田騰 安會勇 王濤 于芳
摘 ?????要: 碳?xì)滏I活化反應(yīng)在合成方面的作用已經(jīng)被研究證明了。其中8-氨基喹啉導(dǎo)向基介導(dǎo)的碳?xì)滏I活化反應(yīng)是實現(xiàn)此策略最常用的方法。大量的計算化學(xué)研究都已證明8-氨基喹啉導(dǎo)向基自身強(qiáng)大的供電子效應(yīng)以及剛性結(jié)構(gòu)是其反應(yīng)高效的關(guān)鍵。然而,與此相關(guān)的溶劑效應(yīng)并沒有得到充分研究。依次選取極性從低到高的溶劑甲苯、1,2-二氯乙烷、丙酮、乙腈、二甲基亞砜的隱式溶劑模型來對8-氨基喹啉導(dǎo)向基介導(dǎo)的sp3碳?xì)滏I活化反應(yīng)的決速步(碳?xì)滏I斷裂步驟)進(jìn)行密度泛函理論(DFT)計算,最終得知隨著溶劑極性的提高,碳?xì)滏I斷裂步驟的過渡態(tài)的熵減程度會明顯下降,從而使得對應(yīng)的吉布斯自由能壘降低,進(jìn)而加快碳?xì)滏I斷裂步驟的進(jìn)行。
關(guān) ?鍵 ?詞:碳?xì)滏I活化;密度泛函理論;吉布斯自由能
中圖分類號:TQ013.1??????文獻(xiàn)標(biāo)識碼: A ?????文章編號: 1004-0935(2024)05-0667-04
碳?xì)滏I活化作為一種有效的合成策略,已被廣泛研究了近20年之久[1]。為了實現(xiàn)這一策略,多種碳?xì)滏I活化方法被陸續(xù)地開發(fā)了出來,其中被研究和應(yīng)用最廣泛的是導(dǎo)向基介入的碳?xì)滏I活化策略。此方法近年來也取得了較大的突破,以最原始的雙齒配體導(dǎo)向基[2-7]為起點,結(jié)構(gòu)上更加簡單的單齒配體導(dǎo)向基[8-14]、可以活化更加遠(yuǎn)位置的遠(yuǎn)程導(dǎo)向??基[15-17]、可在反應(yīng)中自動安裝拆解的瞬時導(dǎo)向????基[18-21]等,都被逐漸研究了出來,并在各種體系中展現(xiàn)了其功能強(qiáng)大之處。但是由于碳?xì)滏I的鍵能比較高,并且相對來說比較穩(wěn)定,如果對其直接進(jìn)行官能團(tuán)化,那么毫無疑問是十分困難的。另外,一個有機(jī)化合物分子內(nèi)通常有很多種性質(zhì)不同的碳?xì)滏I,如何對其某一種特定的碳?xì)滏I進(jìn)行活化,而不影響分子中其他種類的碳?xì)滏I的性質(zhì),這就是碳?xì)滏I活化過程中的選擇性問題。碳?xì)滏I活化反應(yīng),就是在某種特定的條件下,對某種有機(jī)化合物中的某種特定類型的碳?xì)滏I進(jìn)行活化,使其反應(yīng)性增強(qiáng)或切斷,從而實現(xiàn)定向的化學(xué)轉(zhuǎn)化。因此,科研工作者們所面臨的最大問題便是如何對碳?xì)滏I進(jìn)行活化,以及如何解決其進(jìn)行化學(xué)反應(yīng)時的選擇性問題。如果能夠選擇性切斷碳?xì)滏I,并開發(fā)出實用的合成化學(xué)新反應(yīng),毫無疑問,必將會推動整個有機(jī)行業(yè)的發(fā)展。
雖然導(dǎo)向基介入的碳?xì)滏I活化策略中包含了很多的方法,但是目前來說,應(yīng)用最為廣泛的還是???8-氨基喹啉導(dǎo)向基(AQ)[2]。原因是這種導(dǎo)向基所能完成的碳?xì)滏I活化反應(yīng)種類是最多的,如芳基??化[22-28]、氨基化[29]、醚化[30-31]、酯基化[32-33]等,除此之外,其還可以在相對廉價的第一過渡系金屬催化下[34-35],相對高效地完成各種碳?xì)滏I活化反應(yīng),這是絕大多數(shù)導(dǎo)向基所無法完成的。為了解釋這種導(dǎo)向基的強(qiáng)大性能[36-37],大量的計算化學(xué)研究工作層出不窮。如利用密度泛函理論(DFT),對其在反應(yīng)體系中的過渡態(tài)能壘進(jìn)行計算,以及利用波函數(shù)分析法對其在反應(yīng)中的電子效應(yīng)、位阻效應(yīng)、軌道效應(yīng)等進(jìn)行了細(xì)致的分析,得出的結(jié)論是它們強(qiáng)大的供電子性能以及相對剛性的分子結(jié)構(gòu),使得過渡金屬能夠比其他在使用導(dǎo)向基團(tuán)的時候更加平穩(wěn)地完成目標(biāo)反應(yīng)。然而,在這些研究中,溶劑效應(yīng)并沒有被細(xì)致地研究。
