• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    One-step quantum dialogue

    2024-03-25 09:30:54PengHuiZhu朱鵬輝WeiZhong鐘偉MingMingDu杜明明XiYunLi李喜云LanZhou周瀾andYuBoSheng盛宇波
    Chinese Physics B 2024年3期
    關鍵詞:鐘偉

    Peng-Hui Zhu(朱鵬輝), Wei Zhong(鐘偉), Ming-Ming Du(杜明明),Xi-Yun Li(李喜云), Lan Zhou(周瀾),?, and Yu-Bo Sheng(盛宇波),,?

    1College of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology),Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    3Institute of Quantum Information and Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: one-step quantum dialogue, hyperentanglement, hyperentanglement distribution, non-local Bellstate measurement

    1.Introduction

    Quantum secure communication can protect the security of transmitted messages based on the basic principles of quantum mechanics.Quantum secure communication has unconditional security, which is its most attractive advantage comparing with classical communication.There are some important branches in the quantum secure communication field,such as quantum key distribution (QKD),[1-9]quantum secret sharing(QSS),[10-14]quantum secure direct communication (QSDC),[15-18]and quantum dialogue (QD).[19,20]QKD and QSS can generate secret keys between two distant parties and among multiple parties, respectively.QSDC does not require keys.It enables the message sender to directly transmit messages to the message receiver through the quantum channel.QSDC has developed rapidly in theoretical and experimental aspects during the last few years.[21-42]In theory,in 2020, researchers introduced device-independent (DI) and measurement-device-independent(MDI)techniques in QSDC to enhance QSDC’s security under practical conditions.[22,23]Soon after, the masking (IN-CUM) technique was utilized in QSDC to increase its message capacity.[26]In 2023, the two-step QSDC scheme based on intermediate-basis was proposed,which used the intermediate-basis Einstein-Podolsky-Rosen(EPR)pairs to detect the channel security and help encode information.[32]Experimentally,the single-photon based QSDC experiment and entanglement-based QSDC experiment were realized in 2016 and 2017, respectively.[35,36]Recently,QSDC network experiment and a 100 km QSDC experiment were reported, which largely promoted the practicality of QSDC.[39,40]In 2023,the group of Paparelle realized the tabletop experimental demonstration of a CV-QSDC system.[42]

    QD,which will be detailed here,enables two distant communication parties to exchange messages through quantum channels.[43-51]In this way, QD can play the role of bidirectional QSDC.In 2004, Nguyen proposed the first QD protocol based on quantum entanglement.[19]In 2005, Manet al.pointed out the security loophole of the QD protocol in Ref.[19] and proposed a modified secure QD protocol.[20]In 2007,a quasi-secure single-photon-based QD protocol was proposed,[43]which can guarantee the confidentiality and control of the QD content, and has certain anti-attack capabilities.In 2009, Shiet al.utilized Bell state to realize a secure QD.[45]In 2010, they proposed a secure single-photonbased QD protocol combining the idea of QSDC and BB84 protocol.[46]In 2014, a two-step QD protocol evolved from the two-step QSDC protocol was proposed,[49]whose security is assured by the two-step QSDC protocol.[16]In the same year, the entanglement swapping technique was introduced into the QD protocol.[50]Later, Gonget al.utilized the continuous-variable GHZ states to realize the quantum network dialogue.[51]

    The conventional QSDC and QD protocols all require two rounds of photon transmission.We take the entanglementbased QSDC and QD protocols as examples.[15,16,19,20,45,49]Firstly, two communication parties firstly construct the longdistance entanglement channel by distributing a photon of each entangled photon pair in the quantum channel.Then,the photons are encoded by the parties.The encoded photons should be sent to one party for the Bell state measurement(BSM).However, in the photon transmission processes, the channel noise may cause photon transmission loss and quantum state decoherence, which may cause message loss and message error.Worse still, utilizing the channel noise, the eavesdropper (Eve) can intercept some messages without being detected.In 2022, the one-step QSDC protocol based on the hyperentanglement was put forward,[28]which reduces the photon transmission rounds from two to one.Compared with conventional two-step QSDC protocols,[15,16]one-step QSDC protocol can effectively simplify the experimental operation and reduce the message loss caused by the photon transmission loss.Later, to further enhance one-step QSDC’s security under practical imperfect conditions,researchers proposed DI and MDI one-step QSDC protocols.[29,30]Inspired by the one-step QSDC protocol, we propose the first one-step QD protocol.This one-step QD protocol first constructs the hyperentanglement channel between two distant communication parties.Then, the parties perform the hyperentanglementassisted complete BSM with the probability of 100%.In this way, the encoded photons are not required to transmit to one party,which can effectively reduce the message loss.To evaluate the one-step QD protocol’s performance under practical experimental conditions, we simulate its secret message capacity.Our one-step QD protocol has important applications in the quantum communication field.

    The paper is organized as follows.In Section 2, we explain the one-step QD protocol based on hyperentanglement.In Section 3, an example of the one-step QD protocol is put forward.In Section 4, we analyze the theoretic security and the secret message capacity of the one-step QD protocol.In Section 5,we make some discussion and the summary elaboration.

    2.One-step QD protocol

    The one-step QD protocol utilizes the hyperentangled photon pairs as the sources.Hyperentanglement means entanglement in two or more DOFs of a system.Hyperentanglement has important applications in increasing the channel capacity,[52,53]realizing the high-efficient entanglement purification,[54-57]complete BSM,[58,59]and multi-DOF teleportation.[60,61]The generation of various hyperentanglement has been widely researched.[62-64]As shown in Fig.1,the one-step QD protocol can be described as follows.

    Fig.1.The schematic diagram of the one-step QD protocol.The green circles linked by the dashed lines represent the initially prepared polarizationspatial-mode hyperentangled photon pairs in|φ+〉p ?|φ+〉s.The light blue circle pairs represent the randomly selected security checking photon pairs.The colorful circle pairs in steps (5) and (6) represent the encoded photon pairs.The light green rectangular box represents the non-local complete polarization Bell state measurement(BSM).

