背景:腸道菌群失調(diào)或紊亂與腦和肝臟疾病之間存在聯(lián)系,腸道菌群可能通過腸?肝?腦軸影響原發(fā)性膽汁性膽管炎(PBC)和抑郁的發(fā)生和發(fā)展。目的:應(yīng)用16S rRNA基因測序技術(shù)分析PBC伴抑郁小鼠的腸道菌群情況。方法:將12只雌性小鼠隨機分為對照組、膽汁淤積組、膽汁淤積+抑郁組和治療組。對照組小鼠給予正常飼料和水喂養(yǎng);膽汁淤積組小鼠采用含0.1% DDC的飼料連續(xù)喂養(yǎng)2周構(gòu)建膽汁淤積模型;膽汁淤積+抑郁組小鼠先采用慢性溫和不可預(yù)期應(yīng)激方式刺激2周,再以含0.1% DDC的飼料喂養(yǎng)2周構(gòu)建膽汁淤積+抑郁模型;治療組小鼠在構(gòu)建膽汁淤積+抑郁模型的基礎(chǔ)上,腹腔注射鹽酸氯米帕明(7.5 mg·kg-1·d-1)2周。造模期間觀察小鼠的行為學(xué)變化。造模結(jié)束后各組小鼠稱重,行負重游泳試驗、強迫游泳試驗、懸尾試驗和肝組織HE染色;采集新鮮糞便,基于16S rRNA基因測序技術(shù)分析小鼠腸道菌群的變化。結(jié)果:與對照組相比,膽汁淤積組和膽汁淤積+抑郁組小鼠體質(zhì)量明顯減輕(Plt;0.05),抑郁樣行為明顯加重(Plt;0.05);與膽汁淤積+抑郁組相比,治療組小鼠體質(zhì)量明顯升高(Plt;0.05),抑郁樣行為明顯減輕(Plt;0.05)。膽汁淤積組、膽汁淤積+抑郁組和治療組小鼠肝組織出現(xiàn)不同程度的膽汁淤積性損傷;與膽汁淤積+抑郁組相比,治療組肝臟病理損傷明顯減輕。小鼠糞便樣本經(jīng)測序抽平處理后獲得個5 491個操作分類單元(OTU),4組共有的OTU為162個。對照組與膽汁淤積組、膽汁淤積+抑郁組和治療組小鼠糞便中微生物多樣性和群落組成存在較大差異。在門水平上,膽汁淤積組厚壁菌門(Firmicutes)豐度明顯升高;膽汁淤積+抑郁組變形菌門(Proteobacteria)豐度明顯升高;治療組厚壁菌門和變形菌門豐度均明顯升高,擬桿菌門(Bacteroidetes)豐度明顯下降。對組間差異顯著的物種行LEfSe分析發(fā)現(xiàn),LDA值gt;4的微生物類群有38個。結(jié)論:PBC伴抑郁小鼠的腸道菌群結(jié)構(gòu)和多樣性均發(fā)生顯著變化,抗抑郁治療能改善腸道菌群的豐度和多樣性,通過調(diào)節(jié)腸道菌群治療PBC伴抑郁有可能成為一種新的治療策略。
關(guān)鍵詞 原發(fā)性膽汁性膽管炎; 膽汁淤積; 抑郁; 16S rRNA基因測序技術(shù); 腸道菌群
Changes of Gut Microbiota in Fecal Samples of Mice With Primary Biliary Cholangitis Associated With Depression by Using 16S rRNA Gene Sequencing Technology TAO Li1, REN Yongqing2, ZHANG Ziyang3, WANG Jing4. 1Graduate School of Baotou Medical College, Inner Mongolia University of Science amp; Technology, Baotou, Inner Mongolia Autonomous Region (014040); 2Department of Infectious Diseases, Sinopharm North Hospital, Baotou, Inner Mongolia Autonomous Region; 3Department of Gastroenterology, Affiliated Hospital of Chifeng University, Chifeng, Inner Mongolia Autonomous Region; 4Department of Gastroenterology, the Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science amp; Technology, Baotou, Inner Mongolia Autonomous Region
Correspondence to: WANG Jing, Email: wangjinghappy2004@126.com
Background: There is a link between dysbiosis or disorder of gut microbiota and brain and liver diseases, and gut microbiota may affect the occurrence and development of primary biliary cholangitis (PBC) and depression through the gut?liver?brain axis. Aims: To analyze the gut microbiota in PBC mice associated with depression by using 16S rRNA gene sequencing technology. Methods: Twelve female mice were randomly divided into control group, cholestasis