• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Logical stochastic resonance in a cross-bifurcation non-smooth system

    2024-03-25 09:33:12YuqingZhang張宇青andYoumingLei雷佑銘
    Chinese Physics B 2024年3期

    Yuqing Zhang(張宇青) and Youming Lei(雷佑銘),2,?

    1School of Mathematics and Statistics,Northwestern Polytechnical University,Xi’an 710072,China

    2Ministry of Industry and Information Technology Key Laboratory of Dynamics and Control of Complex Systems,Northwestern Polytechnical University,Xi’an 710072,China

    Keywords: logical stochastic resonance,bifurcation,mean first passage time

    1.Introduction

    In practice, many physical systems are connected to noise.Intuitively it was thought that noise always plays a destructive role.However, with the development of stochastic dynamics it has been discovered that noise can produce unexpectedly ordered behavior in nonlinear dynamical systems.An example of such a phenomenon is stochastic resonance(SR),initially suggested by Benziet al.[1]and Nicolis.[2]Under certain conditions (the combination of external periodic forces,noise and the nonlinearity of the system),an appropriate noise input maximizes the response of the nonlinear system to a weakly periodic signal, giving rise to a ‘resonance’phenomenon.SR has been applied to many fields, including weak signal detection,[3]image processing,[4]biological systems,[5,6]energy harvesting,[7,8]neural networks,[9-11]mechanical fault diagnosis,[12,13]etc.

    Logical stochastic resonance (LSR) provides a completely new method for building reliable logic gates, which was initially suggested by Muraliet al.[14]Research has revealed that when two square waves act as input signals, a bistable system can generate a logic output under optimal noise.Moreover, as the noise increases, the success probability of the system response first rises and then falls.Then the LSR phenomenon was confirmed in an electronic circuit model.[15]Inspired by this pioneering study, numerous earlier publications concentrated on the separate study of LSR in bistable or tristable systems.For instance, Gaussian colored noise[16]and non-Gaussian noise,[17]such as sine-Wiener noise,[18]L′evy noise.[19]andα-stable noise,[20]have been shown to produce logic operations in bistable systems.In addition, it has been demonstrated that correlated internal and external noises[21-23]can also produce logic operations in bistable systems.It has also been shown that other elements can produce logic operations in bistable systems,including system parameters,[24]time delay,[25-27]coupling between two subsystems,[28]and periodic and non-periodic forces.[29-31]Since three different inputs correspond to two outputs in a bistable system this may cause information to be lost, making XOR logic unattainable.Storniet al.[32]expanded upon the existing research in bistable systems and applied it to a tristable system,consequently resulting in the attainment of XOR logic.Subsequently Zhanget al.[33,34]researched the LSR phenomenon of a tristable system driven by Gaussian colored noise and non-Gaussian noise, and confirmed the LSR phenomenon in analog circuits; however, for bistable and multistable systems which is better suited to produce reliable logic operations? Luet al.[35]investigated the LSR performance of a tristable system and traditional bistable system.Liaoet al.[36]compared the LSR performance of a proposed quadstable system and tristable system as reconfigurable logic gates.Previous studies had considered two different systems: for the same system with bistable and tristable regions, which is more suitable for generating logic operations? Therefore, we can consider a cross-bifurcation nonsmooth system with a bifurcation parameter resulting in an alteration in monostability,bistability and tristability.

    Since it is common for a nonlinear system to bifurcate from a bistable state to a multistable one due to friction and collision,study of stochastic resonance in a bifurcation system is unavoidable.Kanget al.[37]studied a single-mode nonlinear optical system and demonstrated that the dependence of the relaxation rate on the noise intensity in monostable and multistable cases exhibited a large difference.It is well known that the changing of parameters in nonlinear systems can cause bifurcation cascades, in which existing branches of states are eliminated and new states emerge.Nicolis and Nicolis[38]considered a nonlinear stochastic dynamical system with a bifurcation parameter across monostable, bistable and multistable regimes.They came up with analytical equations for the response and optimal responding conditions for the bifurcation parameter, the noise amplitude and the frequency of external excitation based on response theory.Lei and colleagues[39,40]studied a non-smooth system with a controllable parameter that bifurcates as the controllable parameter changes.They discussed the SR phenomenon in bistable and multistable areas.It was demonstrated that the multistability of the system improves the optimal transition rate and the optimal response amplitude of the system.