    Step 1The communication party Alice requires to generateNpolarized-spatial-mode hyperentangled states in|φ+〉p?|φ+〉s(Nis large).Here,we use|H〉and|V〉to represent the horizontal polarization and vertical polarization, respectively.The four polarization Bell states can be described as

    In the spatial-mode DOF,a1,a2,a′1,a′2represent different spatial modes in Alice’s location.The four spatial-mode Bell states can be described as

    We divide theNcopies of photon pairs into two photon sequences S1 and S2.

    Step 2Alice randomly selectsMphoton pairs for subsequent security checking and records their positions (Mis a large number andM <N).

    Step 3The photons in sequence S2 are sent from Alice to Bob through two quantum channels, and the photons in sequence S1 are stored in Alice’s quantum memory (QM)devices.The spatial modesa′1anda′2in Alice’s location correspond to the spatial modesb1andb2in Bob’s location,respectively.Bob stores all the received photons in his QM devices.

    Step 4For each security checking photon, Alice randomly selects the rectilinear (Z) basis or diagonal (X) basis in each DOF.Then, Alice announces the position and measurement bases in both DOFs of each security checking photon pair through a classical channel.Alice and Bob extract the security checking photons from the QM devices and measure them in both DOFs with the announced bases.In Fig.2,we show four linear optical apparatuses for Alice(Bob)measuring the photon inXsZp,XsXp,ZsXp,ZsZpbases and the corresponding measurement results.[65]Then,Alice(Bob)announces her (his) measurement results through the classical channel.Under the case that they both chooseZbasis in a DOF, if their measurement results are different, it indicates that a bit-flip error occurs in this DOF.Under the case that they both chooseXbasis in a DOF, if their measurement results are different, it indicates that a phase-flip error occurs.After the security checking, Alice and Bob estimate the bitflip error rate(eB)and phase-flip error rate(eP)in both DOFs.IfeBorePin any DOF exceeds a tolerable threshold,Alice determines that the photon transmission is unsafe and aborts the communication.Only when botheBandePin each DOF are lower than the tolerable thresholds, Alice and Bob continue the communication.

    Fig.2.Four linear optical apparatuses for the parties measuring the photons in(a)XsZp, (b)XsXp, (c)ZsXp, (d)ZsZp, and the corresponding measurement results.[65] PBS and BS represent the polarization beam splitter and 50:50 beam splitter, respectively.PBS can totally transmit the photon in|H〉and totally reflect the photon in|V〉photon.BS plays the role of the Hadamard(H)gate in the spatial-mode DOF,leading|i1〉→(|i1〉+|i2〉)and|i2〉→(|i1〉-|i2〉)(i=a,b).The quarter wave plate(QWP)can be treated as the H gate in the polarization DOF,leading|H〉→(|H〉+|V〉)and|V〉→(|H〉-|V〉).

    Fig.3.Schematic principle of the encoding and non-local hyperentanglement-assisted polarization BSM in our one-step QD protocol.The parties can perform the σxp operation by passing the photon through the half wave plate(HWP).Combining two QWPs with an HWP, the parties can perform the σzp operation.After the encoding,the parties perform the non-local hyperentanglement-assisted polarization BSM.[28,58] Four polarization Bell states can be distinguished by the responses of eight photon detectors D1-D8.

    Step 6 Both parties perform the non-local hyperentanglement-assisted polarization BSM, which is also shown in Fig.3.After the measurement, both parties announce the detector responses through a classical channel.From the detector responses, both parties can deduce the encoded polarization Bell state.The detector responses and the corresponding polarization Bell states are shown in Table 1.Then, combined with the detector responses and their own random operations, they can deduce the encoded operations from each other and realize the bidirectional communication.As the random operations are private,anyone except the communication parties cannot read out the exchanged messages.

    Table 1.The non-local complete polarization BSM results corresponding to the detector responses with the spatial Bell state being |φ+〉s.DiDj means both the photon detectors Di and Dj response.

    It is worth noting that if the Bell state in the spatial-mode DOF degrades to one of the other three Bell states in Eq.(2),the parties will obtain wrong polarization BSM result from the detector responses.We list the polarization Bell states corresponding to the detector responses with the spatial-mode entanglement in|ψ+〉sin Table 2.We take a specific example.From Table 2,if the polarization is|φ+〉p,the detectors D1D7,D2D8,D3D5,or D4D6will click.However,the parties deduce the polarization Bell state from Table 1, so that they will deduce that the encoded polarization Bell state is|ψ+〉p.

    Table 2.The non-local complete polarization BSM results corresponding to the detector responses with the spatial Bell state being|ψ+〉s.DiDj means both the photon detectors Di and D j response.

    3.A specific example of the one-step QD protocol

    To enhance the understanding of the one-step QD protocol,we provide a specific example of this one-step QD protocol.After the hyperentanglement distribution,Alice and Bob share the initial hyperentangled state in|φ+〉p?|φ+〉s.Suppose that Alice aims to transmit the message 1,and Bob aims to transmit the message 0.In this way, Alice performsσzpon the photon in S1 sequence, and Bob performsIpon the corresponding photon in S2 sequence.In addition,Alice also performsσxpon her photon and Bob performsσzpon his photon.After the encoding,the initial state|φ+〉pis converted to|ψ+〉p, while the state|φ+〉sis unchanged.The specific process is as follows:

    which corresponds to the responses of D1D7, D2D8, D3D5,or D4D6.Based on the detector responses, the parties obtain the encoded polarization Bell state is|ψ+〉pfrom Table 1.Then, each party combined|ψ+〉pwith his/her random operation.Alice can obtain that Bob’s encoding operation isIpcorresponding to the transmitted message of 0.Bob can obtain that Alice’s encoding operation isσzpcorresponding to the message of 1.