group, cholestasis+depression group and treatment group. Mice in the control group were given normal feed and water. Mice in the cholestasis group were fed with a feed containing 0.1% DDC for 2 weeks to establish cholestasis model. Mice in the cholestasis+depression group were stimulated with chronic mild unpredictable stress for 2 weeks, followed by 2 weeks of 0.1% DDC?containing feed to establish cholestasis+depression model. Mice in the treatment group were injected intraperitoneally with clomipramine hydrochloride (7.5 mg·kg-1·d-1) for 2 weeks based on the construction of cholestasis+depression model. During the modeling period, the behavioral changes of the mice were observed. After the modeling, the body weight was recorded, and the weight?bearing swimming test, forced swimming test, tail suspension test and HE staining of liver tissue were performed. The fresh feces were collected, and the changes of gut microbiota were analyzed by 16S rRNA gene sequencing technology. Results: Compared with the control group, the body weight of mice in cholestasis group and cholestasis+depression group was significantly decreased (Plt;0.05), and the depression?like behavior was significantly aggravated (Plt;0.05); compared with the cholestasis+depression group, the body weight of mice in treatment group was significantly increased (Plt;0.05), and the depression?like behavior was significantly ameliorated (Plt;0.05). Various degrees of cholestatic injury of the liver tissue were observed in the cholestasis group, cholestasis+depression group and treatment group. Compared with the cholestasis+depression group, the pathological injury of the liver tissue in treatment group was significantly reduced. After sequencing and flattening, 5 491 operational taxonomic units (OTUs) were obtained in fecal samples. There were 162 common OTUs among the 4 groups. The microbial diversity and community composition of the control group, cholestasis group, cholestasis+depression group and treatment group were significantly different. At the phylum level, the abundance of Firmicutes in the cholestasis group was significantly increased; the abundance of Proteobacteria in the cholestasis+depression group was significantly increased; the abundance of both Firmicutes and Proteobacteria was significantly increased in the treatment group, while the abundance of Bacteroidetes was significantly