• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      PDC磨損齒切削破巖數(shù)值模擬研究

      2024-12-06 00:00:00蔡茂盛王紅波張春江李賽程書婷
      金剛石與磨料磨具工程 2024年6期
      關(guān)鍵詞:單齒破巖鉆頭

      摘要 現(xiàn)有文獻(xiàn)針對切削齒的數(shù)值模擬研究較少考慮磨損高度對切削齒溫度、切削載荷的影響,然而聚晶金剛石復(fù)合片(PDC)切削齒磨損后受力惡化、熱磨損加劇會導(dǎo)致其快速失效。為探討這一問題,基于彈塑性力學(xué)和巖石力學(xué),以 Drucker-Prager 準(zhǔn)則為巖石的本構(gòu)模型建立磨損齒的三維動態(tài)旋切仿真模型,運(yùn)用數(shù)值模擬的方法分析在不同磨損高度、切削深度、前傾角的條件下切削齒的受力狀態(tài)以及溫升幅度。結(jié)果表明:與未磨損齒相比,磨損齒的切削載荷隨磨損高度的增加而變大,且切削齒(直徑 13.4 mm、總高 8 mm)磨損高度為 1.5 mm 時達(dá)到最大;切削齒磨損越嚴(yán)重,吃入到同一深度所需的力越大;前傾角增加,導(dǎo)致切削載荷也會變大。因此磨損齒在切削鉆進(jìn)過程中,磨損高度越高、前傾角越大,切削齒的失效風(fēng)險越高;隨著切削齒磨損高度增加,切削齒溫升顯著增加,在模擬條件下可提高 54%~103%。

      關(guān)鍵詞 PDC 切削齒;Drucker-Prager 準(zhǔn)則;單齒切削;切削載荷;切削熱

      中圖分類號 TQ164; TG58; TG74 文獻(xiàn)標(biāo)志碼 A

      文章編號 1006-852X(2024)06-0789-09

      DOI 碼 10.13394/j.cnki.jgszz.2023.0258

      收稿日期 2023-11-29 修回日期 2024-02-21

      目前,聚晶金剛石復(fù)合片(polycrystalline diamondcompact,PDC)鉆頭憑借其鉆速快、使用壽命長的優(yōu)勢特性在油氣鉆井、煤田鉆探、地質(zhì)勘探中得到廣泛應(yīng)用,其在油氣鉆井領(lǐng)域以 80% 以上的國際市場占有率和 90% 以上的進(jìn)尺引領(lǐng)了全球鉆頭市場[1] 。同時,深地層巖石非均質(zhì)性強(qiáng)、研磨性強(qiáng)等特點(diǎn)也限制了PDC 鉆頭的鉆進(jìn)效率[2] ,切削齒的快速磨損是其中的一個關(guān)鍵原因。70% 以上的 PDC 鉆頭損壞是 PDC 鉆頭切削齒失效造成的,主要表現(xiàn)為切削齒的磨損和斷裂[3] 。切削齒作為 PDC 鉆頭的基本組成部分,研究磨損切削齒的切削載荷變化和生熱規(guī)律顯得尤為必要。