    4.Security analysis and the secret message capacity

    We first analyze the theoretic security of our one-step QD protocol against the most common attack, say, the interceptresend attack.During the photon transmission process, Eve can intercept some photons.To avoid being discovered, Eve prepares some new hyperentangled photon pairs in|φ+〉p?|φ+〉s.He distributes one photon of each hyperentangled photon pair to Bob through a perfect quantum channel and randomly encodes the photons in his location.After the parties’encodings, Eve performs the non-local complete polarization BSM with the parties,respectively,and he can deduce Alice’s and Bob’s message according to the announced detector responses from Alice and Bob.Meanwhile,the parties can only obtain Eve’s randomly encoded messages.However, this attack can be resisted by the security checking.As Alice randomly selects a large number of security checking photon pairs in the photon sequences.It is unavoidable for Eve to intercept some security checking photons.Eve’s newly generated photons in Bob’s location are not entangled with Alice’s corresponding photons.As a result,their measurement results in each DOF may be different with a probability of 50%.In this way, Eve’s intercept-resend attack can increaseeBandePin each DOF.Under ideal conditions, if there is no eavesdropping,eBandePin each DOF are strictly equal to 0.IfeBorePin any DOF is higher than 0,Alice can detect the existence of Eve.Under practical noisy conditions,Alice sets the tolerable thresholds ofeBandePin both DOFs.If the any error rate exceeds the tolerable threshold,Alice ensures that the photon distribution is unsafe and discards the communication.

    Actually,in the practical noisy channel condition,Eve can intercept a part of photons from the photon transmission process.The total error rates caused by Eve’s interception can be concealed by that caused by the channel noise,so that Eve will not be detected by the parties.As a result,Eve can obtain a part of encoded messages.As each hyperentangled photon pair carries 2 bits of messages,the message leakage rate of our one-step QD protocol is twice the photon interception rate.

    For evaluating the performance of our one-step QD protocol in the practical scenario,we numerically simulate its secret message capacity(Cs).Similar to QSDC,we define the secret message capacity of QD as the ratio of the total exchanged secure and correct qubits to the overall number of encoded photon pairs.Here, we consider the symmetric scenario, where the hyperentanglement source is at the midpoint between the communication parties.Under this circumstance, the generated photon pairs hyperentangled in two DOFs pass through a quantum channel with the transmission distance ofLto reach both parties, and the communication distanced=2L.Consequently, this configuration allows Eve to intercept photons intended for each party.According to Wyner’s wiretap channel theory,[66]we can calculateCsas[38,67,68]

    Here,I(A:B)(I(B:A))represents the message capacity from Alice to Bob (Bob to Alice).Similarly,I(B:E) (I(A:E))denotes the mutual message capacity between Bob and Eve(Alice and Eve).Theoretically, for a hyperentangled photon pair,Alice and Bob can exchange two bits of messages in total.With this framework, we can obtain the sum ofI(A:B)andI(B:A)as

    whereH(x)represents the binary Shannon entropy asH(x)=-xlog2x-(1-x)log2(1-x)andCrawdenotes the raw message capacity.eQDrepresents the total error rate of the protocol.

    Referring to the principles of the entanglement-based QKD and one-step QSDC protocols,[28,69,70]on can obtain the sum ofI(A:E)andI(B:E)as

    Thus,Csof the one-step QD protocol can be calculated as

    Next,we estimate the values ofCrawandeQD.We utilize the spontaneous parametric down-conversion (SPDC) source to generate the original two-photon hyperentangled states.The SPDC source can generate a hyperentangled photon pair with a probability ofP(whereP~10-3).[57]GivenP ?1, our protocol only focuses on the vacuum state,one-pair,two-pair and three-pair emissions,while ignores the higher-order terms.Consequently, the practical photon stateρgenerated by the SPDC source can be expressed as

    Following the hyperentanglement distribution, the communication parties perform the non-local complete polarization BSM.The non-local polarization BSM protocol requires eight photon detectors D1-D8,four in Alice’s location and four in Bob’s location.As illustrated in Table 1, there are four kinds of detector responses corresponding to each polarized Bell state, each with an equal probability.In this simulation,we account for the practical photon detector, which is unable to distinguish the number of incident photons.Meanwhile,the photon detector has a dark count rate denoted asY0.The detection probability of detector Dj(j=1,2,...,8)whenkphotons are incident is represented asDkj.Here,we introduce the concept of collection efficiencyα,encompassing the coupling efficiencyηcbetween the photon source and fiber, the quantum memory efficiencyηm,the photon transmission efficiencyηt=10-0.2L/10,and the detection efficiency of the detectorηd(α=ηcηmηtηd).AsαandY0are far less than 1,Dkjcan be written as

    Here,we introduce a simplification by definingα′=α/4,enabling us to expressDkj ?kα′+Y0.

    The calculation ofCrawin our one-step QD protocol is similar as that in the one-step QSDC protocol.[28]First, we consider the vacuum state with the probability of 1-P-P2-P3, the clicks of all detectors are attributed to dark counts.Consequently,Craw1can be calculated as

    Second,we focus on the one hyperentangled-photon-pair component in Eq.(10)with a probability ofP.After the nonlocal BSM,this photon pair can cause the click of one detector pair,while the clicks of the other detector pairs are due to dark counts.Here,we suppose the encoded hyperentangled state to be|Φ+〉=|φ+〉p?|φ+〉s.It may lead the response of D1D5,D2D6,D3D7,or D4D8.In this case,Craw2can be calculated as

    Third, we consider the two hyperentangled-photon-pair components in Eq.(10) with a probability ofP2.The detection results can be categorized into the following two scenarios.First, only one detector pair clicks by the incident of the two photon pairs,such as D1D5.Secondly,two detector pairs click by the incident of the two photon pairs, such as D1D5and D2D6.Combining the two categories,we can obtain

    Fourth, we focus on the three hyperentangled-photonpair components with a probability ofP3.This situation can be classified into three categories, say, the incident of three photon pairs may cause the clicks of one detector pair, two detector pairs, and three detector pairs, respectively.In all the three categories, we can calculateD1+D2+D3+D4=D5+D6+D7+D8=3α′+4Y0.As a result, we can obtainCraw4 as