decreased. LEfSe analysis was performed in species with significant differences among the groups, and the results showed that there were 38 microbial groups with LDA valuegt;4. Conclusions: Significant changes are observed in gut microbiota composition and diversity in mice with PBC associated with depression. Antidepressant treatment can improve the abundance and diversity of gut microbiota, and regulating gut microbiota may become a new treatment strategy for PBC associated with depression.
Key words Primary Biliary Cholangitis; Cholestasis; Depression; 16S rRNA Gene Sequencing Technology;"Intestinal Microbiota
原發(fā)性膽汁性膽管炎(primary biliary cholangitis, PBC)是一種以肝內(nèi)膽管進行性損傷和膽汁淤積為特征的慢性自身免疫性肝病[1],可進展為肝硬化和肝衰竭。與大多數(shù)慢性肝病患者相同,抑郁癥狀在PBC患者中很常見,患病率為30%~45%,嚴重影響了患者的生活質(zhì)量[2?5]。隨著宏基因組學(xué)、代謝組學(xué)、脂質(zhì)組學(xué)、宏轉(zhuǎn)錄組學(xué)等分子工具和技術(shù)的發(fā)展,發(fā)現(xiàn)腸道菌群與多種腸內(nèi)和腸外疾病的發(fā)生有關(guān)[6]。研究發(fā)現(xiàn)腸道菌群失調(diào)或紊亂與腦和肝臟疾病之間存在聯(lián)系[7],腸道菌群可能通過腸?肝?腦軸影響PBC和抑郁的發(fā)生、發(fā)展[8]。本研究通過構(gòu)建小鼠膽汁淤積和抑郁模型,并應(yīng)用16S rRNA高通量測序技術(shù)檢測小鼠腸道菌群的變化,旨在探討腸道菌群對PBC伴抑郁小鼠的影響。
材料與方法
一、實驗動物和主要試劑
6周齡SPF級雌性C57BL/6小鼠共12只,體質(zhì)量為(16±1) g,購自斯貝福(北京)生物技術(shù)有限公司[許可證號:SCXK(京)2019?0010]。0.1% 3, 5?二乙氧基羰基?1, 4?二氫?2, 4, 6?三甲基吡啶(3, 5?diethyloxycarbonyl?1, 4?dihydro?2,4,6?trimethyl?pyridine, DDC)購自小黍有泰(北京)生物科技有限公司。鹽酸氯米帕明購自北京瀚海拓新生物技術(shù)有限公司。本研究方案經(jīng)內(nèi)蒙古科技大學(xué)包頭醫(yī)學(xué)院倫理委員會審批通過(倫理審批號:ZX?012)。
二、研究方法
1. 分組和造模:小鼠適應(yīng)性飼養(yǎng)1周后,隨機分為對照組、膽汁淤積組、膽汁淤積+抑郁組和治療組,每組各3只。參考李浩等[9]和王娟等[10]的方法分別構(gòu)建膽汁淤積模型和抑郁模型,即對照組喂養(yǎng)正常飼料和水;膽汁淤積組采用含0.1% DDC的飼料連續(xù)喂養(yǎng)2周;膽汁淤積+抑郁組先采用慢性溫和不可預(yù)期應(yīng)激方式刺激2周后,再以含0.1% DDC的飼料喂養(yǎng)2周;治療組在構(gòu)建膽汁淤積+抑郁模型的基礎(chǔ)上,小鼠腹腔注射鹽酸氯米帕明(7.5 mg·kg-1·d-1),連續(xù)2周[11],其余組別每日給予等劑量0.9% NaCl溶液腹腔注射。
2. 標本采集:造模結(jié)束后,在超凈臺中人工采集小鼠新鮮糞便放置于無菌凍存管中,并將所有樣品立即放置于-80 ℃冰箱保存?zhèn)溆?,進行16S rRNA基因片段的擴增和高通量測序。
3. 一般行為學(xué)評估:造模過程中觀察小鼠的精神狀態(tài)、毛色光澤度、體質(zhì)量、飲食、糞便、活動情況等行為學(xué)變化。
4. 負重游泳試驗(WST):造模結(jié)束后,將各組小鼠放置于游泳箱中游泳,水溫為(25±1) ℃,小鼠尾部負重5%體質(zhì)量的鉛皮。記錄小鼠自游泳開始至整個身體低于水面10 s不能浮出所用的時間,作為小鼠負重游泳時間[12]。
5. 強迫游泳試驗(FST):造模結(jié)束后,將各組小鼠放入水池中游泳,水溫為(25±1) ℃。實驗時間為6 min,記錄小鼠后4 min內(nèi)靜止不動的時間。
6. 懸尾試驗(TST):造模結(jié)束后,將各組小鼠尾端固定倒掛于不銹鋼板上,尾部以膠帶固定,頭部距離箱底50 cm。實驗時間為6 min,前2 min為小鼠適應(yīng)階段,計算后4 min內(nèi)小鼠靜止不動的時間。
7. 肝臟HE染色:取各組小鼠適量肝組織,經(jīng)固定、脫水、透明、包埋,切片后脫蠟,行HE染色,封片,顯微鏡下拍照觀察肝組織病理學(xué)變化。