    In this work,we consider a cross-bifurcation non-smooth system with a bifurcation parameter that transits from tristable to bistable regions as the bifurcation parameter changes.Therefore,we focus on the effect of the bifurcation parameter on the LSR in different regions.In Section 2,we describe the cross-bifurcation non-smooth system under Gaussian colored noise excitation.In Section 3,we conduct a bifurcation analysis for this system and derive expressions for the generalized potential function and the mean first passage time(MFPT)in the bistable and tristable regions, respectively.The success probability is introduced to measure the reliability of logic response,and the difference in LSR in bistable and tristable areas is discussed.The conclusions are drawn in Section 4.

    2.Cross-bifurcation non-smooth system and measurementof LSR

    In this section we consider a cross-bifurcation nonsmooth system under Gaussian colored noise excitation.The Langevin equation of the system has the following form:

    whereDis the noise strength andτis the correlation time.

    UsingNinputs to generateNsquare waves,a logical correspondence between inputs and outputs can be established.Specifically,Iis a low-amplitude input,I=I1+I2, whereI1andI2encode the two logic inputs.We drive the crossbifurcation non-smooth system with the signalI.The logic inputs can be 0 or 1,so there are four different logic input sets(I1,I2): (0,0), (1,0), (0,1) and (1,1).The signalI1,2has a value of-Kfor a logical 0, whereas it takes on a value ofKfor a logical 1.Since the input sets (0,1) and (1,0) produce the sameI,the four different input conditions(I1,I2)produce three differentIvalues:-2K, 0, 2K.As a result, the input signalIis a three-level aperiodic waveform.

    3.Logical stochastic resonance under colored noise

    The potential function corresponding to Eq.(1)takes the form

    Fig.1.Bifurcation diagram of system(1)on the bifurcation parameter r.At r=-2/9,the system has two saddle-node bifurcations making the system change from monostable to tristable.At r=0, the system has a subcritical pitchfork bifurcation making the system change from tristable to bistable.

    3.1.Bistability

    In the bistable region,the system has two symmetrical potential wells, but there are three different logical inputs.This results in a memorable output value when the logical input is 0.In other words,the output value is determined by the output value of the previous state.Specifically,if the previous output is-1,then the current output will also be-1,and if the previous output is 1,then the current output will be 1.Therefore,with reference to Table 1 we find that the logic response of the system cannot realize a reliable logic operation,for which a bias parameter is added to deflect the potential.Thus, the Langevin equation is rewritten as

    wheref(x)=x-x3+rsgn(x)+GandGis a bias parameter.

    As shown in Fig.2,the tilt of the potential function is determined by the bias parameterG.WhenG >0, the bistable potential function tilts to the right,as shown by the red dashed line in the figure.When the logic input is 0, the particle will be in the well atx+.With reference to Table 1 we find that in this case the system can implement an OR/NOR logic operation.WhenG <0, the bistable potential function tilts to the left,as shown by the green dotted line in the figure.When the logic input is 0,the particle will be in the well atx-.With reference to Table 1 this reveals that the system can implement AND/NAND logic operations.

    Fig.2.Potential well for various G values.The blue line denotes the symmetric bistable well, the green line denotes the AND/NAND logic operation and the red line denotes the OR/NOR logic operation.

    Table 1.For the four logic operations,the connection between the four input sets and the outputs.

    The logical output of the system is decided by its state.For example,if its state is in one well,the output can be considered as a logical 1,and if it is in another well,the output can be considered as a logical 0.Specifically for a bistable system with two potential wells atx+andx-,the logical output of the system is considered to be 1 when its state is in right well(x+)and it is considered to be 0 when its state is in left well(x-).The output is thus‘toggled’when the system switches wells.According to Table 1 the system can implement the required types of logic gates.