    On the other hand,we have to consider the multiple coincidences,say,three or more photon pairs click simultaneously at any one party’s side.It is obvious that the multiple coincidence will cause the failure of the non-local BSM.As the probability of four or more detectors clicking simultaneously is significantly lower than that of the threefold click,we only focus on the threefold click case.Referring to the calculations in Ref.[28], the threefold coincidence rate in the above four cases can be calculated as

    Then,we focus on the total error rateeQD.The error may be caused by both the imperfect experimental devices and the decoherence during the photon transmission.We first consider the error caused by the imperfect experimental devices.We also take|Φ+〉=|φ+〉p?|φ+〉sas an example.Only the clicks from D1D5, D2D6, D3D7, or D4D8are correct BSM results,while other types of clicks caused by dark counts would lead to error.Therefore,the correct message capacity corresponding to the vacuum state,one hyperentangled photon pair,two hyperentangled photon pairs,and three hyperentangled photon pairs can be calculated as

    In the above expression,Fp(Fs) represents the fidelity of target state in the polarization(spatial-mode)DOF.Decoherence may affect the non-local BSM results and cause errors,which may make Alice and Bob deduce incorrect messages.It is important to note that if the same kind of error occurs in both DOFs, the BSM can still obtain the right detector response.We take the case that the bit-flip error occurs in both DOFs as an example.In this case, the initial hyperentangled state will be converted to|ψ+〉p?|ψ+〉s.Suppose that Alice aims to transmit the message 1 and Bob aims to transmit the message 0,and their random operations are bothIp.After encoding,the hyperentangled state will evolve to|φ+〉p?|ψ+〉s.The BSM process can be written as

    As a result, the output photons will be detected by D3D5,D4D6,D1D7,or D2D8.From Table 1,Alice and Bob can infer the encoded polarization Bell state to be|ψ+〉p, and thus can exchange correct messages 1 and 0.Similarly, if the phaseflip error or bit-phase-flip error occurs in both DOFs, Alice and Bob can also obtain the correct polarization BSM results from the detector responses.Therefore,if the same kind of error occurs in both DOFs,the parties can still exchange correct messages based on the BSM results.

    Thus,the total correct rateCcorrecttis

    Taking the values ofCrawandeQDin Eqs.(18) and (23)into Eq.(9),we calculate the value ofCs.In Fig.4,we showCsof the one-step QD protocol altered with the communication distancedbetween the communication parties.We fixY0=6.02×10-6,ηm=ηc=0.95,ηd=0.9.For calculatingηt, we chooseα=0.2 dB/km.The parametersFpandFsare adjusted to be 1, 0.98, 0.96, respectively.It can be seen that whenFp=Fs=0.98, the maximum communication distance achieves approximately 211 km.With the repetition rate of the SPDC source being 10 GHz[71]andFp=Fs=0.98,Csis around 1435 bit/s at a communication distance of 100 km.

    Fig.4.The secret message capacity Cs alters with the communication distance d between the communication parties.Here, we fix Y0 =6.02×10-6, ηm =ηc =0.95, ηd =0.9, and adjust Fp =Fs =1,0.98,0.96,respectively.

    5.Discussion and conclusion

    QD enables two communication parties to directly exchange secret messages simultaneously,realizing real-time secure bidirectional communication.Similar to conventional QSDC protocols,[15-18]previous QD protocols require to transmit photons in the quantum channel twice.[19,20,43-47]The channel noise may cause photon transmission loss and quantum state decoherence in each photon transmission process.The photon transmission loss and quantum state decoherence can largely limit the maximal secure communication distance and reduce the secret message capacity.Worse still, they may cause message loss and message error, which makes the transmitted messages incomplete and incorrect.In our QD protocol, the parties only require to distribute photons in the quantum channel once, which can simplify the experimental operation and reduce the photon transmission loss.Most entanglement-based QD requires the complete BSM.[19,20,45,49]However, the linear-optical BSM only has a success probability of 50%.The complete BSM often relies on nonlinear optical elements,[72-76]which are difficult to realize under current experimental conditions.In contrast, our onestep QD protocol adopts the hyperentanglement-assisted nonlocal complete polarization BSM with a probability of 100%,which is feasible with current linear optical devices.

    QM is an important element of our one-step QD protocol.In the protocol, the parties should store the photons in the quantum memory until they ensure the photon transmission being secure.During recent few years,QM has achieved great experimental progresses.[77-83]In 2017, a high-fidelity nanophotonic QM with>95% spin polarization for efficient initialization of the atomic frequency comb memory and time bin-selective readout was experimentally demonstrated.[78]In 2018, Hsiaoet al.achieved a storage efficiency of 92.0%for a coherent optical memory based on the electromagnetically induced transparency (EIT) scheme in optically dense cold atomic media.[79]In 2019,a high-performance atomic Raman memory in87Rb vapor with the memory efficiency of above 82.0%for 6 ns-20 ns optical pulses and the unconditional fidelity of up to 98.0% was achieved.[80]Later, the coherent storage of light in an atomic frequency comb memory over 1 hour was realized by the group of Ma.[82]Recently, Zhanget al.reported their achievement on the fiber-integrated multimode quantum storage of single photon at telecom band with 330 temporal modes on a laser-written chip.[83]Based on these attractive progresses,our one-step QD protocol may be experimentally realized in the near future.

    From the security analysis, the channel noise makes it possible for Eve to intercept some photons without being detected,and increases message loss rate and message error rate.Similar to QSDC, in QD, the communication parties cannot perform the post-processing technique to resist message loss and message errors.In this way, the message loss and message error are two big obstacles in the practicality of QD.Actually, we can adopt the polarization-spatial-mode hyperentanglement purification and heralded amplification to modify our one-step QD protocol.In detail, Bob can perform the hyperentanglement amplification to herald the arrival of each transmitted photon.[84]After that,both parties can repeat the hyperentanglement purification[85]to improve the fidelity of the hyperentanglement channel.In theory, Alice and Bob can construct the nearly perfect hyperentanglement channel,where the parties can detect any eavesdropping behavior from Eve.As a result, the message leakage loophole can be eliminated.Meanwhile, the message loss and message error can be also nearly eliminated, thus guaranteeing the correctness and integrity of the transmitted messages.In contrast, in the previous entanglement-based QD protocols,[19,20]the parties cannot perform the EPP after the second photon transmission round, for the EPP may change the encoded messages.As a result, the decoherence caused by the second photon transmission round cannot be eliminated,which can bring security loophole and message errors.Moreover,our one-step QD can be combined with the quantum repeater and drone to construct the long-distance hyperentanglement channel,and thus realize the long-distance one-step QD.