8. 16S rRNA測序和數(shù)據(jù)分析:將各組小鼠糞便分裝,在干冰條件下送天津津科生物科技有限責(zé)任公司。提取樣本DNA后,對目標片段進行PCR擴增,然后將擴增產(chǎn)物回收后進行熒光定量反應(yīng),采用Illumina公司的TruSeq Nano DNA LT Library Prep Kit制備測序文庫,質(zhì)檢文庫合格后進行生物信息學(xué)數(shù)據(jù)分析。
三、統(tǒng)計學(xué)分析
采用SPSS 27.0統(tǒng)計學(xué)軟件進行數(shù)據(jù)分析,計量數(shù)據(jù)以x±s表示,各組間比較采用單因素方差分析,Plt;0.05為差異有統(tǒng)計學(xué)意義。
結(jié) 果
一、一般情況
對照組小鼠精神和飲食狀態(tài)良好,行為活躍,反應(yīng)靈敏,毛色光亮,糞便呈黃褐色。與對照組相比,膽汁淤積組小鼠精神和食欲下降,行為活躍度稍有下降,糞便呈黃色;膽汁淤積+抑郁組小鼠精神狀態(tài)倦怠,毛色欠光澤,反應(yīng)遲鈍,糞便呈黃色。與膽汁淤積+抑郁組相比,治療組小鼠的精神狀態(tài)、毛色、反應(yīng)等表現(xiàn)明顯好轉(zhuǎn)。
二、體質(zhì)量
與對照組相比,膽汁淤積組和膽汁淤積+抑郁組小鼠體質(zhì)量均明顯下降(Plt;0.05)。與膽汁淤積組相比,膽汁淤積+抑郁組小鼠體質(zhì)量明顯下降(Plt;0.05),治療組小鼠體質(zhì)量無明顯變化(Pgt;0.05)。與膽汁淤積+抑郁組相比,治療組小鼠體質(zhì)量明顯升高(Plt;0.05;表1)。
三、負重游泳時間
與對照組相比,膽汁淤積組和膽汁淤積+抑郁組小鼠負重游泳時間均明顯縮短(Plt;0.05)。與膽汁淤積組相比,膽汁淤積+抑郁組和治療組小鼠負重游泳時間明顯縮短(Plt;0.05)。與膽汁淤積+抑郁組相比,治療組小鼠負重游泳時間明顯延長(Plt;0.05;表1)。
四、強迫游泳不動時間
與對照組相比,膽汁淤積組和膽汁淤積+抑郁組小鼠強迫游泳不動時間均明顯延長(Plt;0.05)。與膽汁淤積組相比,膽汁淤積+抑郁組和治療組小鼠強迫游泳不動時間明顯延長(Plt;0.05)。與膽汁淤積+抑郁組相比,治療組小鼠強迫游泳不動時間明顯縮短(Plt;0.05;表1)。
五、懸尾不動時間
與對照組相比,膽汁淤積組和膽汁淤積+抑郁組小鼠懸尾不動時間均明顯延長(Plt;0.05)。與膽汁淤積組相比,膽汁淤積+抑郁組小鼠懸尾不動時間明顯延長(Plt;0.05),治療組無明顯變化(Pgt;0.05)。與膽汁淤積+抑郁組相比,治療組小鼠懸尾不動時間明顯縮短(Plt;0.05;表1)。
六、肝臟HE染色
對照組小鼠肝組織結(jié)構(gòu)正常,門管區(qū)內(nèi)未見明顯炎癥細胞;膽汁淤積組小鼠肝門管區(qū)和膽管周圍可見炎癥細胞浸潤和聚集,膽管內(nèi)可見膽汁淤積,提示小鼠膽汁淤積模型構(gòu)建成功;膽汁淤積+抑郁組小鼠肝小葉結(jié)構(gòu)明顯破壞,膽管內(nèi)可見膽汁淤積,門管區(qū)大量炎癥細胞浸潤,較膽汁淤積組病理損傷加重;治療組的肝臟病理損傷較膽汁淤積+抑郁組明顯減輕(圖1)。
七、測序信息結(jié)果評估
經(jīng)Illumina MiSeq平臺測序,在去除barcode和primer拼接后共獲得841 484條有效序列,然后將嵌合體和短序列去除后共獲得548 304條優(yōu)質(zhì)序列。對所有優(yōu)質(zhì)序列進行長度統(tǒng)計分析,發(fā)現(xiàn)99.97%的序列長度為400~440 bp。對獲得的優(yōu)質(zhì)序列按照97%的序列相似性進行聚類,共獲得7 238個操作分類單元(operational taxonomic units, OTU),經(jīng)抽平處理后獲得5 491個OTU,其中對照組1 491個,膽汁淤積組1 800個,膽汁淤積+抑郁組2 219個,治療組1 350個。4組共有的OTU為162個(圖2)。
八、α多樣性分析
膽汁淤積組和膽汁淤積+抑郁組Chao1指數(shù)與對照組相比差異均無統(tǒng)計學(xué)意義(Pgt;0.05);與膽汁淤積組相比,膽汁淤積+抑郁組、治療組Chao1指數(shù)均無明顯差異(Pgt;0.05);治療組Chao1指數(shù)與膽汁淤積+抑郁組相比亦無明顯差異(Pgt;0.05)。與對照組相比,膽汁淤積組和膽汁淤積+抑郁組Observed species指數(shù)差異均無統(tǒng)計學(xué)意義(Pgt;0.05);與膽汁淤積組相比,膽汁淤積+抑郁組Observed species指數(shù)無明顯差異(Pgt;0.05);治療組Observed species指數(shù)與膽汁淤積+抑郁組相比差異亦無統(tǒng)計學(xué)意義(Pgt;0.05)。與對照組相比,膽汁淤積組、膽汁淤積+抑郁組和治療組的Shannon指數(shù)明顯均無明顯差異(Pgt;0.05),膽汁淤積+抑郁組Shannon指數(shù)與膽汁淤積組無明顯差異(Pgt;0.05),治療組Shannon指數(shù)與膽汁淤積+抑郁組亦無明顯差異(Pgt;0.05)。與對照組相比,膽汁淤積+抑郁組Faith′s PD指數(shù)顯著升高(Plt;0.05),膽汁淤積組和治療組Faith′s PD指數(shù)無明顯差異(Pgt;0.05);與膽汁淤積組相比,膽汁淤積+抑郁組、治療組Faith′s PD指數(shù)均無明顯差異(Pgt;0.05);治療組Faith′s PD指數(shù)與膽汁淤積+抑郁組相比亦無明顯差異(Pgt;0.05;表2)。