本文將對AQ導(dǎo)向基參與的sp3碳?xì)滏I活化反應(yīng)中的碳?xì)滏I斷裂步驟(如圖1所示)進(jìn)行DFT理論計算[42-43],通過計算不同的隱式溶劑模型下的反應(yīng)能壘數(shù)據(jù),分析不同種類的溶劑對碳?xì)滏I活化反應(yīng)的影響,從而對后續(xù)的實驗研究提供相對應(yīng)的理論依據(jù)。
1 ?實驗部分
1.1 ?計算硬件
服務(wù)器配置(Linux):E5-2696 v4*2,雙路????44核/88線程,128?GB內(nèi)存。GPU加速服務(wù)器(Linux):E5-2678 v3*2,雙路24核/48線程,64?GB內(nèi)存。
1.2 ?實驗方法
使用量子化學(xué)計算軟件-Gaussian(版本Gaussian 16, Revision A.03),對AQ導(dǎo)向基、參與的sp3碳?xì)滏I活化反應(yīng)中的碳?xì)滏I斷裂(sp3碳?xì)滏I活化反應(yīng)中,通常為決速步驟)進(jìn)行DFT理論計算,通過計算不同隱式溶劑模型的反應(yīng)體系下(甲苯、1,2-二氯乙烷,丙酮、乙腈、二甲基亞砜)的反應(yīng)能壘數(shù)據(jù),分析不同介電常數(shù)的溶劑對碳?xì)滏I活化反應(yīng)的影響。所有幾何優(yōu)化和頻率計算均使用色散校正混合GGA函數(shù)PBE0-D3進(jìn)行計算,Pd在計算時使用def2tzvp基組、其他原子則使用def2svp基組。通過內(nèi)稟反應(yīng)坐標(biāo)(IRC)計算,將所有定位的過渡態(tài)連接到最近的最小值,并在相同的理論水平上計算,隨后對所得結(jié)構(gòu)進(jìn)行優(yōu)化。對優(yōu)化得到的幾何結(jié)構(gòu)進(jìn)行了振動分析,以通過分別存在0或1個虛頻來驗證它們是最小點或鞍點。使用SMD連續(xù)溶劑化模型將甲苯、1,2-二氯乙烷、丙酮、乙腈、二甲基亞砜的溶劑效應(yīng)納入計算。在def2tzvpp基組下計算體系的單點能量。在383.15?K的反應(yīng)溫度下計算焓和吉布斯自由能。
碳?xì)滏I斷裂機(jī)理如圖2所示。導(dǎo)向基團(tuán)1與催化劑醋酸鈀通過1個氧氫之間的氫鍵作用螯合形成環(huán)鈀中間體INT,之后C(sp3)與鈀進(jìn)行作用,隨同醋酸根和C(sp3)—H鍵形成過渡態(tài)TS,最后在一步協(xié)同過程中,醋酸根拔取C(sp3)—H鍵上的H,并且C(sp3)與Pd之間形成碳鈀鍵結(jié)構(gòu)2。
2 ?結(jié)果與討論
2.1 ?不同種類的溶劑對于碳?xì)滏I斷裂過渡態(tài)焓壘與熵壘的影響
不同的溶劑體系中,其對應(yīng)的溶劑參數(shù)不同,其中影響反應(yīng)最大的參數(shù)就是靜態(tài)介電常數(shù)。因此,挑選了一系列靜態(tài)介電常數(shù)從大到小的溶劑(極性從小到大的一系列溶劑),即甲苯、1,2-二氯乙烷、丙酮、乙腈、二甲基亞砜,來探究不同極性溶劑對于碳?xì)滏I斷裂過渡態(tài)動力學(xué)數(shù)據(jù)上的影響,以得知反應(yīng)的難易程度。
首先,先對過渡態(tài)焓壘和熵壘進(jìn)行了計算與分析,結(jié)果如表1所示。由表1可知,隨著所使用的溶劑的極性逐步增大,不同體系之間的焓壘沒有十分明顯的差別,都在54.42 kJ·mol-1左右,說明溶劑的極性沒有對碳?xì)滏I斷裂這一步的斷鍵與成鍵的難易程度造成很大的影響,也暗示了溶劑分子在反應(yīng)中無法到反應(yīng)核心區(qū),因此也無法利用其極性區(qū)的電子云與反應(yīng)分子的親電部分結(jié)合來影響反應(yīng)的主要的斷鍵成鍵過程。
反觀不同溶劑體系下的熵壘差別尤為明顯。從整體來看,此步驟是熵減反應(yīng),同時隨著使用溶劑的極性增大,過渡態(tài)的焓下降得越少,即混亂度越大。 這說明在高極性溶劑體系下進(jìn)行該反應(yīng),需要反應(yīng)物所克服的外部溶劑的包裹的難度越大,也間接說明了在該反應(yīng)中溶劑只是在反應(yīng)體系外部進(jìn)行包裹,并沒有深入反應(yīng)核心。