    In summary, we propose the first one-step QD protocol with the help of hyperentanglement and non-local complete BSM.In the protocol, two communication parties first construct the hyperentanglement channel.After checking the security of the photon transmission process, they encode their messages in the polarization DOF of each hyperentangled photon pair.Then, by performing the non-local hyperentanglement-assisted complete polarization BSM,they can finally obtain the exchanged messages.This one-step QD protocol is theoretically secure and two parties can exchange 2 bits of messages by using a hyperentangled photon pair.The secret message capacity of the one-step QD protocol is numerically simulated.We obtain that with the fidelities in both DOFs ofFp=Fs=0.98,the one-step QD protocol can achieve the maximal communication distance of about 211 km.Compared with previous QD protocols, our one-step QD protocol has some attractive advantages.First, photons only need to transmit in the quantum channel once, which can simplify the experiment operations and reduce the photon transmission loss.Second, the non-local complete polarization BSM can completely distinguish four polarization Bell states and is feasible with current technique.Third, combined with the heralded amplification and purification,the nearly perfect hyperentanglement channel can be constructed between two parties,which can nearly eliminate the message leakage loophole,the message loss and message error.Moreover, combined with quantum repeater and drone,our one-step QD is possible to realize long-distance QD.In this way,our one-step QD protocol is an important development of QD and will have important applications in future quantum communication field.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.12175106 and 92365110).