九、β多樣性分析
主坐標分析(principal coordinates analysis, PCoA)和非度量多維尺度分析(NMDS)結(jié)果顯示,對照組、膽汁淤積組、膽汁淤積+抑郁組、治療組腸道菌群樣本明顯分開,說明4組之間的菌群多樣性方面存在明顯差異;3組模型組樣本明顯偏離對照組,說明造模后小鼠腸道菌群發(fā)生了明顯變化,其中膽汁淤積組和膽汁淤積+抑郁組與治療組之間相距較遠,說明抗抑郁治療對腸道菌群可能產(chǎn)生了影響(圖3、圖4)。非加權(quán)組平均法(unweighted pair?group method with arithmetic means, UPGMA)分析結(jié)果顯示組間存在顯著差異,組內(nèi)個體差異相對較?。▓D5)。PERMANOVA分析亦顯示組間存在顯著差異,但每兩組之間差異并不顯著(Pgt;0.05;表3)。
十、腸道菌群物種組成分析
采用RDP Classifier算法對OTU代表序列進行比對分析,并在門、綱、目、科、屬、種水平上注釋其群落的物種信息。從門水平上分析,4個組別的優(yōu)勢菌門為厚壁菌門(Firmicutes),其次是擬桿菌門(Bacteroidetes)和變形菌門(Proteobacteria)。與對照組相比,膽汁淤積組厚壁菌門豐度明顯升高;膽汁淤積+抑郁組變形菌門豐度明顯升高;治療組厚壁菌門和變形菌門豐度明顯升高,擬桿菌門豐度明顯下降(圖5)。
十一、各組間腸道菌群差異分析
對各組間差異顯著的物種行LEfSe分析發(fā)現(xiàn),對照組與其他3組之間LDA值gt;4的微生物類群有38個。在對照組中,g_unclassified_Erysipelotrichaceae、s_unclassified_Pseudomonadaceae、g_unclassified_Pseudomonadaceae、o_Coriobacteriales、c_Coriobacteriia、f_Coriobacteriaceae、p_Actinobacteria、s_unclassified_ Erysipelotrichaceae、s_unidentified_Allobaculum、g_Allo?baculum、f_Erysipelotrichaceae、f_S24_7、c_Erysip?elotrichi、o_Erysipelotrichales、g_unidentified_S24_7和s_unidentified_S24_7顯著富集;在膽汁淤積組中,f_Lactobacillaceae、s_unidentified_Lactobacillus、g_Lacto?bacillus、o_Lactobacillales和c_Bacilli顯著富集;在膽汁淤積+抑郁組中,g_unclassified_Prevotellaceae和s_unclassified_Prevotellaceae顯著富集;在治療組中,s_unidentified_Roseburia、s_unidentified_Rikenellaceae、g_unidentified_Rikenellaceae、f_Rikenellaceae、g_Oscillo?spira、s_unidentified_Oscillospira、o_Enterobacteriales、g_unclassified_Enterobacteriaceae、p_Proteobacteria、f_Ruminococcaceae、s_unclassified_Enterobacteriaceae、c_Gammaproteobacteria、f_Enterobacteriaceae、o_Clos?tridiales和c_Clostridia顯著富集(圖6、圖7)。
討 論
腸道菌群是由多種微生物組成的微生態(tài)系統(tǒng),在人體代謝中發(fā)揮重要作用,近年來菌群?腸?肝?腦軸受到越來越多的關(guān)注,腸道菌群通過腸?肝?腦軸影響肝臟和中樞系統(tǒng)[13]。腸?肝?腦軸由腸?腦軸、腸?肝軸和肝?腦軸之間的復(fù)雜相互作用組成,是一個連接腸道、肝臟和中樞神經(jīng)系統(tǒng)的多向通訊網(wǎng)絡(luò)[14]。研究顯示,腸道菌群通過該網(wǎng)絡(luò)不僅影響了肝病中的抑郁樣行為,而且深度參與了PBC的發(fā)生和發(fā)展[15?16]。本研究以SPF級C57BL/6小鼠為研究對象,以DDC喂養(yǎng)誘導(dǎo)膽汁淤積模型,慢性不可預(yù)知的輕度刺激方式構(gòu)建抑郁模型,采用16S rRNA技術(shù)對各組小鼠腸道微生物多樣性進行分析,探討腸道菌群在PBC伴抑郁發(fā)展過程中的變化。結(jié)果顯示,與對照組相比,各模型組小鼠體質(zhì)量和抑郁樣行為均出現(xiàn)不同程度惡化,經(jīng)抗抑郁治療后,小鼠體質(zhì)量和抑郁樣行為明顯好轉(zhuǎn)。各模型組小鼠肝臟HE染色結(jié)果顯示膽汁淤積性損傷,治療組小鼠肝臟病理損傷較膽汁淤積+抑郁組明顯減輕。這些結(jié)果均表明PBC小鼠伴隨抑郁樣行為表現(xiàn),抗抑郁治療能夠減輕PBC伴抑郁小鼠的病情發(fā)展。