    The potential function corresponding to Eq.(6)takes the form

    In the bistable region, pointx3is unstable when the system is non-smooth so the Gaussian approximation cannot be used.Thus, the steepest-descent approximation allows us to estimate the following:

    whereNis a normalization constant and the generalized potential functionUghas the following form:

    Consider the logic input parameterKto take the value 0.4.Figure 3 displays the response of the system in Eq.(6)at different noise intensitiesDwhen the bifurcation parameterr=0.2 and the bias parameterG=0.3.The red line indicates the logical input and the blue line indicates the output of the system.It can be found that for very weak noise(D=0.01)at some moments the state of the particle depends on the previous state at times,for example[8000,8500],[10000,12000].The particle cannot produce a transition and does not move to the desired potential well.For optimal noise (D=0.2), the particle is located in the left well when the input is-0.8,and the particle is located in the right well when the input is 0 or 0.8.According to Table 1,if statex <0 is interpreted as logical output 0 and statex >0 as logical output 1, the system produces a stable OR logic behavior,whereas if statex >0 is interpreted as logical output 0 and statex <0 as logical output 1, the system produces a stable NOR logic behavior.In the same way,by setting the bias parameter atG=-0.3,we can achieve clean AND/NAND gates at an optimal noise intensity.With the enhancement of noise(D=0.5),due to frequent transitions of particles, the system gradually produces the wrong logic outputs.Thus, noise-induced logic operation becomes unreliable and the LSR phenomenon is destroyed.

    In order to measure the reliability of noise-induced logic operation, we introduce the concept of success probability.The success probabilityPis expressed as

    Fig.3.The logic output x(t)with r=0.2 corresponding to(a)D=0.01,(b)D=0.2, (c)D=0.5.The dashed red line indicates the logical input I, consisting of a combination of I1 and I2 which take the value-0.4 when the logic input is 0 and 0.4 when the logic input is 1.Clearly,when D=0.2,we get the desired OR gate.

    whereNis the overall number of runs andSis the number of correct logic outputs.WhenPapproximates to 1, the system generates a reliable logic operation.Using computer simulations to generate sets of logic inputs and continuously inputting different combinations of logic inputs to the system,the success probability can be obtained.The logic input has four possible input sets(I1,I2):(0,0),(0,1),(1,0)and(1,1).Each run is a random permutation of all the above sets,where each signal input set drives the system for a period of time with time step Δt= 0.01 s and 1000 s.Then the obtained output is compared with the desired logic output to obtain the correct probability of this set.When this correct probability is above a certain threshold,the set of logic outputs is considered correct.A run is deemed successful only when all four logic outputs are correct.can be seen that the system appears to have an optimal window of noise, and the optimal window is related tor.Whenr >0, the optimal window of noise decreases asrincreases and moves to a greater noise strength.Figure 5 depicts the image of the generalized potential function for different values ofr, from which it can be found that the height of the potential barrier is affected byr.Whenr >0,there is a subsequent increase in the potential barrier asrincreases.Therefore asrincreases, a higher noise intensity is required to enable particle transition.WhenI=0 the particle can transit to the right well with appropriate noise excitation, as shown in Fig.5(a),and whenI=-0.8 the particle can transit to the left well with appropriate noise excitation as depicted in Fig.5(b).Thus,the optimal window of noise moves to a greater noise strength asrincreases.Figure 6 shows that in the bistable region the transition rate decreases asrincreases.Thus asrincreases,a larger noise intensity is required to make the system produce the LSR phenomenon.This is consistent with the phenomenon that the optimal window of noise moves to a greater noise strength asrincreases in Fig.4(b).

    Fig.4.The variation of success probability P with different parameters in the bistable region: (a)noise intensity D for fixed r=0.2; (b)D and bifurcation parameter r.The system appears to have an optimal window of noise that displays resonance phenomenon with a single flat peak as the noise strength varies.The optimal window of noise decreases as r increases and moves to a greater noise strength.