    猜你喜歡
    鐘偉
    再出發(fā)的勇氣
    Measurement-device-independent one-step quantum secure direct communication
    Measurement-device-independent quantum secret sharing with hyper-encoding
    上翼面開縫的翼傘翼型氣動特性研究
    The Phase Sensitivities for Different Phase-Shift Configurations in an SU(1,1)Interferometer?
    職場小白警示錄:公車追愛驚變“翻車現(xiàn)場”
    硬漢鐘偉
    領導文萃(2019年23期)2019-01-13 09:47:56
    漂亮女友玩曖昧,精英男命殞“分手糾結(jié)期”
    敢頂撞林彪的解放軍少將
    你的身邊,溜走的是誰
    分憂(2015年1期)2015-01-30 02:21:52
    夜夜看夜夜爽夜夜摸| 一区二区三区国产精品乱码| av福利片在线| 18禁美女被吸乳视频| 嫩草影院精品99| 欧美黄色片欧美黄色片| 男女午夜视频在线观看| 自线自在国产av| 亚洲成人久久性| 9191精品国产免费久久| 亚洲av片天天在线观看| 亚洲男人的天堂狠狠| 国产精华一区二区三区| 免费人成视频x8x8入口观看| 成人三级黄色视频| 久久人人爽av亚洲精品天堂| 青草久久国产| АⅤ资源中文在线天堂| 国产私拍福利视频在线观看| 一级a爱片免费观看的视频| 乱人伦中国视频| 老汉色∧v一级毛片| 欧美精品亚洲一区二区| 色综合欧美亚洲国产小说| 国产一区二区在线av高清观看| 精品国产亚洲在线| 久久国产亚洲av麻豆专区| 可以免费在线观看a视频的电影网站| 久久精品国产亚洲av高清一级| 亚洲中文av在线| 搡老岳熟女国产| 12—13女人毛片做爰片一| 99久久99久久久精品蜜桃| 成人18禁在线播放| 欧美中文日本在线观看视频| 如日韩欧美国产精品一区二区三区| 亚洲av第一区精品v没综合| 亚洲一码二码三码区别大吗| 久久中文看片网| 999久久久精品免费观看国产| 国产精品一区二区精品视频观看| 精品久久久久久久人妻蜜臀av | 男人的好看免费观看在线视频 | 久久国产精品人妻蜜桃| 精品日产1卡2卡| 国产精品亚洲av一区麻豆| 亚洲人成伊人成综合网2020| 亚洲黑人精品在线| 国产真人三级小视频在线观看| 亚洲五月色婷婷综合| 中文字幕高清在线视频| 欧美一级毛片孕妇| 国产高清有码在线观看视频 | 在线免费观看的www视频| 女同久久另类99精品国产91| 久久精品国产综合久久久| 国产精品一区二区在线不卡| 熟女少妇亚洲综合色aaa.| 中出人妻视频一区二区| 欧美日韩一级在线毛片| 18禁裸乳无遮挡免费网站照片 | 亚洲成人精品中文字幕电影| 18禁观看日本| 亚洲成人久久性| 亚洲中文字幕一区二区三区有码在线看 | 精品免费久久久久久久清纯| 精品人妻在线不人妻| 亚洲精品国产区一区二| 免费无遮挡裸体视频| 日日爽夜夜爽网站| 国产精品永久免费网站| 日本vs欧美在线观看视频| 十八禁人妻一区二区| 久久人妻熟女aⅴ| 国产精品二区激情视频| 丁香欧美五月| 日韩免费av在线播放| 久久香蕉精品热| 日韩精品中文字幕看吧| 91在线观看av| 亚洲 欧美一区二区三区| 国产日韩一区二区三区精品不卡| 欧美日韩亚洲国产一区二区在线观看| 热99re8久久精品国产| 久久久国产成人免费| 国产精品 国内视频| 嫁个100分男人电影在线观看| 淫秽高清视频在线观看| 一二三四社区在线视频社区8| 欧美日本中文国产一区发布| 久久久国产精品麻豆| 在线观看一区二区三区| 亚洲精品一区av在线观看| 亚洲国产毛片av蜜桃av| 自线自在国产av| 欧美日韩黄片免| 纯流量卡能插随身wifi吗| 国产亚洲精品久久久久久毛片| 九色亚洲精品在线播放| 9热在线视频观看99| 欧美日韩瑟瑟在线播放| 国产精品98久久久久久宅男小说| 麻豆久久精品国产亚洲av| 99国产精品99久久久久| 亚洲男人的天堂狠狠| 成人手机av| 亚洲久久久国产精品| 亚洲av美国av| 美国免费a级毛片| 成人18禁高潮啪啪吃奶动态图| 日韩欧美在线二视频| 人妻久久中文字幕网| av片东京热男人的天堂| 给我免费播放毛片高清在线观看| 丝袜人妻中文字幕| 两个人视频免费观看高清| 十八禁网站免费在线| av欧美777| 午夜a级毛片| 成人三级黄色视频| 美女大奶头视频| 色在线成人网| 一级a爱片免费观看的视频| 色在线成人网| av在线播放免费不卡| 精品国产超薄肉色丝袜足j| 成人特级黄色片久久久久久久| 中文字幕精品免费在线观看视频| netflix在线观看网站| 亚洲 欧美一区二区三区| 亚洲色图综合在线观看| 亚洲国产欧美网| 亚洲国产欧美网| 99久久99久久久精品蜜桃| 欧美大码av| 国产精品一区二区在线不卡| 欧美另类亚洲清纯唯美| 久久久久久久久免费视频了| 国内久久婷婷六月综合欲色啪| www.精华液| 一卡2卡三卡四卡精品乱码亚洲| 欧美另类亚洲清纯唯美| 91麻豆av在线| 国产人伦9x9x在线观看| 淫妇啪啪啪对白视频| 99国产精品99久久久久| 午夜福利影视在线免费观看| 国产精品98久久久久久宅男小说| 日本黄色视频三级网站网址| 丝袜在线中文字幕| 亚洲 欧美 日韩 在线 免费| 又紧又爽又黄一区二区| 精品一区二区三区视频在线观看免费| 欧美成人午夜精品| 超碰成人久久| 侵犯人妻中文字幕一二三四区| 色老头精品视频在线观看| 国产成+人综合+亚洲专区| 亚洲色图av天堂| 久久香蕉精品热| 国产欧美日韩精品亚洲av| 久久欧美精品欧美久久欧美| 波多野结衣av一区二区av| 国产成人系列免费观看| 日韩 欧美 亚洲 中文字幕| 亚洲激情在线av| 亚洲男人天堂网一区| 国产精品自产拍在线观看55亚洲| 18禁美女被吸乳视频| cao死你这个sao货| 18禁裸乳无遮挡免费网站照片 | 一边摸一边做爽爽视频免费| 亚洲五月色婷婷综合| 欧美+亚洲+日韩+国产| 精品国产一区二区三区四区第35| 亚洲片人在线观看| 日韩成人在线观看一区二区三区| 在线观看一区二区三区| 一进一出好大好爽视频| 岛国视频午夜一区免费看| 亚洲成人久久性| www.