      在單齒切削鉆進(jìn)方面,國內(nèi)外研究者進(jìn)行了較為細(xì)致的探討。鄧敏凱等[4]通過仿真模擬與實(shí)驗(yàn)結(jié)合,研究了側(cè)傾角和前傾角的變化對 PDC 鉆頭切削齒破巖效果的影響規(guī)律,結(jié)果表明,前傾角為 15°~20°、側(cè)傾角為 5°時,切削齒的破巖效果最好且切削齒壽命較長。祝效華等[5]通過數(shù)值模擬探究切削深度、后傾角、側(cè)傾角等因素對破巖能效的影響,結(jié)果表明,隨著后傾角的增大,破碎比功逐漸增大且基本不受切削深度和圍壓的影響;切削齒存在最優(yōu)切削深度 2 mm,其破碎比功最小。楊迎新等[6]用不同磨損程度的切削齒進(jìn)行單齒切削實(shí)驗(yàn),結(jié)果表明,與未磨損齒相比,磨損齒所受切削力更大,切削力波動和溫度變化也更明顯,且易發(fā)生體積破碎,產(chǎn)生大體積巖屑。趙潤琦等[7]通過數(shù)值模擬的研究方法,發(fā)現(xiàn)斧形 PDC 齒在破碎同等體積的巖石時比常規(guī)平面 PDC 齒所需的切削力更低,且更易鉆入巖石。張春亮等[8]通過單齒切削實(shí)驗(yàn)和全尺寸磨損齒鉆頭鉆進(jìn)實(shí)驗(yàn)研究了磨損齒 PDC鉆頭的切削性能,結(jié)果表明,隨著磨損程度的增加,切削齒的載荷波動明顯,鉆頭的機(jī)械鉆速下降,機(jī)械比能增加,振動程度減少。ROSTAMSOWLAT 等[9]使用未磨損切削齒與磨損切削齒分別對石灰?guī)r和砂巖進(jìn)行單齒切削,研究了不同切削深度下磨損齒的磨損表面與巖石表面形成的夾角對切削過程中摩擦力大小的影響。

      在破巖產(chǎn)生切削熱方面,朱光輝等[10]用不同前傾角、不同磨損程度的切削齒進(jìn)行了切削試驗(yàn)和溫度監(jiān)測,結(jié)果表明,切削齒的磨損程度越嚴(yán)重、前傾角越大,相較于未磨損齒的切削力和溫度變化越大。VORONTSOV等[11]探究了單齒破巖時切削齒溫度隨前傾角變化的規(guī)律。鄧嶸等[12]運(yùn)用有限元仿真分析方法,研究了單齒動態(tài)破巖中切削齒的溫度分布情況,結(jié)果表明,因線速度不同,切削區(qū)域遠(yuǎn)離鉆頭軸線一側(cè)的溫升高于靠近軸線一側(cè)的。MAMALIS 等[13]運(yùn)用有限元仿真方法,研究了高速切削情況下切削齒的破巖功與切削熱量的轉(zhuǎn)化關(guān)系。張?jiān)谂d等[14]通過仿真方法研究了切削角度對切削齒溫度波動程度的影響規(guī)律,結(jié)果表明,當(dāng)切削角度大于臨界值時,切削齒的溫度會隨著切削角度的增大而降低。

      現(xiàn)有研究大多是對切削齒的單齒破巖數(shù)值模擬研究或磨損切削齒的單齒破巖實(shí)驗(yàn)研究,鮮有研究者將切削齒磨損狀態(tài)與切削熱同時考慮入破巖數(shù)值模擬研究中。PDC 切削齒磨損狀態(tài)下的破巖數(shù)值模擬得出的切削載荷和溫度變化情況與磨損程度的關(guān)系尚不明確,亟待開展深入研究。因此,本研究中使用切削齒進(jìn)行單齒破巖模擬,并重點(diǎn)分析不同的磨損高度、前傾角、切削深度等因素對 PDC 磨損齒切削載荷和溫度變化的影響規(guī)律。

      1

      有限元破巖模型

      1.1

      模型假設(shè)

      模型的參數(shù)設(shè)置如表 1 所示,為了便于計(jì)算和分析,對有限元破巖過程做以下假設(shè):(1)巖石屬性設(shè)置為連續(xù)的、各向同性的介質(zhì),且為均質(zhì)彈塑性體;(2)忽略實(shí)際切削巖石的孔隙壓力效應(yīng),且不含層理、裂縫或溶洞等特殊結(jié)構(gòu);(3)巖石單元失效后立即從巖體中刪除,不計(jì)其失效后對切削的影響;(4)將切削齒視為剛體,鉆進(jìn)過程中不發(fā)生損耗。

      1.2

      巖石與切削齒物理模型

      根據(jù)圣維南原理,為了減少局部效應(yīng)對破巖真實(shí)性的影響,巖石的模型尺寸應(yīng)比切削齒大 4~7 倍[7] ??紤]到計(jì)算機(jī)的求解速度,模擬的巖石選取外直徑為100 mm、內(nèi)直徑為 28 mm、高度為 40 mm 的幾何體。切削齒選取直徑為 13.4 mm、高度為 8 mm 的磨損平面切削齒。巖石與切削齒的物理模型如圖 1 所示。