2.2 ?不同種類的溶劑對于碳?xì)滏I斷裂過渡態(tài)吉布斯自由能壘的影響
僅對過渡態(tài)的焓壘和熵壘進(jìn)行分析還無法全面地得知碳?xì)滏I斷裂在不同溶劑下發(fā)生反應(yīng)的難易程度,因此對吉布斯自由能壘也進(jìn)行了計算與分析,結(jié)果如表2所示。
由表2可以看出,吉布斯自由能壘隨著溶劑極性的增大而相對明顯地逐步降低,也就是說更加容易發(fā)生碳?xì)滏I斷裂反應(yīng)。
綜合焓壘、熵壘、吉布斯自由能壘來看,雖然從吉布斯自由能壘數(shù)據(jù)中直接得出了該反應(yīng)在高極性溶劑中更容易發(fā)生,但是實際上吉布斯自由能是由焓、熵、溫度計算而來,因此只從吉布斯自由能壘數(shù)據(jù)得出結(jié)論是不夠的,在之前的討論中熵減程度隨著溶劑極性的增大而顯著減小,焓壘則基本沒有什么變化,因此可以得出最終結(jié)論:使用的溶劑極性越大,會使得過渡態(tài)的熵減程度減小,從而使得對應(yīng)的吉布斯自由能壘變小,從而加快碳?xì)滏I斷裂反應(yīng)。
3 ?結(jié) 論
8-氨基喹啉(AQ)導(dǎo)向基介導(dǎo)的碳?xì)滏I活化反應(yīng)一直在被廣泛研究,本工作對其在sp3碳?xì)滏I活化中的決速步即碳?xì)滏I斷裂步驟在不同的溶劑模型下,用密度泛函理論(DFT)進(jìn)行了過渡態(tài)能壘的計算。計算結(jié)果顯示,隨著溶劑極性的提高,其過渡態(tài)的熵減程度會明顯下降,從而使得對應(yīng)的吉布斯自由能壘降低,加快碳?xì)滏I斷裂步驟的進(jìn)行。本工作將為之后的碳?xì)滏I活化的計算和實驗工作提供參考。
參考文獻(xiàn):
[1]?LIU B, ROMINE A M, RUBEL?C Z, et al. Transition-metal-catalyzed, coordination-assisted functionalization of nonactivated C(sp3)–H bonds[J]. Chemical Reviews, 2021, 121(24): 14957-15074.
[2]?SHABASHOV D, DAUGULIS O. Catalytic coupling of C?H and C?I bonds using pyridine as a directing group[J]. Organic Letters, 2005, 7(17): 3657-3659.
[3]?ZHANG Q, CHEN K, RAO?W, et al. Stereoselective synthesis of chiral α-amino-β-lactams through Palladium(II)-catalyzed sequential monoarylation/amidation?of C (sp3)–H bonds[J]. Angewandte Chemie, 2013, 125(51): 13833-13837.
[4]?AFFRON D P, BULL J?A. Palladium-catalyzed directed?C (sp3)–H arylation of saturated heterocycles at C-3?using a concise optimization approach[J]. European Journal of Organic Chemistry, 2016, 2016(1): 139-149.
[5]?ZHANG G, XIE X, ZHU?J, et al. Pd (II)-catalyzed C(sp3)–H arylation of amino acid derivatives with click-triazoles as removable directing groups[J].Organic & Biomolecular Chemistry, 2015, 13(19): 5444-5449.
[6]?HAN J,ZHENG Y,WANG?C,et al. Palladium-catalyzed oxalyl amide-directed γ-arylation of aliphatic amines[J]. The Journal of Organic Chemistry, 2015, 80(18): 9297-9306.