自偷自拍.com| 亚洲欧美日韩另类电影网站| 欧美人与性动交α欧美精品济南到| 精品一区二区三区四区五区乱码| 国产精品 欧美亚洲| 日本三级黄在线观看| 亚洲自偷自拍图片 自拍| 亚洲精品一卡2卡三卡4卡5卡| 亚洲va日本ⅴa欧美va伊人久久| 欧美不卡视频在线免费观看 | 19禁男女啪啪无遮挡网站| 琪琪午夜伦伦电影理论片6080| videosex国产| 亚洲人成77777在线视频| 精品国产乱码久久久久久男人| 一夜夜www| 国产又色又爽无遮挡免费看| 午夜福利一区二区在线看| videosex国产| 免费人成视频x8x8入口观看| av福利片在线| 亚洲avbb在线观看| 中文字幕av电影在线播放| 精品久久久久久久人妻蜜臀av | 少妇粗大呻吟视频| 波多野结衣高清无吗| 久久精品国产亚洲av香蕉五月| 欧美日本中文国产一区发布| 国产伦人伦偷精品视频| 欧美成狂野欧美在线观看| 天堂影院成人在线观看| 一级毛片高清免费大全| 欧美日本视频| 免费无遮挡裸体视频| 亚洲 国产 在线| 无遮挡黄片免费观看| 99精品欧美一区二区三区四区| 国产伦人伦偷精品视频| 久久香蕉激情| 国内精品久久久久精免费| 无限看片的www在线观看| 国产精品98久久久久久宅男小说| 欧美亚洲日本最大视频资源| 人人妻,人人澡人人爽秒播| 欧美午夜高清在线| 久久久久久久午夜电影| 免费女性裸体啪啪无遮挡网站| 国产精品久久久久久人妻精品电影| 久久精品国产亚洲av高清一级| 91国产中文字幕| 日本vs欧美在线观看视频| 国产激情久久老熟女| 中文字幕久久专区| 亚洲最大成人中文| 亚洲国产欧美日韩在线播放| 亚洲自拍偷在线| 国产成年人精品一区二区| 99国产综合亚洲精品| 麻豆av在线久日| 老司机午夜十八禁免费视频| av天堂久久9| 亚洲av片天天在线观看| 亚洲熟女毛片儿| 精品久久久久久,| 国产精品九九99| 丝袜人妻中文字幕| 午夜成年电影在线免费观看| 久久精品亚洲精品国产色婷小说| 又黄又粗又硬又大视频| 国产精品免费视频内射| 中文字幕人成人乱码亚洲影| 久久久久久久午夜电影| 久久中文字幕一级| 亚洲人成电影免费在线| 欧美另类亚洲清纯唯美| 久久人妻av系列| 欧美乱码精品一区二区三区| 国产精品综合久久久久久久免费 | 久久精品人人爽人人爽视色| 青草久久国产| svipshipincom国产片| 在线十欧美十亚洲十日本专区| 97碰自拍视频| 视频区欧美日本亚洲| 国产熟女午夜一区二区三区| 久久伊人香网站| 国产亚洲精品一区二区www| 少妇 在线观看| 国产91精品成人一区二区三区| 母亲3免费完整高清在线观看| 老司机福利观看| 日韩精品中文字幕看吧| 国产在线观看jvid| 日本免费a在线| 一进一出抽搐动态| 50天的宝宝边吃奶边哭怎么回事| 国产精品1区2区在线观看.| 在线观看一区二区三区| 久久中文字幕一级| 久久亚洲真实| 精品熟女少妇八av免费久了| 欧美久久黑人一区二区| 色婷婷久久久亚洲欧美| 黑人巨大精品欧美一区二区蜜桃| 久久天堂一区二区三区四区| 免费观看人在逋| 操出白浆在线播放| 丰满人妻熟妇乱又伦精品不卡| 99国产精品一区二区三区| 成人国产一区最新在线观看| 91精品三级在线观看| 黄片大片在线免费观看| 精品日产1卡2卡| 一级a爱视频在线免费观看| 久久狼人影院| 午夜免费成人在线视频| 1024香蕉在线观看| 亚洲,欧美精品.| 香蕉丝袜av| 国产欧美日韩综合在线一区二区| xxx96com| 一二三四在线观看免费中文在| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品人人爽人人爽视色| 后天国语完整版免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 女人爽到高潮嗷嗷叫在线视频| 一区二区三区高清视频在线| 在线永久观看黄色视频| 亚洲七黄色美女视频| 久久久国产成人精品二区| 亚洲中文字幕一区二区三区有码在线看 | 操出白浆在线播放| 中文字幕最新亚洲高清| 国产精品98久久久久久宅男小说| 久久国产精品男人的天堂亚洲| 久久久久久久午夜电影| 精品无人区乱码1区二区| 成人18禁高潮啪啪吃奶动态图| 国产精品国产高清国产av| 久久久久亚洲av毛片大全| 国产精品一区二区三区四区久久 | 一区二区日韩欧美中文字幕| 欧美日韩中文字幕国产精品一区二区三区 | 国产亚洲精品久久久久5区| 性欧美人与动物交配| 美国免费a级毛片| av天堂在线播放| 大陆偷拍与自拍| 欧美黄色淫秽网站| 亚洲一区二区三区不卡视频| 欧美日本亚洲视频在线播放| 大陆偷拍与自拍| 国产区一区二久久| 看片在线看免费视频| 一进一出抽搐gif免费好疼| 久久中文看片网| 午夜福利视频1000在线观看 | 男女午夜视频在线观看| 国产精品爽爽va在线观看网站 | 久久中文字幕人妻熟女| 91麻豆av在线| 又紧又爽又黄一区二区| 日韩欧美三级三区| 十八禁人妻一区二区| 国产在线精品亚洲第一网站| 九色亚洲精品在线播放| avwww免费| 国产色视频综合| 国产亚洲精品综合一区在线观看 | 在线观看免费日韩欧美大片| 脱女人内裤的视频| 亚洲精品一区av在线观看| 国产亚洲精品久久久久5区| 精品久久蜜臀av无| 9热在线视频观看99| 一a级毛片在线观看| 久久亚洲真实| 色综合欧美亚洲国产小说| 欧美乱码精品一区二区三区| 日本五十路高清| 亚洲黑人精品在线| 国产av一区在线观看免费| 一区二区三区激情视频| 一a级毛片在线观看| 亚洲黑人精品在线| 国产激情久久老熟女| 757午夜福利合集在线观看| 亚洲国产看品久久| 久久久久久久久久久久大奶| 亚洲国产中文字幕在线视频| 国产精品98久久久久久宅男小说| 亚洲片人在线观看| 国产精品久久视频播放| 日韩欧美国产在线观看| 国产精品1区2区在线观看.