方鍇莉
摘 要:以稻稈為原料,通過(guò)馬來(lái)酸-堿聯(lián)合預(yù)處理方法制備木糖和葡萄糖。在不同溫度下比較了馬來(lái)酸和硫酸對(duì)木糖回收率的影響,并對(duì)稻稈酸解后的殘?jiān)脡A脫木質(zhì)素,最后進(jìn)行纖維素酶水解,以釋放葡萄糖。結(jié)果表明,當(dāng)溫度為150 ℃時(shí),木糖的回收率最高,達(dá)72.12%。對(duì)稻稈的馬來(lái)酸預(yù)處理殘?jiān)M(jìn)行酶解,其葡萄糖得率僅為39.12%;在80 ℃下用2% NaOH對(duì)殘?jiān)撃舅靥幚?2 h,酶解葡萄糖得率可提高到83.17%。
關(guān)鍵詞:馬來(lái)酸;水解;稻稈;木糖;酶解
Pretreatment of Rice Straw Using Maleic Acid Combined with Alkali for Recovery of Xylose and Glucose
FANG Kaili
(School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 311399, China)
Abstract: The aim is to recover xylose and glucose from rice straw by maleic acid combined with alkali pretreatment. The xylose recovery through maleic acid and sulfuric acid pretreatment of rice straw was compared under different temperatures. Then, the residue obtained after maleic acid pretreatment was delignified by alkali. Finally, the enzymatic hydrolysis of the residue was conducted to release glucose. The maximum xylose recovery reached 72.12% when the temperature was 150 ℃. Additionally, the enzymatic glucose yield was only 39.12% after enzymatic hydrolysis of the rice straw residue. However, the glucose yield increased to 83.17% after the residue was delignified by 2% NaOH at 80 ℃ for 12 h.
Keywords: maleic acid; hydrolysis; rice straw; xylose; enzymatic hydrolysis
在我國(guó)南方地區(qū),稻稈是一種資源豐富的農(nóng)業(yè)廢棄物。稻稈中碳水化合物的總含量在60%(w/w)左右,其中纖維素占33%~40%,半纖維素占20%~25%,木質(zhì)素占15%~20%,另外稻稈灰分含量較多,約占干重的8%~10%。因此,稻稈在發(fā)酵糖的制備方面具有很大的應(yīng)用潛能。在利用稻稈等木質(zhì)纖維素原料制備生物乙醇過(guò)程中,首先需要對(duì)原料進(jìn)行預(yù)處理來(lái)提高其與纖維素酶的可及度[1-3]。稀硫酸等無(wú)機(jī)強(qiáng)酸是常用的化學(xué)預(yù)處理試劑,但在強(qiáng)酸的熱水解過(guò)程中,過(guò)于劇烈的水解反應(yīng)條件會(huì)促使生成的戊糖降解為糠醛[4],從而抑制后續(xù)乙醇發(fā)酵中酵母細(xì)胞的生長(zhǎng),導(dǎo)致乙醇生產(chǎn)的速率和得率下降[5-6]。馬來(lái)酸又稱順丁烯二酸,被認(rèn)為是可替代硫酸的預(yù)處理試劑,其雙羧酸的結(jié)構(gòu)特點(diǎn)與生物酶的活性催化位點(diǎn)結(jié)構(gòu)類似,有利于維持戊糖的穩(wěn)定性,在劇烈的酸預(yù)處理反應(yīng)過(guò)程中降低戊糖的降解和糠醛的產(chǎn)生[7]。本研究比較了不同溫度下馬來(lái)酸和硫酸預(yù)處理稻稈對(duì)木糖回收率的影響以及堿處理脫木素對(duì)稻稈酸解殘?jiān)w維素酶水解的影響。
1 材料與方法
1.1 材料、試劑與儀器
稻稈產(chǎn)自浙江紹興,經(jīng)自然風(fēng)干,粉碎后用30目過(guò)篩,儲(chǔ)藏于密封塑料袋中。參考美國(guó)能源部發(fā)布的生物質(zhì)化合物成分含量測(cè)定方法[8],對(duì)稻稈進(jìn)行組分分析。原料中纖維素和木聚糖分別占原料干重的35.23%和20.76%。
馬來(lái)酸、硫酸和氫氧化鈉,購(gòu)自國(guó)藥集團(tuán)化學(xué)試劑有限公司;纖維素酶(C2730)和β-葡萄糖苷酶(Novozyme 188),購(gòu)自Sigma公司;纖維素酶中濾紙酶活性為117 FPU·g-1,β-葡萄糖苷酶的活性為269 CBU·g-1。
CJK-0.5型快開(kāi)反應(yīng)釜,威海新元化工機(jī)械廠;高效液相色譜Agilent1100,美國(guó)安捷倫公司;LDZX-40SAI型立式自動(dòng)電熱壓力蒸汽滅菌鍋,上海申安醫(yī)療器械廠;DKZ-2型電熱恒溫振蕩水槽,上海?,攲?shí)驗(yàn)設(shè)備有限公司。
1.2 實(shí)驗(yàn)方法
1.2.1 稻稈的酸水解