本研究結(jié)果顯示,與對照組相比,膽汁淤積組和膽汁淤積+抑郁組小鼠腸道菌群α多樣性并無明顯差異,這與既往研究[17]結(jié)果顯示α多樣性降低不同。推測可能與本研究樣本量過少有關(guān)。治療組α多樣性呈下降的趨勢,表明應(yīng)用抗抑郁藥物后α多樣性減少,與Dong等[18]的研究結(jié)果相似。β多樣性分析結(jié)果顯示對照組與2組模型組的腸道菌群明顯分離,組間存在顯著差異,提示膽汁淤積和抑郁改變了小鼠腸道菌群多樣性。與其他研究[19]結(jié)果類似。本研究對各組腸道菌群組成分析顯示,優(yōu)勢菌門為厚壁菌門,其次是擬桿菌門和變形菌門。通過多樣性比較分析發(fā)現(xiàn),與對照組相比,膽汁淤積組、膽汁淤積+抑郁組、治療組小鼠糞便中微生物多樣性和群落組成存在較大的差異。說明在膽汁淤積和抑郁狀態(tài)下腸道菌群出現(xiàn)了紊亂,抗抑郁治療后腸道菌群的豐度和多樣性也發(fā)生了改變。
有研究指出,微生物群可能在自身免疫過程的啟動中發(fā)揮作用,從而導(dǎo)致PBC的發(fā)展[20]。膽汁酸積累是PBC發(fā)病機制的重要因素之一,膽汁淤積時,膽汁酸的代謝和分布發(fā)生變化[21]。丙酮酸脫氫酶復(fù)合物E2亞基(PDC?E2)的抗線粒體抗體(AMA)?M2是診斷PBC的標志,細菌抗原與人類表位之間的交叉反應(yīng)和分子模擬可能導(dǎo)致AMA和自身免疫過程的發(fā)展[22],如大腸埃希菌[23]。乳桿菌是一種重要的益生菌,可通過膽鹽水解酶分解胃腸道中的膽汁酸,有助于改變腸道菌群的組成和膽汁酸代謝[24]。已有研究[25?26]證實乳桿菌的PDC?E2能與AMA發(fā)生交叉反應(yīng)免疫攻擊膽管上皮細胞,介導(dǎo)PBC的發(fā)展。Tang等[27]在PBC患者中發(fā)現(xiàn)乳桿菌、梭狀芽孢桿菌、嗜血桿菌、韋榮球菌、鏈球菌、假單胞菌、克雷伯菌、腸桿菌科8個菌屬的豐度顯著增加。但也有研究[28]表明PBC患者乳桿菌豐度增加,而梭狀芽孢桿菌豐度降低。本研究通過LEfSe分析發(fā)現(xiàn)膽汁淤積組糞便樣本中芽孢桿菌和乳桿菌豐度增加,由此推測乳桿菌和芽孢桿菌與PBC的發(fā)生、發(fā)展具有高度相關(guān)性,PBC患者腸道菌群的不同變化可能與飲食、環(huán)境和個體差異有關(guān)。
本研究發(fā)現(xiàn),膽汁淤積+抑郁組擬桿菌門的未分類普雷沃菌科(s_unclassified_Prevotellaceae)和未分類普雷沃菌屬(g_unclassified_Prevotellaceae)豐度增加。既往研究[29?30]發(fā)現(xiàn)普雷沃菌科在膽汁淤積動物模型中顯著富集,與炎癥反應(yīng)密切相關(guān),同樣,炎癥的發(fā)展與精神疾病(包括抑郁癥)之間也存在密切的關(guān)系[31],腸道菌群結(jié)構(gòu)在抑郁動物模型中發(fā)生改變,與炎癥相關(guān)的菌群豐度增加[32]。但一項系統(tǒng)評價報告指出普雷沃菌科在抑郁癥患者腸道菌群中的豐度下降[33]。據(jù)此推測,相比單一疾病,膽汁淤積伴抑郁的疊加作用使腸道環(huán)境發(fā)生新的改變,普雷沃菌可能在膽汁淤積伴抑郁的發(fā)展過程中發(fā)揮重要作用。
抑郁癥與大腦中多巴胺、血清素、去甲腎上腺素等神經(jīng)遞質(zhì)水平降低有關(guān),抗抑郁藥物能夠影響腸道菌群的結(jié)構(gòu)和功能[34]。鹽酸氯米帕明是一種通過阻斷血清素和去甲腎上腺素再攝取的三環(huán)類抗抑郁藥[35]。有研究指出,腸道菌群的梭菌在腸道中可產(chǎn)生短鏈脂肪酸,刺激腸嗜鉻細胞釋放血清素,進而減輕外周和中樞神經(jīng)系統(tǒng)的炎癥反應(yīng)而起到抗抑郁的作用[36],且腸道菌群(主要由梭菌組成)可增加脫氧膽酸水平,有助于促進血清素的分泌和運輸[37]。Vich Vila等[38]發(fā)現(xiàn)三環(huán)類抗抑郁藥增加了柔嫩梭菌(Clostridium leptum)豐度,產(chǎn)生丁酸鹽起到抗抑郁的效果。多項研究指出,大腸埃希菌能刺激血清素合成,而血清素又可以促進大腸埃希菌的生長[39?40]。本研究發(fā)現(xiàn)膽汁淤積+抑郁組小鼠注射鹽酸氯米帕明后,梭菌綱/目(Clostridiales/Clostridia)和腸桿菌目/科(Enterobacteriales/Enterobacteriaceae)的豐度均升高,提示給予抗抑郁治療后腸道菌群發(fā)生了改變,這種改變對改善PBC伴抑郁的預(yù)后有重要作用。
綜上所述,本研究發(fā)現(xiàn)了與先前研究相同的菌群分布,也發(fā)現(xiàn)了不一致的菌群變化。總體而言,在膽汁淤積和抑郁的發(fā)展過程中,腸道菌群的結(jié)構(gòu)和多樣性均發(fā)生了顯著變化,抗抑郁治療能夠明顯改善腸道菌群豐度和多樣性。說明腸道菌群可成為PBC伴抑郁患者的潛在治療手段,通過差異菌群精準移植,靶向調(diào)節(jié)腸道菌群結(jié)構(gòu),不僅可以減少藥物的毒性反應(yīng),還能成為一種新的治療策略。但本研究尚存在一定的局限性:樣本量較小,仍需擴大樣本量來驗證腸道菌群在膽汁淤積和抑郁中的作用;未能考慮到腸道菌群在不同階段的動態(tài)變化;未檢測腦組織中血清素含量與腸道菌群的相關(guān)性。因此,未來仍需行大樣本前瞻性研究進一步證實本研究結(jié)論。
參考文獻
[ 1 ] PANDIT S, SAMANT H. Primary biliary cholangitis[M]//StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2023. https://pubmed.ncbi.nlm.nih.gov/29083627/.