| 国产免费av片在线观看野外av| 中国美女看黄片| 欧美大码av| 999久久久精品免费观看国产| АⅤ资源中文在线天堂| 午夜精品久久久久久毛片777| 国产精品亚洲美女久久久| 欧美在线黄色| 人人妻人人澡人人看| 成人欧美大片| 亚洲中文日韩欧美视频| 亚洲视频免费观看视频| 中出人妻视频一区二区| 老司机在亚洲福利影院| 香蕉丝袜av| 中文字幕av电影在线播放| 国产精品久久久人人做人人爽| 亚洲免费av在线视频| 亚洲全国av大片| 一边摸一边抽搐一进一小说| 老司机深夜福利视频在线观看| 国产精品日韩av在线免费观看 | 日韩精品青青久久久久久| 满18在线观看网站| 亚洲第一欧美日韩一区二区三区| 成年人黄色毛片网站| 国产精品电影一区二区三区| 久久欧美精品欧美久久欧美| 久久人妻熟女aⅴ| 欧洲精品卡2卡3卡4卡5卡区| 夜夜看夜夜爽夜夜摸| 99在线人妻在线中文字幕| 久久这里只有精品19| 欧美不卡视频在线免费观看 | 成年女人毛片免费观看观看9| 久久精品91蜜桃| 午夜亚洲福利在线播放| 一级毛片精品| av视频免费观看在线观看| 久久九九热精品免费| 亚洲午夜理论影院| 亚洲激情在线av| 中文字幕色久视频| 国产精品亚洲一级av第二区| 婷婷六月久久综合丁香| 久久九九热精品免费| 搡老熟女国产l中国老女人| 欧美午夜高清在线| tocl精华| 久久久久精品国产欧美久久久| 男人舔女人的私密视频| 一二三四社区在线视频社区8| 国产欧美日韩综合在线一区二区| 欧美精品亚洲一区二区| 国产亚洲欧美在线一区二区| 99在线视频只有这里精品首页| 男男h啪啪无遮挡| 欧美在线黄色| 男人的好看免费观看在线视频 | 成年人黄色毛片网站| 黄色毛片三级朝国网站| 国产又爽黄色视频| 久久九九热精品免费| 亚洲一区二区三区不卡视频| 两个人免费观看高清视频| 亚洲色图 男人天堂 中文字幕| 99久久99久久久精品蜜桃| avwww免费| 亚洲一卡2卡3卡4卡5卡精品中文| 一本综合久久免费| 国产一卡二卡三卡精品| 精品一区二区三区四区五区乱码| 岛国在线观看网站| 后天国语完整版免费观看| 国产精品亚洲av一区麻豆| 亚洲欧美精品综合一区二区三区| 亚洲熟妇熟女久久| 国产精品亚洲av一区麻豆| 国产视频一区二区在线看| 女性生殖器流出的白浆| 亚洲精品国产一区二区精华液| 999久久久精品免费观看国产| 成在线人永久免费视频| 日本三级黄在线观看| 午夜精品国产一区二区电影| 日本a在线网址| 黄色毛片三级朝国网站| 久久亚洲精品不卡| 久久性视频一级片| 国产亚洲精品av在线| 一二三四社区在线视频社区8| 亚洲avbb在线观看| 人人妻,人人澡人人爽秒播| 国产精华一区二区三区| 不卡av一区二区三区| 19禁男女啪啪无遮挡网站| 丰满人妻熟妇乱又伦精品不卡| 人人妻人人澡欧美一区二区 | 欧美 亚洲 国产 日韩一| 国产一区二区激情短视频| 天堂影院成人在线观看| 国产又爽黄色视频| 亚洲成国产人片在线观看| 自线自在国产av| 又大又爽又粗| 搡老熟女国产l中国老女人| 亚洲激情在线av| 大码成人一级视频| 91字幕亚洲| 十八禁人妻一区二区| 熟妇人妻久久中文字幕3abv| 长腿黑丝高跟| 成人18禁在线播放| 国产野战对白在线观看| 精品欧美国产一区二区三| 色婷婷久久久亚洲欧美| 亚洲无线在线观看| av天堂久久9| 亚洲欧美日韩无卡精品| 一级作爱视频免费观看| 国语自产精品视频在线第100页| 久久久国产精品麻豆| 国产精品一区二区在线不卡| 亚洲成人精品中文字幕电影| 69精品国产乱码久久久| 免费无遮挡裸体视频| 国产精品爽爽va在线观看网站 | 亚洲av熟女| 精品卡一卡二卡四卡免费| 精品乱码久久久久久99久播| 91麻豆av在线| 日韩精品青青久久久久久| 在线观看免费日韩欧美大片| 亚洲最大成人中文| 露出奶头的视频| 精品一区二区三区av网在线观看| 男女下面进入的视频免费午夜 | 黄色视频不卡| 国产高清videossex| 搡老岳熟女国产| x7x7x7水蜜桃| 色哟哟哟哟哟哟| 18美女黄网站色大片免费观看| 成人永久免费在线观看视频| 国产一区二区在线av高清观看| 精品久久久久久久久久免费视频| 一进一出好大好爽视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产男靠女视频免费网站| 欧美日韩福利视频一区二区| 日本黄色视频三级网站网址| 日本 欧美在线| 欧美国产精品va在线观看不卡| 日韩视频一区二区在线观看| 国产激情欧美一区二区| 亚洲男人天堂网一区| 在线播放国产精品三级| 亚洲国产精品sss在线观看| 热99re8久久精品国产| 国产高清视频在线播放一区| 成人手机av| 国产亚洲av高清不卡| 人成视频在线观看免费观看| 欧美性长视频在线观看| 香蕉丝袜av| 国产精品亚洲美女久久久| 视频区欧美日本亚洲| 午夜日韩欧美国产| 一区福利在线观看| 三级毛片av免费| 日韩精品青青久久久久久| 日韩一卡2卡3卡4卡2021年| 老司机在亚洲福利影院| 日日干狠狠操夜夜爽| 亚洲专区字幕在线| 嫩草影院精品99| 国产亚洲精品一区二区www| 亚洲人成77777在线视频| 脱女人内裤的视频| 亚洲男人天堂网一区| 久久久久久久久免费视频了| 在线免费观看的www视频| 久久久久精品国产欧美久久久| 久久狼人影院| 成人亚洲精品av一区二区| 最好的美女福利视频网| 夜夜夜夜夜久久久久| 此物有八面人人有两片| 免费在线观看亚洲国产| 久久人人精品亚洲av| 中文字幕色久视频| 啦啦啦免费观看视频1| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产看品久久| 午夜久久久在线观看| 欧美午夜高清在线| 国产成人av激情在线播放| 日本精品一区二区三区蜜桃| 国产人伦9x9x在线观看| 亚洲一区二区三区不卡视频| 91成年电影在线观看| 91九色精品人成在线观看| 99国产综合亚洲精品| 一本综合久久免费| 制服丝袜大香蕉在线| 好看av亚洲va欧美ⅴa在| 亚洲狠狠婷婷综合久久图片| 国产成人免费无遮挡视频| 国产一区二区在线av高清观看| 看免费av毛片| 在线天堂中文资源库| 怎么达到女性高潮| 亚洲熟妇中文字幕五十中出| 亚洲在线自拍视频| 亚洲成av片中文字幕在线观看| 久久久久久久久免费视频了| 深夜精品福利| 夜夜躁狠狠躁天天躁| 老汉色av国产亚洲站长工具| 啦啦啦观看免费观看视频高清 | 操美女的视频在线观看| 国产精品影院久久| 操美女的视频在线观看| 午夜福利18| 久久久久国产一级毛片高清牌| 一级a爱片免费观看的视频| 色综合欧美亚洲国产小说| 日韩精品免费视频一区二区三区| 国产精品久久电影中文字幕| 日韩欧美一区视频在线观看| 校园春色视频在线观看| 久久狼人影院| 亚洲第一电影网av| 亚洲激情在线av| 91老司机精品| 成人免费观看视频高清| 久久精品亚洲精品国产色婷小说| 男女之事视频高清在线观看|