      建立的切削齒與巖石的破巖受力分析如圖 2 所示,d DOC 為切削深度,θ 為前傾角。切削齒在破巖過程中,受到側(cè)向力 F x 、切向力 F y 與軸向力 F z 的共同作用。F x垂直于旋切軌跡并指向外側(cè),F(xiàn) y 與旋轉(zhuǎn)方向相反,F(xiàn) z 垂直于 F y 并指向切削齒。

      1.3

      巖石強(qiáng)度準(zhǔn)則及相互作用模型

      巖石模型采用 Drucker-Prager 彈塑性和剪切損傷相結(jié)合的本構(gòu)模型,并定義了硬化特征。D-P 模型考慮了中間應(yīng)力的作用以及巖石剪脹現(xiàn)象,并且可以將試驗(yàn)獲得的 M-C 準(zhǔn)則數(shù)據(jù)與 D-P 準(zhǔn)則進(jìn)行相互轉(zhuǎn)換[15] ,D-P 準(zhǔn)則表達(dá)式[7]為:

      2

      有限元模擬結(jié)果分析與討論

      圍繞磨損高度、切削深度和前傾角對切削齒的切削載荷與溫度變化的影響以及破巖能力進(jìn)行評價。由以往文獻(xiàn)[8]可知,切削載荷會隨時間變化劇烈波動,這是因?yàn)樵趹?yīng)力達(dá)到巖石的屈服極限后,巖石單元會斷裂破壞并被刪除,切削齒受到的切削載荷迅速下降,接著對下一部分的巖石單元進(jìn)行切削,切削載荷又會振蕩。因此對切削載荷進(jìn)行了平滑處理 ,這樣更利于得出切削載荷隨自變量變化的規(guī)律。

      2.1

      巖石應(yīng)力場特征

      在模擬條件(前傾角 15°、切削深度 1.5 mm)下,切削齒吃入巖石時的應(yīng)力場分布情況如圖 4 所示。由圖 4 可知:不同磨損程度的切削齒均能達(dá)到巖石的破壞極限,均可以有效地進(jìn)行破巖,但對比預(yù)破碎面積和應(yīng)力極值可知,未磨損齒的大于磨損齒的,表明破巖過程中未磨損齒在相同的模擬條件下可以破碎更多體積的巖石,即機(jī)械比能更低。這也與后續(xù)的切削熱分析形成呼應(yīng),隨著切削齒磨損高度的增加,與巖石的接觸面積增大,致使磨損齒的破巖能力削弱,摩擦生熱能力增強(qiáng)。

      2.2

      磨損高度對切削載荷的影響

      在模擬條件(前傾角 15°、切削深度 1.5 mm)下,切削載荷的大小和波動程度在磨損高度為 0~1.5 mm時,隨磨損高度的增加而增大,在磨損高度>1.5 mm 時,會有小幅度下降,如圖 5 所示。切向力方面,磨損高度1.5 mm 的切削齒受到的切向力最大,但當(dāng)磨損高度為2.0 mm 時,切向力有所回落。這是因?yàn)榍邢鼾X嚴(yán)重磨損會使切削面積增大,切削齒與巖石是面接觸,齒刃鋒利度受損,切削齒難以吃入巖石[18] 。軸向力方面,磨損齒 的 軸 向 力 整 體 高 于 未 磨 損 齒 的, 在 磨 損 高 度 為0~1.5 mm 時,隨著磨損高度的增加,軸向力逐漸增大,在磨損高度為 1.5 mm 時,軸向力達(dá)到最大,在磨損高度>1.5 mm 后,軸向力會有所下降。磨損高度 1.0 mm與磨損高度 2.0 mm 的切削齒軸向力恰好均為未磨損齒軸向力的 1.2 倍,磨損高度 1.5 mm 的切削齒軸向力是未磨損齒軸向力的 1.3 倍。