    To further investigate the effect of different parameters on LSR, we plot the variation ofPwith different parameters in Fig.4.Figure 4(a)illustrates the variation ofPwith noise intensityDfor fixed parametersr=0.2 andG=0.3.The results show thatPincreases rapidly with increasing noise strength for weak noise, and then stabilizes to 1.The system appears to have an optimal window of noise strength(0.100<D <0.350).The logic response is nearly 100%accurate in an optimal window of the noise,so that the system reliably implements logic operations.As the noise strength continues to increase,the success probability gradually decreases until it tends to 0.The reason for this phenomenon is that the noise strength reflects the amount of energy provided to the particle by the external noise.When the noise strength is small, the energy provided by the noise is too small to support the particle crossing the potential barrier to make the leap between different wells,so that the system cannot produce reliable logic behavior.When the noise strength is too high,the energy provided by the noise is too high, which leads to frequent disorderly transitions between different wells and causes the particle to move in an irregular manner.Therefore, reliable logic behavior cannot be produced.Only when the noise is moderately strong does the energy provided by the noise allow the particle to cross the potential barrier to perform the correct transition behavior between different wells,producing reliable logic behavior.

    Further, in Fig.4(b) we can find howPvaries with bifurcation parameterrand noise strengthD.In the figure, it

    Fig.5.Generalized potential function at different bifurcation parameters r with G=0.3.(a) When I =0, the particle will be located in the right well under noise excitation.(b)When I=-0.8,the particle will be located in the left well under noise excitation.Clearly, the potential barrier increases as r increases.

    Fig.6.The variation of transition rate k15 with noise intensity D and bifurcation parameter r in the bistable region.

    3.2.Tristability

    In the tristable region,in addition to the above logic gates,we can also obtain XOR/XNOR logic.We can obtain all the logic behaviors by defining different outputs.According to Table 2, we can set the output to logical 1 if the particle is in the right well and to logical 0 if it is in the others, for which we can obtain the AND logic gate.Likewise, we can obtain the other logic operations by defining the outputs.

    Table 2.For the six logic operations, the connection between the four input sets and the outputs.

    For system (1), according to Novikov’s theorem and the unified colored noise approximation method,[41-43]the approximate Fokker-Planck equation is given by

    Similar to the calculation in the bistable region, the expressions forT31andT35can be derived as

    Since the pointx3is not involved in the approximation process forT13andT53,the expression can be obtained by the Gaussian approximation as

    For the case of system(1)in the regionwe consider the logic input parameterKto take the value 0.4.Figure 7 displays the response of the system in Eq.(1) at different noise intensitiesDwhen the bifurcation parameterr=-0.35.For very weak noise (D=0.003), at some moments the particle cannot move to the desired well,for example[4000,5500],[10000,12000],[14000,14500].Therefore,the system cannot generate a reliable logic operation.For optimal noise(D=0.015),the system response yields a reliable logic operation.As the noise continues to increase(D=0.1),the particle transits frequently in the left and right potential wells when the logic input is 0.This LSR phenomenon is destroyed.Comparing with Fig.3,it can be found that the same phenomenon occurs in the tristable region as in the bistable region, where the presence of optimal noise intensity allows the system to produce reliable logic operations.However,the value of the optimal noise strength in the tristable region is much smaller than that in the bistable region.

    Fig.7.The logic output x(t) with r = -0.35 corresponding to (a)D=0.003, (b) D=0.015, (c) D=0.1.The dashed red line indicates the logic input I,consisting of a combination of I1 and I2 which take the value-0.4 when the logic input is 0 and 0.4 when the logic input is 1.Clearly,when D=0.015,we can get the desired logic gate.

