摘 要: 旨在對(duì)九疑山兔線粒體基因組進(jìn)行組裝,探究其系統(tǒng)進(jìn)化和分類地位。本研究采用高通量測(cè)序技術(shù)對(duì)20只150日齡九疑山兔的耳組織進(jìn)行了全基因組測(cè)序,利用生物信息學(xué)軟件對(duì)線粒體基因組進(jìn)行組裝,并對(duì)獲得的線粒體基因組進(jìn)行序列分析、基因預(yù)測(cè)和注釋,隨后基于已發(fā)表的家兔、野兔、經(jīng)濟(jì)動(dòng)物和模式動(dòng)物的線粒體基因組序列進(jìn)行多序列比對(duì)和系統(tǒng)進(jìn)化分析,對(duì)研究群體的多態(tài)性位點(diǎn)進(jìn)行鑒定。組裝獲得長(zhǎng)度為17 306 bp的九疑山兔線粒體基因組全序列,其堿基組成、基因分布與已發(fā)表的5個(gè)家兔品種的線粒體基因組基本一致?;贒-loop區(qū)的系統(tǒng)進(jìn)化分析表明,九疑山兔與福建黃兔進(jìn)化關(guān)系較近,而與歐洲穴兔、沂蒙毛兔、川白獺兔和新西蘭白兔較遠(yuǎn)。通過其與14種野兔及11種經(jīng)濟(jì)/模式動(dòng)物的種間系統(tǒng)進(jìn)化分析表明,九疑山兔與歐洲野兔、海南兔和白靴兔親緣關(guān)系較近,與其他野兔和經(jīng)濟(jì)/模式動(dòng)物較遠(yuǎn)。研究群體的線粒體基因組保守區(qū)共鑒定到了12個(gè)突變位點(diǎn),其中有3個(gè)突變的群體等位基因頻率大于0.8,為多態(tài)性位點(diǎn)。本研究組裝獲得了首個(gè)九疑山兔的完整線粒體基因組序列,明確了九疑山兔與其它品種家兔、野兔和常見經(jīng)濟(jì)/模式動(dòng)物的親緣關(guān)系和分類地位,為九疑山兔的種質(zhì)資源利用和品種選育等研究提供了基礎(chǔ)數(shù)據(jù)。
關(guān)鍵詞: 九疑山兔;線粒體基因組;高通量測(cè)序;系統(tǒng)進(jìn)化
中圖分類號(hào): S829.1
文獻(xiàn)標(biāo)志碼: A
文章編號(hào):0366-6964(2024)10-4417-11
收稿日期:2024-03-07
基金項(xiàng)目:湖南省科技廳項(xiàng)目:九疑山兔選優(yōu)提純研究(2019NK4192)
作者簡(jiǎn)介:李聰聰(1993-),女,河南南陽人,碩士,主要從事家兔遺傳與分子育種研究,E-mail:lcc199308@126.com
*通信作者:黃生強(qiáng),主要從事分子遺傳與動(dòng)物育種研究,E-mail:hsq07@126.com
Mitochondrial Genome Assembly and Phylogenetic Analysis of the Jiuyishan Rabbit
LI" Congcong1, HUANG" Zike1, HUANG" Nianni1, MA" Shiyu1, LIU" Han1, XIAO" Zhibiao2, SONG
Guo2, JIANG" Liang2, PENG" Weibo2, YANG" Lianxi3, GUO" Yuntao4, HUANG" Shengqiang1*
(1.College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128,
China;
2.Animal Husbandry and Fisheries Affairs Center of Ningyuan County, Yongzhou 425600,
China;
3.Hunan Hyplus Agricultural and Pastoral Technology Co., Ltd., Yongzhou 425600," China;
4.The Medical Laboratory of Nantong ZhongKe Co., Ltd., Nantong 226000," China)
Abstract:" The aim of the study was to assemble the mitochondrial genome of the Jiuyishan rabbit and to investigate its phylogenetic evolution and taxonomic position. High-throughput sequencing technology was employed to perform whole-genome sequencing on ear tissues from 20 Jiuyishan rabbits at 150 days of age. Bioinformatics software was employed for the assembly of the mitochondrial genome, followed by conducting sequence analysis, gene prediction and annotation of the obtained mitochondrial genome. Subsequently, multiple sequence alignment and phylogenetic analysis were conducted based on the published mitochondrial genome sequences of rabbits, hares, economically important animals and model animals. Polymorphic sites within the study population were identified. The complete mitochondrial genome sequence of the Jiuyishan rabbit was successfully obtained, the length was 17 306 bp. The nucleotide composition and gene arrangement of the mitochondrial genome were found to be largely consistent with those reported for 5 previously published domestic rabbit breeds. Phylogenetic analysis based on the D-loop region indicated a closer evolutionary relationship between the Jiuyishan rabbit and the Fujian Yellow rabbit, while Jiuyishan rabbit was more distantly related to the European rabbit, Yimeng Wool rabbit, Chuanbai Rex rabbit and New Zealand White rabbit. Interspecific phylogenetic analysis involving 14 wild rabbit species and 11 economic or model animal species demonstrated that the Jiuyishan rabbit shared a closer phylogenetic relationship with the European wild rabbit, Hainan rabbit, and the White-booted rabbit but was further with others. A total of 12 mutation sites were identified in the conserved regions of the mitochondrial genome of the study population, with 3 mutations having allele frequencies greater than 0.8, indicating polymorphism. This study has successfully assembled the first complete mitochondrial genome sequence of the Jiuyishan rabbit, clarifying its phylogenetic relationships and taxonomic status in comparison to other domestic rabbit breeds, wild rabbits and common economic or model animals. This work provides foundational data for the utilization of genetic resources and the breeding of the Jiuyishan rabbit.