將300 mL馬來(lái)酸或硫酸水溶液加到稻稈中,攪拌均勻后轉(zhuǎn)入500 mL不銹鋼反應(yīng)罐中,待實(shí)驗(yàn)裝置安裝完畢后用電爐進(jìn)行加熱。反應(yīng)結(jié)束后立即卸下電爐套并且用冰水混合物冷卻,待溫度降至60 ℃左右,將反應(yīng)罐內(nèi)的物料取出,用沙星漏斗過(guò)濾,沙星漏斗內(nèi)的固相用熱水淋洗后再進(jìn)行過(guò)濾,反復(fù)淋洗過(guò)濾5遍后將液相定容至1 500 mL,過(guò)濾淋洗后剩余的固相殘?jiān)糜?05 ℃烘箱干燥24 h,稱重后存于封口袋待成分分析。木糖回收率的計(jì)算公式為
式中:R為木糖回收率,%;m1為馬來(lái)酸水解液中的木糖含量,g;m2為原料中的木聚糖含量,g。
用HPLC分析木糖濃度,液相色譜運(yùn)行條件如下。Bio-Rad Aminex HPX-87糖柱(7.8×300 mm),以5 mmol·L-1的H2SO4為流動(dòng)相,流速為0.6 mL·min-1,柱溫為55 ℃,進(jìn)樣量為10 μL,示差折光檢測(cè)器檢測(cè),外標(biāo)法測(cè)定。
1.2.2 殘?jiān)膲A處理
取5 g馬來(lái)酸處理所得的稻稈殘?jiān)?,置于三角瓶中,加?00 mL的2% NaOH水溶液,80 ℃水浴振蕩加熱一定時(shí)間(4~12 h)。反應(yīng)結(jié)束后將物料過(guò)濾并不斷用去離子水淋洗直到洗出液pH接近中性為止,最后將處理后的物料置于50 ℃烘箱干燥備用。
1.2.3 物料的酶水解
取0.5 g堿處理后的固相殘?jiān)尤?5 FPU·g-1底物的纖維素酶和30 CBU·g-1底物的β-葡萄糖苷酶,再加入10 mL的檸檬酸緩沖液(pH=4.8)和一定量疊氮化鈉(終濃度為10 mmol·L-1,防止微生物污染)。酶解溫度為50 ℃,酶解時(shí)間為72 h,搖床速度為150 r·min-1。反應(yīng)結(jié)束后立即將樣品置于沸水中10 min,待冷卻后離心,取上清液經(jīng)HPLC測(cè)定葡萄糖含量。葡萄糖檢測(cè)的色譜運(yùn)行條件同木糖。酶解葡萄糖得率的計(jì)算公式為
式中:Y為葡萄糖酶解得率,%;n1為酶解液中的葡萄糖含量,g;n2為物料中纖維素含量,g。
2 結(jié)果與分析
2.1 不同溫度下馬來(lái)酸和硫酸預(yù)處理稻稈對(duì)木糖回收率的影響
鑒于溫度對(duì)木質(zhì)纖維原料的木糖回收率的影響最顯著[9],本文在固液比68 g·L-1,預(yù)處理時(shí)間45 min,馬來(lái)酸和硫酸濃度0.17 mol·L-1的條件下,考察不同反應(yīng)溫度(130 ℃、150 ℃和170 ℃)對(duì)木糖回收率的影響。如圖1所示,當(dāng)溫度為130 ℃時(shí),硫酸水解稻稈的木糖回收率為70.67%,而馬來(lái)酸水解稻稈的木糖回收率僅為36.24%,這是因?yàn)榱蛩崛芤褐泻写罅康臍潆x子,而馬來(lái)酸羧基上的氫不能完全解離成氫離子,因此硫酸水解半纖維素產(chǎn)生木糖的速率比馬來(lái)酸快得多。在150 ℃下,馬來(lái)酸水解稻稈的木糖回收率增加到72.12%,而硫酸水解稻稈的木糖回收率降至61.78%,這是因?yàn)槟咎窃诹蛩嶂械慕到馑俾食^(guò)了木糖產(chǎn)生的速率。當(dāng)反應(yīng)溫度為170 ℃時(shí),馬來(lái)酸水解稻稈的木糖回收率仍然高達(dá)71.38%,而硫酸水解稻稈的木糖回收率相比于150 ℃時(shí)大幅度下降,僅為12.43%,由此可知大量木糖在170 ℃的硫酸溶液中發(fā)生了降解。以上結(jié)果表明,在170 ℃的較高溫度下,木糖在馬來(lái)酸中的降解水平比在硫酸中低得多。這與LU等[7,10]的研究結(jié)果相符,即硫酸水解玉米秸稈過(guò)程中的木糖降解率是馬來(lái)酸的3~10倍,馬來(lái)酸水解玉米秸稈的反應(yīng)活化能明顯低于硫酸。由于在150 ℃和170 ℃的反應(yīng)溫度下,馬來(lái)酸水解稻稈的木糖回收率較為接近,出于節(jié)省能耗的角度考慮,試驗(yàn)選取150 ℃對(duì)馬來(lái)酸殘?jiān)M(jìn)行預(yù)處理,然后進(jìn)行后續(xù)酶解實(shí)驗(yàn)。
2.2 堿處理對(duì)馬來(lái)酸預(yù)處理殘?jiān)附庑Ч挠绊?/p>
由表1可知,馬來(lái)酸水解稻稈所得殘?jiān)ü桃罕葹?8 g·L-1,馬來(lái)酸預(yù)處理溫度為150 ℃,時(shí)間為45 min,馬來(lái)酸濃度為0.17 mol·L-1)的酶解葡萄糖得率僅為39.12%;在80 ℃的堿處理溫度下,用2% NaOH分別對(duì)殘?jiān)幚? h、8 h和12 h,各堿處理物料的酶解葡萄糖得率分別為54.72%、76.86%和83.17%。這是因?yàn)閴A處理有利于殘?jiān)心举|(zhì)素的脫除,破解了木質(zhì)素對(duì)纖維素酶水解的物理屏障,增加了底物的孔隙率或纖維素酶的可及性[11-12];堿處理時(shí)間越長(zhǎng),物料中的木質(zhì)素含量越少,從而越有利于纖維素的酶水解[13]。如圖2所示,不同堿處理時(shí)間下所得稻稈的木質(zhì)素含量和酶解葡萄糖得率之間具有較強(qiáng)的線性相關(guān)性(R2=0.974 5),表明木質(zhì)素脫除促進(jìn)了纖維素的酶解,這與前人的研究結(jié)果一致[14-15]。
3 結(jié)論
