: With the increase of chip size and the decrease of wire sawdiameter, the size of the saw seam is getting smaller and smaller. The main fluid entering the saw seam is shear flow,and the main factor affecting the fluid motion state is the wire speed. Under the condition of small-size sawing, when thewire speed is low (v w ≤25 m/s), both the contact area and the non-contact area of the saw wire in the sawing joint are notcompletely filled with liquid, and the liquid volume fraction in the contact area is lt; 100%, with an air layer in the area.With the increase of wire speed, more and more cutting fluid enters the sawing joint. With the increase of wire speed,more and more cutting fluid enters the saw seam. When v w gt;25 m/s, both the contact area and the non-contact area arefilled with liquid. The cutting fluid pressure in the saw seam increases with the increase of wire speed on both the con-tact area side and the non-contact area side, and the pressure difference on both sides also increases generally. The pres-sure distribution on both sides becomes more stable. After both sides of the saw seam are filled with liquid, the pressureon one side of the contact area is about 0.179 0 MPa, and the pressure on one side of the non-contact area is about 0.159 0MPa. With the gradual reduction of the viscosity and surface tension of the cutting fluid, the cutting fluid gradually fillsthe saw joint. Howver, when the viscosity and surface tension of the cutting fluid are too small, the cutting fluid enter- ing the saw joint will tend to decrease. The cutting fluid pressure in the saw seam increases with the decrease of the cut-ting fluid viscosity and surface tension in both the contact area and the non-contact area, and the pressure distributionbecomes more stable. However, when the viscosity and the surface tension are too small, the pressure will also fluctuate.Under the physical properties of the cutting fluid C, with a density of 872.5 kg?m?3 , viscosity of 1.15 mPa?s and surfacetension of 34.02 mN?m?1 , the pressure distribution of the cutting fluid on the contact area side and the non-contact areaside is more stable. The maximum pressure on the contact area side is about 0.016 9 MPa, and the maximum pressure onthe non-contact area side is about 0.013 2 MPa. Conclusions: (1) Under small sawing sizes, when the wire speed is low,the cutting fluid is difficult to fully enter the sawing area to play its role. With the increase of the wire speed (v w gt;25m/s), the contact area and non-contact area between the saw wire and the workpiece are gradually filled with liquid, andthe cutting fluid pressure and pressure difference between the contact area and the non-contact area show an overall in-creasing trend. When the contact area and non-contact area are full of cutting fluid, the cutting fluid pressure distribu-tion in the saw joint is relatively stable, with the pressure in the contact area being about 0.179 0 MPa and the pressurein the non-contact area being about 0.159 0 MPa. (2) The reduction of liquid viscosity and surface tension within a cer-tain range is conducive to ensuring the relative saturation and stability of the cutting fluid in the saw joint, and at thesame time, it can make the pressure distribution of the cutting fluid in the saw joint more stable. A comprehensive com-parison of the physical properties of the 5 groups of cutting fluids shows that the physical properties of the cutting fluidC during the diamond line saw cutting process are more conducive to its entry into the saw joint.
Key"words
diamond wire saw;computational fluid dynamics;small size kerf;cutting fluid flow field