Key words: Jiuyishan rabbit; mitochondrial genome; high-throughput sequencing; phylogenetic evolution
*Corresponding author: HUANG Shengqiang, E-mail:hsq07@126.com
家兔是兔形目兔科穴兔屬哺乳動(dòng)物[1],九疑山兔是我國(guó)一個(gè)重要的家兔品種,原產(chǎn)于湖南省寧遠(yuǎn)縣九疑山,屬小型皮肉兼用型地方兔,具有性成熟早、繁殖率高、 適應(yīng)性廣、耐潮濕、易飼養(yǎng)、體型小及毛色豐富等特點(diǎn)。由于主產(chǎn)區(qū)比較偏遠(yuǎn)、閉塞,人為影響較小,九疑山兔是我國(guó)家兔地方品種“原生態(tài)”保持最好的一個(gè)品種,是家兔研究中寶貴的遺傳資源[2]。哺乳動(dòng)物的線粒體基因組結(jié)構(gòu)較簡(jiǎn)單,大小約17 kb,在細(xì)胞中為多拷貝,具有嚴(yán)格的母系遺傳、結(jié)構(gòu)簡(jiǎn)單、 能獨(dú)立復(fù)制、具有較高的突變率且變異發(fā)生的幾率相對(duì)穩(wěn)定等特點(diǎn)[3-6]。線粒體基因組研究對(duì)揭示物種馴化和群體結(jié)構(gòu)規(guī)律具有重要意義[7-12]。目前NCBI數(shù)據(jù)庫中已收錄了5種家兔基因組[13-17],分別為新西蘭白兔、沂蒙毛兔、歐洲穴兔、福建黃兔和川白獺兔,但九疑山兔的線粒體基因組尚未被研究,因此本研究擬對(duì)九疑山兔的線粒體基因組進(jìn)行高通量測(cè)序,利用生物信息學(xué)方法對(duì)其進(jìn)行組裝、注釋和序列分析,以期為九疑山兔的研究提供理論參考。
1 材料與方法
1.1 樣本采集
本研究共納入20只九疑山兔,來自湖南省寧遠(yuǎn)縣九疑山保種場(chǎng),全部為公兔,在相同的環(huán)境和日糧飼喂條件下飼養(yǎng)至150日齡,每只兔子采集耳部組織5~8 g,使用生理鹽水清洗后分割成小塊兒,迅速投于液氮中冷凍,后轉(zhuǎn)移至裝有干冰的泡沫盒中送回實(shí)驗(yàn)室,置于-80℃冰箱保存。
1.2 核酸提取
按照QIAGEN血液/組織基因組DNA提取試劑盒DNeasy Blood amp; Tissue Kit說明書從500 mg組織中抽提總DNA,利用瓊脂糖凝膠電泳分析DNA降解程度以及是否有RNA、蛋白質(zhì)污染,并使用Qubit3.0 Fluorometer對(duì)DNA濃度進(jìn)行精確定量。其中DNA濃度≥20 ng·μL-1,總量300 ng以上的DNA樣品為合格樣品。
1.3 文庫構(gòu)建和高通量測(cè)序
每只兔子取300 ng基因組DNA樣品進(jìn)行文庫構(gòu)建。首先采用超聲法將大片段DNA打斷,并用磁珠分選的方法得到長(zhǎng)度為300~500 bp的DNA片段。繼而使用T4-DNA聚合酶等,將打斷得到的黏性末端片段修復(fù)為平末端,并在3′端加上A堿基。隨后在T4-DNA連接酶的作用下,在DNA片段兩端加上帶index序列的接頭。使用PCR方法對(duì)DNA片段進(jìn)行擴(kuò)增,并將其環(huán)化酶切,得到純凈的環(huán)狀DNA文庫。文庫質(zhì)控后,使用滾環(huán)擴(kuò)增(RCA)的方法,將文庫制備為DNA納米球(DNB)。將DNB加載到 Pattern Array 芯片上,使用中科基因的DNBSEQ-T7測(cè)序平臺(tái)進(jìn)行PE150讀長(zhǎng)高通量測(cè)序工作。
1.4 生物信息學(xué)分析
原始數(shù)據(jù)下機(jī)后,首先使用fastp[18]軟件(版本:v0.20.0,參數(shù):默認(rèn))對(duì)原始數(shù)據(jù)進(jìn)行預(yù)處理,去掉接頭、低質(zhì)量和長(zhǎng)度過短的序列,獲得高質(zhì)量數(shù)據(jù)。