    Further,Fig.8 illustrates the variation of the success probabilityPwith different parameters.In Fig.8(a) we plot the variation ofPwith noise intensityDfor a fixed parameterr=-0.35.It is found thatPincreases rapidly with increasing noise strength for weak noise, and then stabilizes to 1.The system appears to have an optimal window of noise strength(0.008<D <0.026).In the optimal noise window, the logic response is nearly 100% accurate.The success probability gradually decreases as the noise strength increases, until it tends to 0.Compared with Fig.4(a), Fig.8(a) shows that the optimal noise value in the tristable region is much smaller than in the bistable region, and the optimal window interval for noise in the tristable region is also much smaller, indicating that the tristable region is more sensitive to noise.

    Fig.8.The variation of success probability P with different parameters in the tristable region: (a)noise intensity D for fixed r=-0.35,(b)D and bifurcation parameter r.When r <-0.33, the system produces a reliable logic response and the optimal noise interval becomes larger as r decreases.

    To further analyze the variation ofPwithrandD, we plot Fig.8(b).It is found that the system cannot generate a reliable logic response when-0.33<r <0.Whenr <-0.33,the system generates a reliable logic response and the optimal noise interval becomes larger asrdecreases.Figure 9 depicts the image of the generalized potential functionUgfor different values ofr.From the figure,it can be found that the height of the potential barrier is influenced byr.This shows that asrincreases, there is a subsequent increase in the potential barrier.Therefore, the higher the value ofr, the larger the noise intensity required to enable particle transition.However, for some high values ofr,the height of the potential barrier is too large to cause the particle to transit.Thus, it is impossible to generate a correct logic operation.Figure 10 shows that the range of moderate transition rates increases asrdecreases in the tristable region,which is consistent with the phenomenon in Fig.8(b).Comparing with Fig.4(b),we see that the range of values ofrthat can produce reliable logic operation in the tristable region is much smaller than in the bistable region,and that both the optimal noise values and the corresponding optimal noise interval range are much smaller.Comparing Figs.5 and 9,it is found that the potential barrier height in the bistable region is much higher than in the tristable region, so the bistable region needs a higher noise strength to make the particle transition.The potential barriers from the middle well to the two side wells are much smaller in the tristable region than the barriers in the bistable region, so a small noise may cause the particle to make frequent transitions when initiated in the middle well.Therefore, the optimal band of noise in the tristable region is narrower.Comparison of Figs.6 and 10 reveals that a smaller noise in the tristable region gives a moderate, optimum transition rate.Thus, the tristable region is more sensitive to noise.

    Fig.9.Generalized potential function at different bifurcation parameters r.(a) When I =0, the particle will be located in the middle well under noise excitation.(b) When I =0.8, the particle will be located in the right well under noise excitation.Clearly, the potential barrier increases as r increases.

    Fig.10.The variation of transition rate k15 with noise intensity D and bifurcation parameter r in the tristable region.

    4.Conclusions

    In this work,we investigate the logic operation of a crossbifurcation non-smooth system with bistable and tristable regions.By using Novikov’s theorem and the unified colored noise approximation method,we obtain the approximate Fokker-Planck equation and the generalized potential function to analyze the LSR phenomenon with numerical simulations.We numerically simulate the system’s logic operation in the bistable and tristable regions and perform a comparative analysis for the two regions.We show that the tristable region is more sensitive to noise than the bistable region.The optimal noise value in the tristable region is much smaller than that in the bistable region.Furthermore,the range of bifurcation parameters that can produce reliable logic output in the tristable region is much smaller,and the optimal noise strength range is smaller than in the bistable region.Similar results can be supported through the analysis of the generalized potential function and transition rate.We show in this work that tristability significantly enhances the transition rate.For example, this phenomenon is similar to the two-step nucleation mechanism in the crystallization of the protein lysozyme,where the intermediate stable state of proteins was found experimentally to accelerate the crystallization rate since tristability in two-step nucleation improves the transition rate and provides a powerful method of controlling the nucleation process.Similarly,the LSR mechanism in tristable dynamics is more sensitive than in bistable dynamics in the over-damped non-smooth system and can be utilized to implement more reliable logic gates in resonant tunneling diodes and simple circuits,and in monitoring weak targets in water degradation images and so on.Our results can be applied to relative experiments and help in selecting optimum parameters for actual implementations.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.12072262)and the Shaanxi Computer Society&Xiangteng Company Foundation.