      2.3

      切削深度對切削載荷的影響

      由圖 6 所示,在模擬條件(磨損高度 1.0 mm、前傾角 15°)下,隨著切削深度的增加,切向力和軸向力都逐漸增加,且波動程度更加劇烈。這是因?yàn)樵谛∏邢魃疃鹊臈l件下,巖石的體積破碎效果較差、破碎成塊率低、粉碎率較高,切削載荷波動較小。切向力方面,切削深度 2.0 mm 的磨損齒切向力為切削深度 1.0 mm的磨損齒切向力的 1.9 倍,增幅較大;切削深度 1.5 mm的磨損齒切向力僅比切削深度 1.0 mm 的磨損齒切向力增加了 25%,增幅較小。在軸向力方面,隨著切削深度的增加,軸向力的增幅相對比較均衡。

      2.4

      前傾角對切削載荷的影響

      前傾角的確定是 PDC 鉆頭設(shè)計(jì)的重要組成部分,適當(dāng)?shù)那皟A角可以使切削齒刃有效吃入巖石,并具有良好的抗沖擊性,直接影響鉆頭的攻擊性與使用壽命。由圖 7 所示,模擬條件(磨損高度 1.0 mm、切削深度1.5 mm)下,隨著前傾角的增大,磨損齒的切削載荷逐步增加,其中切向力的增幅達(dá)到 28%,軸向力的增幅達(dá)到 32%。前傾角為 10°時,切削載荷的波動程度比 15°和 20°前傾角時都更加劇烈。前傾角的設(shè)計(jì)需要在切削載荷與波動程度上做一定的取舍,如軟地層可選取10°~15°的前傾角,使切削齒受到較小的切削載荷;硬地層可以選取 15°~20°的前傾角,使切削齒的載荷波

      2.5

      磨損高度對切削熱的影響

      PDC 切削齒與巖石相互作用過程中產(chǎn)生的切削熱主要來源于切削齒與巖石接觸的摩擦生熱和巖石自身受壓受剪的變形[19] 。由圖 8 切削齒溫度云圖可知,由于切削齒繞中心軸旋轉(zhuǎn)破巖,切削刃各處的線速度不同,遠(yuǎn)離中心軸一側(cè)的溫度會高于靠近中心軸一側(cè)的溫度。隨著磨損程度的增加,切削齒的溫升也更顯著,且高溫區(qū)集中在塑性變形和摩擦生熱集中的巖屑-切削齒接觸區(qū)域。

      由圖 9 可知溫度變化曲線可分為 3 個階段:上升期、過渡期與穩(wěn)定期。隨著時間的推進(jìn),切削齒的溫度持續(xù)上升,上升期溫升速率大于過渡期,進(jìn)入穩(wěn)定期后趨于平緩。出現(xiàn)這種情況的原因是切削齒達(dá)到最高溫度后,產(chǎn)生的溫度與對流換熱和熱輻射損失的熱量相當(dāng);磨損齒在破巖過程中的溫升遠(yuǎn)大于未磨損齒的,溫度提升54%~103%。因?yàn)榍邢鼾X在旋切過程中,磨損齒與地層接觸的切削弧長和切削面積比未磨損齒更大,其溫升顯著高于未磨損齒。所以在實(shí)際工作中,要及時更換磨損嚴(yán)重的切削齒,讓切削齒處于溫升速率較低的工作環(huán)境,弱化切削熱對齒的熱磨損,延長 PDC 鉆頭的使用壽命。

      3

      結(jié)論

      (1)隨著切削深度的增加,切削載荷逐漸變大,且切向力的增幅最大能達(dá)到軸向力增幅的 2 倍,說明磨損過度的切削齒受力更加復(fù)雜多變,切削齒的疲勞失效風(fēng)險增加。在布齒方面,可以考慮在主切削單元PDC 的后方放置輔助切削單元,并且讓其出露高度低于 PDC,這樣可以有效減少主切削齒的載荷,降低切削齒發(fā)生過載損壞的概率。