[ 2 ] HUANG X, LIU X, YU Y. Depression and chronic liver diseases: are there shared underlying mechanisms?[J]. Front Mol Neurosci, 2017, 10: 134.
[ 3 ] SHAHEEN A A, KAPLAN G G, ALMISHRI W, et al. The impact of depression and antidepressant usage on primary biliary cholangitis clinical outcomes[J]. PLoS One, 2018, 13 (4): e0194839.
[ 4 ] PHAW N A, DYSON J K, MELLS G, et al. Understanding fatigue in primary biliary cholangitis[J]. Dig Dis Sci, 2021, 66 (7): 2380?2386.
[ 5 ] SIVAKUMAR T, KOWDLEY K V. Anxiety and depression in patients with primary biliary cholangitis: current insights and impact on quality of life[J]. Hepat Med, 2021, 13: 83?92.
[ 6 ] DE VOS W M, TILG H, VAN HUL M, et al. Gut micro?biome and health: mechanistic insights[J]. Gut, 2022, 71 (5): 1020?1032.
[ 7 ] MAYER E A, NANCE K, CHEN S. The gut?brain axis[J]. Annu Rev Med, 2022, 73: 439?453.
[ 8 ] NGUYEN H H, SWAIN M G. Avenues within the gut?liver?brain axis linking chronic liver disease and symptoms[J]. Front Neurosci, 2023, 17: 1171253.
[ 9 ] 李浩, 關(guān)艷玲, 張雨, 等. 小鼠原發(fā)性膽汁性膽管炎模型及其在疾病研究中的作用[J]. 中國藥理學(xué)通報, 2021, 37 (9): 1201?1207.
[10] 王娟, 申豐銘, 張崢嶸, 等. 人參皂苷Rg1對慢性應(yīng)激小鼠抑郁樣行為、海馬突觸蛋白及膠質(zhì)細胞的作用[J]. 生物學(xué)雜志, 2021, 38 (3): 26?30.
[11] ABRAMOVA O, ZORKINA Y, SYUNYAKOV T, et al. Brain metabolic profile after intranasal vs. intraperitoneal clomipramine treatment in rats with ultrasound model of depression[J]. Int J Mol Sci, 2021, 22 (17): 9598.
[12] FENG L, YE W, ZHANG K, et al. In vitro digestion characteristics of hydrolyzed infant formula and its effects on the growth and development in mice[J]. Front Nutr, 2022, 9: 912207.
[13] GIUFFRè M, MORETTI R. The gut?liver?brain axis: from the head to the feet[J]. Int J Mol Sci, 2023, 24 (21): 15662.
[14] WU H, ZHANG Y, YU J, et al. Editorial: gut?liver?brain axis: a complex network influences human health and diseases[J]. Front Neurosci, 2023, 17: 1241069.
[15] XIA Q, LIU Q, MA X. Intestinal microbiota in biliary diseases[J]. Curr Opin Gastroenterol, 2023, 39 (2): 95?102.
[16] YANG Y, EGUCHI A, MORI C, et al. Depression?like phenotypes in mice following common bile duct ligation: insights into the gut?liver?brain axis via the vagus nerve[J]. Neurobiol Dis, 2024, 192: 106433.
[17] LIU Y, ZHANG L, WANG X, et al. Similar fecal microbiota signatures in patients with diarrhea?pre?dominant irritable bowel syndrome and patients with depression[J]. Clin Gastroenterol Hepatol, 2016, 14 (11): 1602?1611. e5.
[18] DONG Z, SHEN X, HAO Y, et al. Gut microbiome: a potential indicator for predicting treatment outcomes in major depressive disorder[J]. Front Neurosci, 2022, 16: 813075.