隨后使用bwa[19]軟件(版本:0.7.12-r1039,參數(shù):mem-t 10-R \"@RG/tID:Sample/tLB:Sample/tSM:Sample/tPL:ILLUMINA\")將高質(zhì)量的序列比對(duì)至家兔的參考基因組(版本:OryCun2.0),使用samtools[20](版本:1.2,參數(shù):sort-@10-O BAM)、sambamba[21](版本:0.7.0,參數(shù):markdup -t 10)軟件對(duì)bam文件進(jìn)行排序和標(biāo)重,并利用varscan[22]軟件(版本:2.4.4-1,參數(shù):mpileup2cns --min-coverage 100 --min-reads2 10 --output-vcf --variants --min-freq-for-hom 0.8 --min-var-freq 0.01 --p-value 0.05)對(duì)線粒體基因組上的突變進(jìn)行鑒定,隨后使用annovar[23](版本:2016-02-01,參數(shù):-remove -buildver ocu2.0 -operation g -nastring. -argument \"-hgvs\" -vcfinput -thread 4 -maxgenethread 4)和snpEff[24]軟件(版本:4.3g,參數(shù):ann -noStats -v OcuMT)進(jìn)行突變的注釋。使用samtools(版本:1.2,參數(shù):stats -@8)和mosdepth[25]軟件(版本:0.2.5,參數(shù):--flag 0 --threads 10 --no-per-base --thresholds 0,4,10,20,30,50,100,300,500,1 000,3 000,5 000)進(jìn)行基因組比對(duì)率、深度和覆蓋度的統(tǒng)計(jì)。使用MEANGS[26]軟件(版本:V.1.0,參數(shù):-t 6 -n 20 000 000 -i 350 --deepin)進(jìn)行線粒體基因組的組裝,并利用mitofinder[27]軟件(版本:1.4.1,參數(shù):-r NC_001913.1.gb -o 2 -p 8 -m 32)進(jìn)行線粒體基因預(yù)測(cè)和注釋,獲得的九疑山兔線粒體基因組序列已上傳至NCBI GenBank數(shù)據(jù)庫(登陸號(hào):PP357264)。使用OGDRAW[28]線上工具(https:∥chlorobox.mpimp-golm.mpg.de/OGDraw.html)進(jìn)行線粒體基因組結(jié)構(gòu)圈圖繪制。使用perl程序(版本:5.16)和R軟件(版本:4.0.2)對(duì)獲得的九疑山兔線粒體基因組進(jìn)行堿基組成分析和繪圖。使用MEGA[29]軟件的ClustalW工具進(jìn)行多序列比對(duì),并進(jìn)行NJ(Neighbor-Joining Algorithm,鄰接法)樹的構(gòu)建,建樹采用Bootstrap方法,迭代次數(shù)為1 000。
1.5 公共數(shù)據(jù)獲取
本研究從NCBI (https:∥www.ncbi.nlm.nih.gov/) GenBank數(shù)據(jù)庫檢索并下載5種國(guó)內(nèi)外家兔和14種國(guó)內(nèi)外野兔以及11種常見經(jīng)濟(jì)動(dòng)物及模式動(dòng)物的線粒體基因組,詳見表1。
2 結(jié) 果
2.1 測(cè)序數(shù)據(jù)質(zhì)量
對(duì)20只九疑山兔的耳組織DNA進(jìn)行全基因組測(cè)序,平均每個(gè)樣本質(zhì)控后獲得54.31G高質(zhì)量測(cè)序數(shù)據(jù)(48.38G~60.49G),Q30平均為93.14%(89.87%~94.2%),插入片段平均長(zhǎng)度為 337.15 bp(290~374 bp),平均GC含量為43.40%(42.61%~45.2%)。將數(shù)據(jù)與歐洲穴兔的參考基因組(版本:OryCun2.0)比對(duì)后,平均比對(duì)率為99.16%。全基因組水平的測(cè)序深度約18.33×,而線粒體基因組上平均測(cè)序深度達(dá)到5 477.36×。質(zhì)控結(jié)果說明九疑山兔耳組織中的線粒體拷貝數(shù)較多,測(cè)序數(shù)據(jù)質(zhì)量高,平均深度足以滿足后續(xù)組裝線粒體基因組和進(jìn)一步分析要求,詳見表2。
2.2 九疑山兔線粒體基因組組裝和注釋