      (2)磨損齒的切削載荷隨著前傾角的增加而增大,前傾角為 10°~15°時,切削載荷的波動程度大于前傾角為 15°~20°時的波動程度。在綜合考慮切削效率與載荷波動的情況下,盡量把前傾角控制在 15°~20°,有利于延長切削齒的使用壽命。

      (3)伴隨磨損高度的增加,切削載荷在磨損高度為 1.5 mm(切削齒直徑 13.4 mm、總高 8 mm)時達(dá)到最大,較大的切削載荷引起切削齒的振蕩,對井下鉆具的使用造成影響。切削齒磨損后,其吃入巖石的能力減弱,巖石預(yù)破碎面積也有所減少,切削巖石的方式由剪切破壞逐步向擠壓破壞過渡,極大地降低了切削齒的破巖效率。

      (4)切削破巖過程中,磨損齒的溫升遠(yuǎn)大于未磨損齒的,在模擬條件中可提高 54%~103%。在磨損高度為 0~1.5 mm 時,切削齒的溫升隨磨損程度的增加而變大,在磨損高度>1.5 mm 時,溫升會有小幅度回落,因此切削齒在磨損后熱磨損會持續(xù)加劇,從而加速切削齒的磨損與失效。在后續(xù)的切削過程中,可以選擇耐磨、耐高溫材料的切削齒,降低鉆進(jìn)的鉆壓與轉(zhuǎn)速的同時增加泵的水功率等,從而有效抑制熱磨損。

      參考文獻(xiàn):

      [1]劉維, 高德利. PDC 鉆頭研究現(xiàn)狀與發(fā)展趨勢 [J]. 前瞻科技,2023,2(2):168-178.

      LIU Wei, GAO Deli. Research status and development trends of

      polycrystalline diamond compact bits [J]. Prospect Science and

      Technology,2023,2(2):168-178.

      [2]蘇義腦, 路保平, 劉巖生, 等. 中國陸上深井超深井鉆完井技術(shù)現(xiàn)狀及

      攻關(guān)建議 [J]. 石油鉆采工藝,2020,42(5):527-542.

      SU Yinao, LU Baoping, LIU Yansheng, et al. Status and research

      suggestions on the drilling and completion technologies for onshore deep

      and ultra deep wells in China [J]. Oil Drilling amp; Production Technology,2020,42(5):527-542.

      [3]張富曉, 黃志強(qiáng), 周已. PDC 鉆頭切削齒失效分析 [J]. 石油礦場機(jī)械,2015,44(9):44-49.

      ZHANG Fuxiao, HUANG Zhiqiang, ZHOU Yi. Failure analysis of PDC

      bit cutter [J]. Oil Field Equipment,2015,44(9):44-49.

      [4]鄧敏凱, 伍開松, 胡偉. PDC 鉆頭切削齒破巖仿真與試驗(yàn)分析 [J]. 石油機(jī)械,2014,42(1):10-13.

      DENG Minkai, WU Kaisong, HU Wei. Rock-breaking simulation and

      experimental analysis of PDC bit cutter [J]. China Petroleum Machinery,2014,42(1):10-13.

      [5]祝效華, 李海. PDC 切削齒破巖效率數(shù)值模擬研究 [J]. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報,2015,23(1):182-191.

      ZHU Xiaohua, LI Hai. Numerical simulation on mechanical special

      energy of PDC cutter rock-cutting [J]. Journal of Basic Science and

      Engineering,2015,23(1):182-191.

      [6]楊迎新, 謝松, 蔡燦, 等. PDC 磨損齒切削破巖過程的實(shí)驗(yàn)研究 [J]. 西南石油大學(xué)學(xué)報 (自然科學(xué)版),2023,45(1):180-188.

      YANG Yingxin, XIE Song, CAI Can, et al. A study on the mechanism

      and heat generation law of PDC wear tooth cutting [J]. Journal of

      Southwest Petroleum University (Science amp; Technology Edition),2023,45(1):180-188.

      [7]趙潤琦, 陳振良, 史懷忠, 等. 斧形 PDC 齒破碎致密硬質(zhì)砂巖特性數(shù)值模擬研究 [J]. 石油機(jī)械,2021,49(10):8-16.