[19] TREMAROLI V, B?CKHED F. Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489 (7415): 242?249.
[20] QUIGLEY E M. Primary biliary cirrhosis and the micro?biome[J]. Semin Liver Dis, 2016, 36 (4): 349?353.
[21] CHEN W, WEI Y, XIONG A, et al. Comprehensive analysis of serum and fecal bile acid profiles and inter?action with gut microbiota in primary biliary cholangitis[J]. Clin Rev Allergy Immunol, 2020, 58 (1): 25?38.
[22] SELMI C, MEDA F, KASANGIAN A, et al. Experimental evidence on the immunopathogenesis of primary biliary cirrhosis[J]. Cell Mol Immunol, 2010, 7 (1): 1?10.
[23] YANG Y, CHOI J, CHEN Y, et al. E. coli and the etiology of human PBC: antimitochondrial antibodies and spread?ing determinants[J]. Hepatology, 2022, 75 (2): 266?279.
[24] O'FLAHERTY S, BRINER CRAWLEY A, et al. The Lactobacillus bile salt hydrolase repertoire reveals niche?specific adaptation[J]. mSphere, 2018, 3 (3): e00140?18.
[25] BOGDANOS D P, BAUM H, OKAMOTO M, et al. Primary biliary cirrhosis is characterized by IgG3 antibodies cross?reactive with the major mitochondrial autoepitope and its Lactobacillus mimic[J]. Hepatology, 2005, 42 (2): 458?465.
[26] BOGDANOS D, PUSL T, RUST C, et al. Primary biliary cirrhosis following Lactobacillus vaccination for recurrent vaginitis[J]. J Hepatol, 2008, 49 (3): 466?473.
[27] TANG R, WEI Y, LI Y, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy[J]. Gut, 2018, 67 (3): 534?541.
[28] FURUKAWA M, MORIYA K, NAKAYAMA J, et al. Gut dysbiosis associated with clinical prognosis of patients with primary biliary cholangitis[J]. Hepatol Res, 2020, 50 (7): 840?852.
[29] ZOU J, LI W, WANG G, et al. Hepatoprotective effects of Huangqi decoction (Astragali Radix and Glycyrrhizae Radix et Rhizoma) on cholestatic liver injury in mice: involvement of alleviating intestinal microbiota dysbiosis[J]. J Ethnopharmacol, 2021, 267: 113544.
[30] CHANG Y, XIA Y, LIU X, et al. Integrated 16 S rRNA gene sequencing and serum metabolomics approaches to decipher the mechanism of Qingre Lidan decoction in the treatment of cholestatic liver injury[J]. J Pharm Biomed Anal, 2023, 234: 115535.
[31] RASMUS P, KOZ?OWSKA E. Antioxidant and anti?inflammatory effects of carotenoids in mood disorders: an overview[J]. Antioxidants (Basel), 2023, 12 (3): 676.
[32] PEIRCE J M, ALVI?A K. The role of inflammation and the gut microbiome in depression and anxiety[J]. J Neurosci Res, 2019, 97 (10): 1223?1241.
[33] BARANDOUZI Z A, STARKWEATHER A R, HENDER?SON W A, et al. Altered composition of gut microbiota in depression: a systematic review[J]. Front Psychiatry, 2020, 11: 541.
[34] SEPúLVEDA?LIZCANO L, ARENAS?VILLAMIZAR V V, JAIMES?DUARTE E B, et al. Metabolic adverse effects of psychotropic drug therapy: a systematic review[J]. Eur J Investig Health Psychol Educ, 2023, 13 (8): 1505?1520.
[35] LAAZIZ A, EL MOSTAFI H, ELHESSNI A, et al. Chronic clomipramine treatment reverses depressogenic?like effects of a chronic treatment with dexamethasone in rats[J]. IBRO Neurosci Rep, 2022, 13: 147?155.
[36] RATHOUR D, SHAH S, KHAN S, et al. Role of gut microbiota in depression: understanding molecular pathways, recent research, and future direction[J]. Behav Brain Res, 2023, 436: 114081.
[37] YANO J M, YU K, DONALDSON G P, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis[J]. Cell, 2015, 161 (2): 264?276.
[38] VICH VILA A, COLLIJ V, SANNA S, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota[J]. Nat Commun, 2020, 11 (1): 362.
[39] ISRAELYAN N, MARGOLIS K G. Reprint of: serotonin as a link between the gut?brain?microbiome axis in autism spectrum disorders[J]. Pharmacol Res, 2019, 140: 115?120.
[40] NZAKIZWANAYO J, DEDI C, STANDEN G, et al. Escherichia coli Nissle 1917 enhances bioavailability of serotonin in gut tissues through modulation of synthesis and clearance[J]. Sci Rep, 2015, 5: 17324.
(2023?12?28收稿;2024?02?14修回)
(本文編輯:袁春英)