對(duì)質(zhì)控后的數(shù)據(jù)進(jìn)行組裝后獲得1個(gè)高質(zhì)量環(huán)狀九疑山兔線粒體基因組,序列總長(zhǎng)度為17 306 bp,位于5種已報(bào)道的家兔線粒體全基因組序列長(zhǎng)度范圍之間(16 024~17 755 bp),AT堿基的比例為59.43%、GC堿基比例為40.57%,呈現(xiàn)明顯的 AT 偏好性。九疑山兔的線粒體基因組結(jié)構(gòu)高度保守,基因組成和排列順序均與其他兔種基因組相同,共注釋到 13 個(gè)蛋白質(zhì)編碼基因、22 個(gè) tRNA 基因(tRNA-Met、tRNA-Ile、tRNA-Gly、tRNA-Ala、tRNA-Leu*2、tRNA-Val、tRNA-Pro、tRNA-Phe、tRNA-Trp、tRNA-Ser*2、tRNA-Gln、tRNA-Thr、tRNA-Cys、tRNA-Asn、tRNA-Tyr、tRNA-Asp、tRNA-Glu、tRNA-Lys、tRNA-Arg、tRNA-His),2 個(gè) rRNA 基因(rrnL、rrnS)和非編碼控制區(qū)1個(gè)(D-loop)(圖1,表3)。13個(gè)蛋白編碼基因包括1個(gè)CYTB基因、2個(gè)ATPase(ATP8和ATP6)、3個(gè)氧化酶亞基(COX1、COX2和COX3)和7個(gè)脫氫酶亞基(ND1~ND6和ND4L)。22個(gè) tRNA 基因中有14個(gè)tRNA位于H鏈上,8個(gè)tRNA位于L鏈上。九疑山兔線粒體基因組的控制區(qū)(D-loop區(qū))位于15 446~17 306 bp,長(zhǎng)度為1 861 bp,在tRNA-Pro和tRNA-Phe之間,含有較多的重復(fù)序列,AT含量是55.67%,GC含量是44.33%。
2.3 家兔各品種D-loop區(qū)堿基組成和系統(tǒng)進(jìn)化分析
D-loop區(qū)與線粒體基因組上的其他區(qū)域相比,具有更高的進(jìn)化速率,常用來分析品種之間的系統(tǒng)進(jìn)化關(guān)系。從NCBI收集已發(fā)表的5種國(guó)內(nèi)外家兔品種(福建黃兔、歐洲穴兔、新西蘭白兔、川白獺兔和沂蒙毛兔)的線粒體基因組序列,提取其D-loop序列。首先,對(duì)家兔各個(gè)品種線粒體基因組D-loop的堿基比例進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)九疑山兔和福建黃兔的AT堿基比例略低于歐洲穴兔、新西蘭白兔、川白獺兔和沂蒙毛兔(圖2A)。隨后對(duì)這些序列進(jìn)行多序列比對(duì)并基于NJ法構(gòu)建系統(tǒng)進(jìn)化樹(圖2B),結(jié)果表明九疑山兔與福建黃兔進(jìn)化關(guān)系較近并聚為一支,歐洲穴兔與新西蘭白兔、沂蒙毛兔、川白獺兔則聚為另外一支。說明九疑山兔與福建黃兔進(jìn)化關(guān)系較近,而與歐洲穴兔、沂蒙毛兔、川白獺兔和新西蘭白兔進(jìn)化關(guān)系較遠(yuǎn)。
2.4 九疑山兔與其他物種間堿基組成和系統(tǒng)進(jìn)化分析
為了研究九疑山兔與其他物種的進(jìn)化關(guān)系,從NCBI GenBank數(shù)據(jù)庫獲得14個(gè)野兔和11個(gè)經(jīng)濟(jì)/模式動(dòng)物的線粒體基因組序列[30-38],分別作為近緣物種和外群參與分析(圖3)。首先,對(duì)各個(gè)物種線粒體基因組的堿基分布進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)九疑山兔、新西蘭白兔、沂蒙毛兔、歐洲穴兔、福建黃兔和川白獺兔這6種家兔的堿基組成比例接近。高原兔、塔里木兔、海南兔、歐洲野兔、白靴兔、雪兔、草兔、藏兔、華南兔、草兔-托氏兔、韓國(guó)野兔、格拉納達(dá)野兔、白尾長(zhǎng)耳大野兔和北極兔等野兔的4種堿基含量基本一致,AT含量較家兔略高。外群的綿羊、山羊、人、牛、馬、豬、斑馬魚、小鼠、大鼠等經(jīng)濟(jì)或模式動(dòng)物AT堿基組成比例較野兔AT堿基更小,果蠅的AT堿基含量占比最大超過家兔,小鼠和大鼠的堿基基本一致且略高于家兔。