[7]?HAN J, ZHENG Y, WANG?C, et al. Pd-catalyzed coupling of γ-C (sp3)–H bonds of oxalyl amide-protected amino acids with heteroaryl and aryl iodides[J]. The Journal of Organic Chemistry, 2016, 81(13): 5681-5689.
[8]?LE K K A, NGUYEN H, DAUGULIS?O. 1-Aminopyridinium?ylides as monodentate directing groups?for sp3?C–H bond functionalization[J]. Journal of the American Chemical Society, 2019, 141(37): 14728-14735.
[9]?PENG J, CHEN C, XI?C. β-Arylation of oxime ethers using diaryliodonium salts through activation of inert C (sp3)–H bonds using a palladium catalyst[J]. Chemical science, 2016, 7(2): 1383-1387.
[10]?STOWERS K J, FORTNER K C, SANFORD?M S. Aerobic Pd-catalyzed sp3?C?H olefination: a route to both N-heterocyclic scaffolds and alkenes[J]. Journal of the American Chemical Society, 2011, 133(17): 6541-6544.
[11]?YANG W, YE S, SCHMIDT?Y, et al. Ligand-promoted C(sp3)?H olefination en route to multi-functionalized pyrazoles[J]. Chemistry–A European Journal, 2016, 22(21): 7059-7062.
[12]?HE C, GAUNT M?J. Ligand-assisted palladium-catalyzed C–H alkenylation of aliphatic amines for the synthesis of functionalized pyrrolidines[J]. Chemical Science, 2017, 8(5): 3586-3592.
[13]?WASA M, ENGLE K M, YU J Q. Pd (II)-catalyzed olefination?of sp3?C?H bonds[J]. Journal of the American Chemical Society, 2010, 132(11): 3680-3681.
[14]?LI S, CHEN G, FENG C G, et al. Ligand-enabled γ-C–H olefination and carbonylation: construction of β-quaternary carbon centers[J]. Journal of the American Chemical Society, 2014, 136(14): 5267-5270.
[15]?LIU X, SONG Y, LIU?A, et al. More than a leaving group: N-phenyltrifluoroacetimidate as a remote directing group for highly α-selective 1,2-cis glycosylation[J]. Angewandte Chemie, 2022, 134?(21): e202201510.
[16]?HETTIKANKANAMALAGE A A, LASSFOLK R, EKHOLM F S, et al. Mechanisms of stereodirecting participation and ester migration from near and far in glycosylation and related reactions[J]. Chemical reviews, 2020, 120(15): 7104-7151.
[17]?YANG B, YANG W, RAMADAN?S, et al. Pre-activation-based stereoselective glycosylations[J]. European journal of organic chemistry, 2018, 2018(9): 1075-1096.
[18]?LI Y H, OUYANG Y, CHEKSHIN?N, et al. PdII-Catalyzed site-selective β-and γ-C(sp3)–H arylation of primary aldehydes controlled by transient directing groups[J]. Journal of the American Chemical Society, 2022, 144(11): 4727-4733.
[19]?ZHANG F L, HONG K, LI?T J, et al. Functionalization of C(sp3)–H bonds using a transient directing group[J]. Science, 2016, 351(6270): 252-256.
[20]?WANG P, VERMA P, XIA?G, et al. Ligand-accelerated non-directed C–H functionalization of arenes[J]. Nature, 2017, 551(7681): 489-493.
[21] XU Y, YOUNG M C, WANG?C, et al. Catalytic C (sp3)?H arylation of free primary amines with an exo directing group generated in situ[J]. Angewandte Chemie International Edition, 2016, 55(31): 9084-9087.
[22] HILL D E, YU J Q, BLACKMOND?D G. Insights into the role of transient chiral mediators and pyridone ligands in asymmetric Pd-catalyzed C–H functionalization[J]. The Journal of Organic Chemistry, 2020, 85(21): 13674-13679.
[23] LIU L Y, QIAO J X, YEUNG?K S, et al. Meta-selective C??H arylation of fluoroarenes and simple arenes[J]. Angewandte Chemie, 2020, 132(33): 13935-13939.
[24] SHI H, LU Y, WENG?J, et al. Differentiation and functionalization of remote C–H bonds in adjacent positions[J]. Nature chemistry, 2020, 12(4): 399-404.
[25] HU L, MENG G, YU?J Q. Ligand-enabled Pd (II)-catalyzed β-methylene C (sp3)–H arylation of free aliphatic acids[J].?Journal of the American Chemical Society, 2022, 144(45): 20550-20553.
[26] LI Z, PARK H S, QIAO?J X, et al. Ligand-enabled C–H hydroxylation with aqueous H2O2?at room temperature[J]. Journal of the American Chemical Society, 2022, 144(39): 18109-18116.