      ZHAO Runqi, CHEN Zhenliang, SHI Huaizhong, et al. Numerical

      simulation study on characteristics of tight hard sand broken by axe-

      shaped PDC cutter [J]. China Petroleum Machinery,2021,49(10):8-16.

      [8]張春亮, 王錦成, 柯曉華, 等. 磨損齒 PDC 鉆頭的切削性能試驗(yàn) [J]. 金剛石與磨料磨具工程,2023,43(1):35-42.

      ZHANG Chunliang, WANG Jincheng, KE Xiaohua, et al. Experimental

      study on working mechanics of PDC bit with worn teeth [J]. Diamond amp;

      Abrasives Engineering,2023,43(1):35-42.

      [9]ROSTAMSOWLAT I, AKBARI B, EVANS B. Analysis of rock cutting

      process with a blunt PDC cutter under different wear flat inclination

      angles [J]. Journal of Petroleum Science and Engineering,2018,171:771-783.

      [10]朱光輝, 況雨春, 林偉. PDC 磨損齒切削載荷與生熱規(guī)律研究 [J]. 石油機(jī)械,2021,49(5):68-73.

      ZHU Guanghui, KUANG Yuchun, LIN Wei. Research on cutting load

      and heat generation law of PDC wearing cutter [J]. China Petroleum

      Machinery,2021,49(5):68-73.

      [11]VORONTSOV A L, SULTAN-ZADE N M, ALBAGACHIEV A Y, et

      al. Development of a new theory of thermal cutting processes 3.

      Influence of cutter's front angle on the cutting temperature and influence

      of preheating of the blank on the cutting force [J]. Russian Engineering

      Research,2010,30(3):274-275.

      [12]鄧嶸, 李勇. PDC 鉆頭切削齒破巖溫度場有限元仿真分析 [J]. 石油機(jī)械,2012,40(12):37-42.

      DENG Rong, LI Yong. Simulation analysis of temperature field for PDC

      bit cutter rock breaking [J]. China Petroleum Machinery,2012,40(12):37-42.

      [13]MAMALIS A G, HORVáTH M, BRANIS A S, et al. Finite element

      simulation of chip formation in orthogonal metal cutting [J]. Journal of

      Materials Processing Technology,2001,110(1):19-27.

      [14]張?jiān)谂d, 周琴, 張凱, 等. 切削角度對切削齒溫度分布的影響分析 [J].石油機(jī)械,2021,49(12):17-26.

      ZHANG Zaixing, ZHOU Qin, ZHANG Kai, et al. Analysis of effect of

      cutting angle on temperature distribution of cutting gear [J]. China

      Petroleum Machinery,2021,49(12):17-26.

      [15]鄧楚鍵, 何國杰, 鄭穎人. 基于 M-C 準(zhǔn)則的 D-P 系列準(zhǔn)則在巖土工程

      中的應(yīng)用研究 [J]. 巖土工程學(xué)報,2006,28(6):735-739.

      DENG Chujian, HE Guojie, ZHENG Yingren. Studies on Drucker-Prager

      yield criterions based on M-C yield criterion and application in

      geotechnical engineering [J]. Chinese Journal of Geotechnical

      Engineering,2006,28(6):735-739.

      [16]袁小平, 劉紅巖, 王志喬. 基于 Drucker-Prager 準(zhǔn)則的巖石彈塑性損傷

      本構(gòu)模型研究 [J]. 巖土力學(xué),2012,33(4):1103-1108.

      YUAN Xiaoping, LIU Hongyan, WANG Zhiqiao. Study of elastoplastic

      damage constitutive model of rocks based on Drucker-Prager criterion

      [J]. Rock and Soil Mechanics,2012,33(4):1103-1108.

      [17]CHEN S L, KHLEFAT Y, CLEBOSKI C, et al. A new method of backup-

      cutter layout to extend bit life without sacrificing rate of penetration [J].

      SPE Drilling amp; Completion,2018,33(2):115-129.