使用線粒體基因組全序列進(jìn)行多序列比對(duì)并進(jìn)行系統(tǒng)發(fā)育分析,發(fā)現(xiàn)九疑山兔與歐洲野兔和海南兔、白靴兔親緣關(guān)系較近,與其他野兔品種關(guān)系稍遠(yuǎn),且與其他參與對(duì)比的11種經(jīng)濟(jì)或模式動(dòng)物聚為不同兩個(gè)分支,外群中九疑山兔與大鼠、小鼠的親緣關(guān)系最近,其次是斑馬魚、雞、人、馬、豬、牛、綿羊、山羊,外群中九疑山兔與果蠅的親緣關(guān)系最遠(yuǎn)。
2.5 九疑山兔線粒體保守區(qū)多態(tài)性位點(diǎn)
以已發(fā)表的新西蘭白兔的線粒體基因組為參考,分析本研究納入的20只九疑山兔群體的單核苷酸多態(tài)性(SNV)和插入缺失(InDel)變異,發(fā)現(xiàn)D-loop區(qū)域有較多的突變,保守區(qū)域鑒定到了12個(gè)突變位點(diǎn)(表4),其中有3個(gè)突變位于非編碼RNA上(ncRNA_exonic),1個(gè)突變位于基因間區(qū)(intergentic),8個(gè)突變位于外顯子區(qū)(exonic)。外顯子區(qū)的突變中有3個(gè)為同義突變,5個(gè)為錯(cuò)義突變。錯(cuò)義突變中有2個(gè)位點(diǎn)的群體等位基因頻率(MAF)大于等于0.95,分別是MT-5870-G-C、MT-11565-T-C,分別位于COX1、ND4基因上,tRNA-Thr基因上也鑒定到1個(gè)突變MT-15341-T-C,MAF為0.85(表4)。經(jīng)過與5種已發(fā)表家兔、海南兔、火山兔和人線粒體基因組相同位置及附近的序列比較,發(fā)現(xiàn)這3個(gè)突變均在多個(gè)物種/品種中出現(xiàn),并不保守,不會(huì)影響蛋白功能,為多態(tài)性位點(diǎn)。
另外還鑒定到3個(gè)MAF較低的錯(cuò)義突變位點(diǎn)MT-4643-T-G、MT-7379-A-G和MT-12400-A-C,分布在ND2、COX2和ND5基因上,其功能尚不明確。
3 討 論
九疑山兔是我國(guó)優(yōu)秀的小型皮肉兼用型地方兔,是原生態(tài)保持非常好的兔種質(zhì)資源材料,從線粒體基因組層面分析九疑山兔的系統(tǒng)發(fā)育地位,對(duì)探究其起源、進(jìn)化和種群分類具有重要意義。本研究采用高通量測(cè)序技術(shù)和生物信息學(xué)分析獲得了長(zhǎng)度為17 306 bp的九疑山兔線粒體基因組全序列,對(duì)其進(jìn)行了基因預(yù)測(cè)和注釋,發(fā)現(xiàn)其基因組成和分布與已發(fā)布的其他5種家兔一致,各基因長(zhǎng)度也基本一致,表明家兔線粒體基因組在進(jìn)化上具有高度保守性。九疑山兔線粒體基因組序列中AT 含量高于GC含量,表現(xiàn)出明顯的AT偏好性,這一現(xiàn)象在其他家兔和野兔線粒體中同樣存在[15,17],只是比例因品種不同而略有差異。
研究人員在2003年對(duì)來源于中國(guó)本土和不同時(shí)間引入的20個(gè)品種的104個(gè)家兔個(gè)體線粒體DNA的約700 bp控制區(qū)進(jìn)行測(cè)序,并構(gòu)建了一個(gè)簡(jiǎn)化的中繼網(wǎng)絡(luò)(MJ),結(jié)果顯示3個(gè)中國(guó)本土家兔品種(福建黃兔、太行山兔和四川白兔)被劃分到兩個(gè)歐洲家兔品種分支,推測(cè)中國(guó)家兔地方品種是從歐洲引進(jìn)[39]。2021年Liu等[4]用限制性內(nèi)切酶簡(jiǎn)化基因組測(cè)序技術(shù)(RAD-seq)從6個(gè)中國(guó)本土家兔品種和2個(gè)進(jìn)口家兔品種中獲得1 006 496個(gè)SNPs標(biāo)記,進(jìn)行了鄰接樹(NJ)、主成分分析(PCA)、常染色體和Y染色體群體結(jié)構(gòu)分析,結(jié)果顯示福建黃兔、云南彩兔和九疑山兔聚為一類。本研究中,九疑山兔與福建黃兔在系統(tǒng)發(fā)育樹中聚為一支,整體距離歐洲穴兔較近,可能也是源于歐洲穴兔。Wang等[13]在2021年首次測(cè)定了德國(guó)雷克斯兔和美國(guó)雷克斯兔雜交而來的川白獺兔的線粒體基因組,使用NJ鄰接法構(gòu)建系統(tǒng)發(fā)育樹發(fā)現(xiàn)川白獺兔與歐洲穴兔親緣關(guān)系最近。2023年Setiaji等[40]首次測(cè)定了印度尼西亞土兔線粒體基因組序列,系統(tǒng)進(jìn)化分析結(jié)果顯示,新西蘭白兔與沂蒙毛兔的關(guān)系較近,在本研究中得到印證。