本試驗(yàn)結(jié)果表明,當(dāng)馬來(lái)酸的預(yù)處理溫度為150 ℃時(shí),木糖的回收率最大,達(dá)72.12%。在170 ℃的較高溫度下,木糖在馬來(lái)酸中的降解水平比在硫酸中低得多;對(duì)稻稈酸解殘?jiān)M(jìn)行NaOH脫木素處理,可以大幅度提高物料的酶解葡萄糖得率,且底物中木質(zhì)素含量和葡萄糖得率呈現(xiàn)較強(qiáng)的線性關(guān)系。
參考文獻(xiàn)
[1]BALAT M.Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review[J].Energ Convers Manage,2011,52(2):858-875.
[2]CHANG V S,HOLTZAPPLE M T.Fundamental factors affecting biomass enzymatic reactivity[J].Appl Biochem Biotech,2000,84(1/9):5-37.
[3]YANG B,WYMAN C E.Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose[J].Biotechnol Bioeng,2004,86(1):88-95.
[4]QIAN X H,NIMLOS M R,DAVIS M,et al.Ab initio molecular dynamics simulations of beta-D-glucose and beta-D-xylose degradation mechanisms in acidic aqueous solution [J].Carbohyd Res,2005,340(14):2319-2327.
[5]ZHU J J,YANG J L,ZHU Y Y,et al.Cause analysis of effects of acid-catalyzed steam-exploded corn stover prehydrolyzate on ethanol fermentation by Pichia stipites CBS 5776[J].Bioproc Biosyst Eng,2014,37(11):2215-2222.
[6]KLINKE H B,THOMSEN A B,AHRING B K.Inhibition of ethanol producing yeast and bacteria by degradation products produced during pretreatment of biomass[J].Appl Microbiol Biot,2004,66(1):10-26.
[7]LU Y L,MOSIER N S.Biomimetic catalysis for hemicellulose hydrolysis in corn stover [J].Biotechnol Progr,2007,23(1):116-123.
[8]SLUITER A,HAMES B,RUIZ R,et al.Determination of structural carbohydrates and lignin in biomass[EB/OL].(2008-04-25)[2024-01-15].http://www.nrel.gov/biomass/analytical procedures.html.
[9]BABOUKANI B S,VOSSOIGHI M,ALEMZADEH I.Optimization of dilute-acid conditions for enhancement sugar recovery and enzymatic hydrolysis of wheat straw[J].Biosyst Eng, 2012,111(2):166-174.
[10]LU Y L,MOSIER N S.Kinetic modeling analysis of maleic acid catalyzed hemicellulose hydrolysis in corn stover[J].Biotechnol Bioeng,2008,101(6):1170-1181.
[11]MOONEY C A,MANSFIELD S D,TOUHY M G,et al.The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods[J].Bioresource Technol,1998,64(2):113-119.
[12]ZHU Z,SATHITSUKSANOH N,VINZANT T,et al.Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility[J].Biotechnol Bioeng,2009,103(4):715-724.
[13] MCINTOSH S,VANCOV T.Enhanced enzyme saccharification of sorghum bicolor straw using dilute alkali pretreatment[J].Bioresource Technol,2010,101(17):6718-6727.
[14]DRAUDE K M,KURNIAWAN C B,DUFF S J B.Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material[J].Bioresource Technol,2001,79(2):113-120.
[15]MASARIN F,GURPILHARES D B,BAFFA D C F,et al.Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content[J].Biotechnol Biofuels,2011,4(1):55.