      [18]梁爾國, 李子豐, 鄒德永. PDC 切削齒受力的試驗(yàn)研究 [J]. 石油機(jī)械,2009,37(11):12-15.

      LIANG Erguo, LI Zifeng, ZOU Deyong. Experimental study on force of

      PDC cutter [J]. China Petroleum Machinery,2009,37(11):12-15.

      [19]李勇. PDC 鉆頭切削齒破巖過程熱分析與仿真 [D]. 成都: 西南石油大學(xué), 2012.

      LI Yong. Thermal analysis and simulation of rock breaking process of

      PDC bit cutter [D]. Chengdu: Southwest Petroleum University, 2012.

      作者簡介

      通信作者: 王紅波,男,1978 年生,博士后,碩士生導(dǎo)師。

      主要研究方向:鉆井材料與機(jī)具、采油設(shè)備與破巖機(jī)理。

      E-mail: tmwangbo@163.com

      (編輯:王潔)

      Study"on"numerical"simulation"of"rock"breaking"by"PDC"wear"teeth"cutting

      CAI Maosheng

      1,2 , WANG Hongbo 1,2 , ZHANG Chunjiang 1,2 , LI Sai 1,2 , CHENG Shuting 3

      (1. School of Petroleum Engineering, Yangtze University, Wuhan 430100, China)

      (2. Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Wuhan 430100, China)

      (3. SINOPEC Oilfield Equipment Co., Ltd., Wuhan 430205, China)

      Abstract

      Objectives: The existing literature on numerical simulation of cutters rarely considers the effect of wearheight on the temperature and cutting load of cutters. However, the deterioration of force and the aggravation of thermalwear after the wear of polycrystalline diamond composite (PDC) cutters lead to their rapid failure. Therefore, it is partic-ularly necessary to study the change of cutting load and the law of heat generation of worn cutters to extend their ser-vice life. Methods: Based on elastoplastic mechanics and rock mechanics, a 3D dynamic rotational simulation model ofworn teeth is established with the Drucker-Prager criterion as the rock constitutive model. The stress state and temperat-ure rise amplitude of cutting teeth under different wear heights, cutting depths, and front inclination angles are analyzedby numerical simulation."Results:"(1) Influence of wear height on cutting load: Under simulated conditions (front inclin-ation 15°, cutting depth 1.5 mm), the size and the fluctuation degree of cutting load increase with the increase of wearheight when the wear height is 0?1.5 mm, and decrease slightly when the wear height is larger than 1.5 mm. In terms oftangential force, the cutter with a wear height of 1.5 mm is subjected to the largest tangential force, but when the wearheight is 2.0 mm, the tangential force is reduced. In terms of axial force, the axial force of worn teeth is higher than thatof unworn teeth. When the wear height is 0?1.5 mm, the axial force gradually increases with the increase of wear height.When the wear height is 1.5 mm, the axial force reaches its maximum, and when the wear height is larger than 1.5 mm,the axial force decreases. The axial force of the cutter with a wear height of 1.0 mm and wear height of 2.0 mm is ex-actly 1.2 times that of the unworn tooth, and the axial force of the cutter with a wear height of 1.5 mm is 1.3 times thatof the unworn tooth. (2) Influence of cutting depth on cutting load: Under simulated conditions (wear height 1.0 mm,front inclination angle 15°), tangential force and axial force gradually increase with the increase of cutting depth, and thedegree of fluctuation is more intense. In terms of tangential force, the tangential force of the worn tooth with the cuttingdepth of 2.0 mm is 1.9 times that of the worn tooth with the cutting depth of 1.0 mm, and the increase is larger. The tan-gential force of the worn tooth with the cutting depth of 1.5 mm is only 25% higher than that of the worn tooth with thecutting depth of 1.0 mm, and the increase is small. In terms of axial force, with the increase of cutting depth, the in-crease in axial force is relatively balanced. (3) Influence of front inclination angle on cutting load: Under simulated con-ditions (wear height 1.0 mm, cutting depth 1.5 mm), the cutting load of worn teeth gradually increases with the increaseof front inclination angle, with the tangential force increasing by 28% and the axial force increasing by 32%. When thefront angle is 10°, the fluctuation of the cutting load is more severe than at other time with 15° and 20°. (4) Influence ofwear height on cutting heat: according to the temperature cloud map of the cutter, because the cutter rotates around thecentral axis to break rock, the linear speed of the cutting edge differs, and the temperature on the side away from thecentral axis will be higher than that on the side near the central axis. With the increase of wear degree, the temperaturerise of the cutter becomes more significant, and the high-temperature area is concentrated in the cutting-cutter contactarea, where plastic deformation and frictional heat generation are concentrated. The temperature change curve can be di-vided into three stages: rising period, transitional period, and stable period. With the passage of time, the temperature ofthe cutter continues to rise, and the temperature rise rate in the rising period is greater than in the transitional period, tending to flatten after entering the stable period. In the process of rock breaking, the temperature rise of worn teeth ismuch higher than that of unworn teeth, with a temperature increase of 54%?103%. Conclusions: The force on a cutterwith excessive wear is more complex and variable, increasing the risk of fatigue failure. In terms of tooth layout, it canbe considered to place the auxiliary cutting unit behind the main cutting unit composite sheet and make its exposureheight lower than the composite sheet, which can effectively reduce the load on the main cutting gear and reduce theprobability of overload damage to the cutting gear. The cutting load of the worn teeth increases with the increase of thefront angle. Considering the fluctuation of cutting efficiency and load, the front angle should be controlled at 15°?20° asfar as possible, which is beneficial to prolong the service life of the cutting teeth. After cutter wear, its ability to breakrock is weakened, the rock pre-crushing area is reduced, and the way of cutting the rock gradually transitions from shearfailure to extrusion failure, greatly reducing the rock-breaking efficiency of the cutter. In the process of cutting rockbreaking, the temperature rise of the worn teeth is much higher than that of the unworn teeth, and the temperature riseincreases with the increase of wear degree. Thus, the thermal wear of the cutting teeth will continue to intensify afterwear, accelerating the wear and failure of the cutting teeth. In the subsequent cutting process, cutter of wear-resistantand high-temperature-resistant materials can be selected to reduce the weight on the bit and the speed of drilling whileincreasing the water power of the pump, effectively inhibiting thermal wear.