2019年Yao等[14]首次獲得了沂蒙毛兔線粒體全基因組序列,系統(tǒng)進(jìn)化樹顯示沂蒙毛兔與川白獺兔關(guān)系最近,而歐洲穴兔關(guān)系稍遠(yuǎn),與本研究結(jié)果一致。Xie等[17]對(duì)國(guó)內(nèi)外7個(gè)不同品種的180只家兔進(jìn)行了全基因組測(cè)序,鑒定出174 301 84個(gè)高質(zhì)量的SNV,并分析了群體的遺傳多樣性和種群結(jié)構(gòu),發(fā)現(xiàn)九疑山兔的遺傳多樣性較高,在進(jìn)化關(guān)系上與歐洲兔和和國(guó)外引入兔種較近,與國(guó)內(nèi)本土兔種較遠(yuǎn),與本研究結(jié)果一致,推測(cè)九疑山兔血統(tǒng)成分較復(fù)雜,可能存在與外來兔種的雜交。
將九疑山兔的線粒體基因組序列與表1中列出的14種野兔和11種經(jīng)濟(jì)/模式動(dòng)物的線粒體基因組進(jìn)行系統(tǒng)進(jìn)化分析表明,九疑山兔與表1中列出的14種野兔的親緣關(guān)系較近,與10種哺乳動(dòng)物的親緣關(guān)系次之,與果蠅的親緣關(guān)系最遠(yuǎn),與預(yù)期一致,從另外的維度印證了基因組序列的可靠性。2020年周彤等[16]對(duì)同為家兔的福建黃兔線粒體基因組全序列測(cè)定與分析,并基于線粒體基因組控制區(qū)序列構(gòu)建10種兔形目動(dòng)物的系統(tǒng)進(jìn)化樹,發(fā)現(xiàn)海南兔與福建黃兔的進(jìn)化關(guān)系較近,與本研究結(jié)果相互印證。
值得一提的是,本研究從九疑山兔群體中鑒定到了MT-5870-G-C、MT-11565-T-C和MT-15341-T-C 三個(gè)群體攜帶頻率較高的多態(tài)性位點(diǎn),雖然經(jīng)過保守性的評(píng)估,這些位點(diǎn)均不會(huì)對(duì)蛋白質(zhì)產(chǎn)生顯著的影響,但這些位點(diǎn)有作為識(shí)別位點(diǎn)來進(jìn)行品種鑒定標(biāo)記的潛能。另外鑒定到了3個(gè)MAF較低的錯(cuò)義突變位點(diǎn)MT-4643-T-G、MT-7379-A-G和MT-12400-A-C,分布在ND2、COX2和ND5基因上,因?yàn)槿后w規(guī)模的限制,暫無法確定其真實(shí)群體攜帶頻率,在將來的研究中將會(huì)納入更多的樣本對(duì)這些“罕見”位點(diǎn)進(jìn)行進(jìn)一步研究。
4 結(jié) 論
本研究組裝獲得了九疑山兔的完整線粒體基因組序列,明確了九疑山兔與其它家兔品種、野兔和常見經(jīng)濟(jì)/模式動(dòng)物的親緣關(guān)系和分類地位,為九疑山兔的種質(zhì)資源利用和品種選育等研究提供了基礎(chǔ)數(shù)據(jù)。
參考文獻(xiàn)(References):
[1] 秦應(yīng)和.家兔的起源馴化與育種[J].生物學(xué)通報(bào),2011,46(1):9-11.
QIN Y H.Origin,domestication and breeding of the rabbit[J].Bulletin of Biology,2011,46(1):9-11.(in Chinese)
[2] 肖志標(biāo),黃冬云,李之平,等.九疑山兔畜禽遺傳資源介紹、保護(hù)與利用[J].湖南畜牧獸醫(yī),2013(2):13-16.
XIAO Z B,HUANG D Y,LI Z P,et al.Introduction,protection and utilization of livestock and poultry genetic resources of Jiuyishan rabbit[J].Hunan Journal of Animal Science amp; Veterinary Medicine,2013(2):13-16.(in Chinese)
[3] BIRó B,GL Z,SCHIAVO G,et al.Nuclear mitochondrial DNA sequences in the rabbit genome[J]. Mitochondrion, 2022,66:1-6.