[27] LI Y H, OUYANG Y, CHEKSHIN N, et al. PdII-Catalyzed γ-C (sp3)–H (Hetero) arylation of ketones enabled?by transient directing groups[J]. ACS Catalysis, 2022, 12(17): 10581-10586.
[28] FAN Z, CHEN X, TANAKA?K, et al. Molecular editing of aza-arene C–H bonds by distance, geometry and chirality[J]. Nature, 2022, 610(7930): 87-93.
[29] OLAH G A, ERNST T?D. Trimethylsilyl azide/triflic acid, a highly efficient electrophilic aromatic amination reagent[J]. The Journal of Organic Chemistry, 1989, 54(5): 1203-1204.
[30] VOUGIOUKALAKIS G C, CHRONAKIS N, ORFANOPOULOS?M. Addition of electron-rich aromatics to azafullerenium carbocation. a stepwise electrophilic substitution mechanism[J]. Organic Letters, 2003, 5(24): 4603-4606.
[31] WANG J, ZHOU Y, XU?X, et al. Entry to 1,2,3,4-tetrasubstituted arenes through addressing the “meta constraint” in the palladium/norbornene catalysis[J]. Journal of the American Chemical Society, 2020, 142(6): 3050-3059.
[32] KIM J, JOO J M. Palladium-catalyzed C–H acetoxylation of arenes using a pyrazolonaphthyridine ligand[J]. Bulletin of the Korean Chemical Society, 2022, 43(10): 1173-1176.
[33] MUKHOPADHYAY S, ROTHENBERG G, LANDO?G, et al. Air oxidation of benzene to biphenyl–a dual catalytic approach[J]. Advanced Synthesis & Catalysis, 2001, 343(5): 455-459.
[34] 步亞楠.鐵催化的N-烷基化反應(yīng)研究進(jìn)展[J].遼寧化工,2022,51(8):1118-1120.
[35] PHIPPS R J, GRIMSTER N P, GAUNT?M J. Cu (II)-catalyzed direct and site-selective arylation of indoles under mild conditions[J]. Journal of the American Chemical Society, 2008, 130(26): 8172-8174.
[36] 潘永凱,陳運榮. 手性噁唑啉的不對稱催化合成研究進(jìn)展[J]. 遼寧石油化工大學(xué)學(xué)報,2021,41(4):9-16.
[37] 朱超凡,王銳,陳運榮. 2-乙基-2-芳基-二氫喹啉衍生物的合成[J].遼寧石油化工大學(xué)學(xué)報,2022,42(5):18-25.
Study of Solvent Effect on C—H Cleavage Step
by?Density Functional Theory
TIAN Teng1,2,?AN Huiyong1*, WANG Tao3*,?YU Fang1,2*
(1.?School of Petrochemical Engineering,?Liaoning Petrochemical University, Fushun Liaoning 113001, China;
2. Ningbo Institute of Dalian University of Technology, Ningbo Zhejiang?315016,?China;
3.Wuxi Institute of Drug Control, Wuxi Jiangsu 214000,?China)
Abstract:??The efficiency of C—H activation has been widely studied and proved. 8-aminoquinoline mediated C—H activation is the most commonly utilized method. A large number of computational chemistry studies have proved that the powerful electron-donating effect and rigid structure of 8- aminoquinoline guiding group are the key to its efficient reaction. However, the solvent effect related to this system has not been fully interpreted. In this paper, the continuum solvation models?of toluene, 1,2-dichloroethane, acetone, acetonitrile and dimethyl sulfoxide were selected in order to engage the density functional theory (DFT) calculation of the RDS of the sp3C—H activation mediated by 8-aminoquinoline guiding group (C—H cleavage step). Finally, it was found that with the increase of solvent polarity, the entropy reduction of the transition state of the C—H cleavage step decreased?significantly that caused the reduction of Gibbs free energy barrier, which finally accelerated the reaction.
Key words:??C—H activation; Density functional theory; Gibbs free energy
基金項目:遼寧省重點研發(fā)計劃項目(項目編號:2019JH2/10100005)。
收稿日期:2023-03-13
作者簡介:田騰(1997-),男,陜西省渭南市人,碩士研究生,研究方向:過渡金屬催化碳?xì)滏I活化反應(yīng)。
通信作者:安會勇(1980-),男,教授,博士,研究方向:有機(jī)合成方面研究。
王濤(1988-),男,碩士,主管藥師,研究方向:藥物檢測與分析。
于芳(1984-),女,博士,副教授,研究方向:有機(jī)凝膠合成研究。