      Key"words

      PDC cutter;Drucker-Prager criterion;single tooth cutting;cutting load;cutting heat

      猜你喜歡
      單齒破巖鉆頭
      交錯起爆下爆炸應(yīng)力波的碰撞機(jī)制與破巖效果
      爆炸與沖擊(2024年6期)2024-10-31 00:00:00
      第十三屆國際爆破破巖學(xué)術(shù)會議的征文即將截止
      工程爆破(2022年2期)2022-06-17 14:15:00
      立式秸稈發(fā)酵機(jī)單齒齒輪鏈盤機(jī)構(gòu)研究
      筒鉆單齒切削巖石的力學(xué)特性研究
      Epidermal growth factor receptor rs17337023 polymorphism in hypertensive gestational diabetic women: A pilot study
      竹 石
      準(zhǔn)東露天煤礦煤層開采單齒斗鉤預(yù)破碎工藝研究
      可切換式反循環(huán)潛孔錘鉆頭設(shè)計(jì)及優(yōu)化
      不同地應(yīng)力下TBM盤形滾刀破巖特性
      PDC鉆頭側(cè)鉆現(xiàn)場應(yīng)用
      黄浦区| 靖宇县| 金平| 平安县| 商都县| 老河口市| 叙永县| 常德市| 长葛市| 犍为县| 镇坪县| 天气| 皮山县| 体育| 手游| 彩票| 汉中市| 安顺市| 弥勒县| 天峨县| 孝昌县| 福建省| 常州市| 武邑县| 伊宁县| 陆丰市| 永春县| 双江| 黄山市| 珲春市| 宁城县| 两当县| 南阳市| 云龙县| 望江县| 鄱阳县| 灵寿县| 阳江市| 嘉善县| 库车县| 贺兰县|