[4] LIU C M,WANG S H,DONG X G,et al.Exploring the genomic resources and analysing the genetic diversity and population structure of Chinese indigenous rabbit breeds by RAD-seq[J].BMC Genomics,2021,22(1):573.
[5] TAPANAINEN R,AASUMETS K,F(xiàn)EKETE Z,et al.Species-specific variation in mitochondrial genome tandem repeat polymorphisms in hares (Lepus spp.,Lagomorpha,Leporidae) provides insight into their evolution[J].Gene,2024,926: 148644.
[6] NITSCH L,LAREAU C A,LUDWIG L S.Mitochondrial genetics through the lens of single-cell multi-omics[J].Nat Genet,2024,56(7):1355-1365.
[7] 曹萍,徐宇輝,劉瑞林,等.天祝白牦牛全線粒體基因組母系遺傳多樣性[J].青海大學(xué)學(xué)報(bào),2024,42(2):28-34.
CAO P,XU Y H,LIU R L,et al.Maternal genetic diversity of complete mitogenome of Tianzhu white yak[J].Journal of Qinghai University,2024,42(2):28-34.(in Chinese)
[8] 何金明,徐 凱,杜亞麗,等.蜜蜂線粒體基因組多態(tài)性應(yīng)用研究進(jìn)展[J].環(huán)境昆蟲學(xué)報(bào),2024,46(2):341-353.
HE J M,XU K,DU Y L,et al.Progress in research on mitochondrial genome of honey bees and their polymorphisms[J].Journal of Environmental Entomology,2024,46(2):341-353.(in Chinese)
[9] 李廣禎,馬志杰,陳生梅,等.野牦牛及青海地方牦牛品種全線粒體基因組母系遺傳多樣性、分化及系統(tǒng)發(fā)育分析[J].畜牧獸醫(yī)學(xué)報(bào),2022,53(5):1420-1430.
LI G Z,MA Z J,CHEN S M,et al.Maternal genetic diversity,differentiation and phylogeny of mitogenome sequence variations of wild yak and local yak breeds in Qinghai[J].Acta Veterinaria et Zootechnica Sinica,2022,53(5): 1420-1430.(in Chinese)
[10] 王利丹,謝 躍.動(dòng)物寄生性線蟲線粒體基因組研究進(jìn)展[J].中國(guó)畜牧獸醫(yī),2023,50(11):4600-4611.
WANG L D,XIE Y.Research progress of animal parasitic nematode mitogenomes[J].China Animal Husbandry amp; Veterinary Medicine,2023,50(11):4600-4611.(in Chinese)
[11] LóPEZ-CUAMATZI I L,ORTEGA J,BAEZA J A.The complete mitochondrial genome of the ′Zacatuche′ Volcano rabbit (Romerolagus diazi),an endemic and endangered species from the volcanic belt of central mexico[J].Mol Biol Rep,2022, 49(2):1141-1149.
[12] GISSI C,GULLBERG A,ARNASON U.The complete mitochondrial DNA sequence of the rabbit,Oryctolagus cuniculus[J].Genomics,1998,50(2):161-169.
[13] WANG X,ZENG H M,WANG Y,et al.The complete mitochondrial DNA sequence of Chuanbai Rex rabbit (Oryctolagus cuniculus)[J].Mitochondrial DNA B,2021,6(1):129-130.
[14] YAO C Y,LI Y Y,LIU L X,et al.The complete mitochondrial DNA sequence of Yimeng wool rabbit[J].Mitochondrial DNA B,2019,4(2):3858-3859.
[15] 周 娟,李佳麗,陳秋燃,等.獺兔線粒體基因組全序列的測(cè)定與分析[J].中國(guó)獸醫(yī)學(xué)報(bào),2020,40(4):823-827.
ZHOU J,LI J L,CHEN Q R,et al.Complete sequence determination and analysis of mitochondrial genome of Rex rabbit[J].Chinese Journal of Veterinary Science,2020,40(4):823-827.(in Chinese)
[16] 周 彤,周 娟,梁 爽,等.福建黃兔線粒體基因組全序列測(cè)定與分析[J].西北農(nóng)業(yè)學(xué)報(bào),2020,29(9):1295-1303.
ZHOU T,ZHOU J,LIANG S,et al.Complete mitochondrial genome sequence and analysis of Fujian yellow rabbit[J].Acta Agriculturae Boreali-occidentalis Sinica,2020,29(9):1295-1303.(in Chinese)
[17] XIE K R,NING C,YANG A G,et al.Resequencing analyses revealed genetic diversity and selection signatures during rabbit breeding and improvement[J].Genes,2024,15(4):433.
[18] CHEN S F,ZHOU Y Q,CHEN Y R,et al.fastp:an ultra-fast all-in-one FASTQ preprocessor[J].Bioinformatics,2018, 34(17): i884-i890.
[19] LI H,DURBIN R.Fast and accurate short read alignment with burrows-wheeler transform[J].Bioinformatics,2009,25(14): 1754-1760.
[20] LI H,HANDSAKER B,WYSOKER A,et al.The sequence alignment/map format and SAMtools[J].Bioinformatics,2009, 25(16): 2078-2079.
[21] TARASOV A,VILELLA A J,CUPPEN E,et al.Sambamba:fast processing of NGS alignment formats[J].Bioinformatics, 2015, 31(12):2032-2034.
[22] KOBOLDT D C,ZHANG Q Y,LARSON D E,et al.VarScan 2:somatic mutation and copy number alteration discovery in cancer by exome sequencing[J].Genome Res,2012,22(3):568-576.
[23] WANG K,LI M Y,HAKONARSON H.ANNOVAR:functional annotation of genetic variants from high-throughput sequencing data[J].Nucleic Acids Res,2010,38(16):e164.
[24] CINGOLANI P,PLATTS A,WANG L L,et al.A program for annotating and predicting the effects of single nucleotide polymorphisms,SnpEff:SNPs in the genome of Drosophila melanogaster strain w1118;iso-2;iso-3[J].Fly (Austin),2012, 6(2): 80-92.
[25] PEDERSEN B S,QUINLAN A R.Mosdepth:quick coverage calculation for genomes and exomes[J].Bioinformatics,2018, 34(5):867-868.
[26] SONG M H,YAN C C,LI J T.MEANGS:an efficient seed-free tool for de novo assembling animal mitochondrial genome using whole genome NGS data[J].Brief Bioinform,2022,23(1):bbab538.
[27] ALLIO R,SCHOMAKER-BASTOS A,ROMIGUIER J,et al.MitoFinder:efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics[J].Mol Ecol Resour,2020,20(4):892-905.
[28] GREINER S,LEHWARK P,BOCK R.Organellar Genome DRAW (OGDRAW) version 1.3.1:expanded toolkit for the graphical visualization of organellar genomes[J].Nucleic Acids Res,2019,47(W1):W59-W64.
[29] TAMURA K,STECHER G,KUMAR S.MEGA11:molecular evolutionary genetics analysis version 11[J].Mol Biol Evol,2021,38(7):3022-3027.
[30] ZHANG X Z,F(xiàn)U L,GUO S C.The sequence and characterization of mitochondrial of Lepus oiostolus (Lagomorpha: Leporidae)[J]. Mitochondrial DNA B,2020,5(3):2135-2136.
[31] HUANG Y L,CHEN Y X,GUO H T,et al.The complete mitochondrial genome sequence of Yarkand ""hare (Lepus yarkandensis)[J].Mitochondrial DNA B,2019,4(2):3727-3728.
[32] ARNASON U,ADEGOKE J A,BODIN K,et al.Mammalian mitogenomic relationships and the root of the eutherian tree[J].Proc Natl Acad Sci U S A,2002,99(12):8151-8156.
[33] HIENDLEDER S,LEWALSKI H,WASSMUTH R,et al.The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype[J].J Mol Evol,1998,47(4):441-448.
[34] XU X F,RNASON ú.The complete mitochondrial DNA sequence of the horse,Equus caballus:extensive heteroplasmy of the control region[J].Gene,1994,148(2):357-362.
[35] DING L,CHEN C M,WANG H,et al.Complete mitochondrial DNA sequence of Lepus tolai (Leporidae:Lepus)[J]. Mitochondrial DNA A,2016,27(3):2085-2086.
[36] MELO-FERREIRA J,VILELA J,F(xiàn)ONSECA M M,et al.The elusive nature of adaptive mitochondrial DNA evolution of an arctic lineage prone to frequent introgression[J].Genome Biol Evol,2014,6(4):886-896.
[37] HASSANIN A,BONILLO C,NGUYEN B X,et al.Comparisons between mitochondrial genomes of domestic goat (Capra hircus) reveal the presence of numts and multiple sequencing errors[J].Mitochondrial DNA,2010,21(3/4):68-76.
[38] BROUGHTON R E,MILAM J E,ROE B A.The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA[J].Genome Res,2001,11(11):1958-1967.
[39] LONG J R,QIU X P,ZENG F T,et al.Origin of rabbit (Oryctolagus cuniculus) in China:evidence from mitochondrial DNA control region sequence analysis[J].Anim Genet,2003,34(2):82-87.
[40] SETIAJI A,LESTARI D A,PANDUPUSPITASARI N S,et al.Genetic characteristics of complete mtDNA genome sequence of Indonesian local rabbit (Oryctolagus cuniculus)[J].J Genet Eng Biotechnol,2023,21(1):96.
(編輯 郭云雁)