    亚洲最大成人手机在线| 一级毛片黄色毛片免费观看视频| 中文字幕制服av| 亚洲婷婷狠狠爱综合网| 777米奇影视久久| 亚洲精品日韩在线中文字幕| 人人妻人人看人人澡| 99久国产av精品| 大片免费播放器 马上看| 一边亲一边摸免费视频| 国产av在哪里看| 少妇熟女aⅴ在线视频| 国产大屁股一区二区在线视频| 一区二区三区乱码不卡18| www.色视频.com| 欧美日韩综合久久久久久| 亚洲国产精品国产精品| 午夜福利视频精品| 亚洲精品成人久久久久久| 国产成人午夜福利电影在线观看| 久久久久久久久久久丰满| 亚洲va在线va天堂va国产| 中文精品一卡2卡3卡4更新| 日韩一本色道免费dvd| 亚洲最大成人中文| 欧美一级a爱片免费观看看| 男人狂女人下面高潮的视频| 最后的刺客免费高清国语| 淫秽高清视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 能在线免费看毛片的网站| 婷婷六月久久综合丁香| 91久久精品电影网| 天天一区二区日本电影三级| 老女人水多毛片| 久久人人爽人人片av| 国产成人a∨麻豆精品| 九色成人免费人妻av| av国产免费在线观看| 三级国产精品欧美在线观看| 欧美激情国产日韩精品一区| 99久国产av精品| 天天躁日日操中文字幕| 丰满人妻一区二区三区视频av| av免费在线看不卡| 亚洲欧美精品自产自拍| 美女被艹到高潮喷水动态| 少妇人妻精品综合一区二区| 偷拍熟女少妇极品色| 亚洲美女视频黄频| 国产老妇女一区| av在线老鸭窝| 国产精品国产三级国产专区5o| 午夜福利视频精品| 一夜夜www| 六月丁香七月| 一级毛片久久久久久久久女| 中文精品一卡2卡3卡4更新| 少妇被粗大猛烈的视频| 亚洲激情五月婷婷啪啪| 国内精品一区二区在线观看| 久久久精品免费免费高清| 婷婷色av中文字幕| 五月天丁香电影| 视频中文字幕在线观看| 我的女老师完整版在线观看| 亚洲激情五月婷婷啪啪| 看免费成人av毛片| 日韩一区二区视频免费看| 欧美成人午夜免费资源| 亚洲欧美一区二区三区国产| 91精品伊人久久大香线蕉| 国产成人免费观看mmmm| 成人毛片a级毛片在线播放| 看黄色毛片网站| 晚上一个人看的免费电影| 日日撸夜夜添| 看免费成人av毛片| 午夜福利成人在线免费观看| 国产在视频线精品| or卡值多少钱| 亚洲国产av新网站| 亚洲精品视频女| 亚洲国产高清在线一区二区三| 日本熟妇午夜| 少妇的逼水好多| 午夜久久久久精精品| 亚洲精品中文字幕在线视频 | 日韩一区二区视频免费看| 特大巨黑吊av在线直播| 老司机影院成人| 美女内射精品一级片tv| 免费看日本二区| 国产片特级美女逼逼视频| 久久久久久九九精品二区国产| 最后的刺客免费高清国语| 九草在线视频观看| 三级国产精品片| 综合色av麻豆| 国产国拍精品亚洲av在线观看| 亚洲乱码一区二区免费版| 国产一级毛片七仙女欲春2| 久久久久久久久久成人| 成年女人在线观看亚洲视频 | 天美传媒精品一区二区| 国产视频首页在线观看| 日韩av免费高清视频| 床上黄色一级片| 国产精品人妻久久久影院| 日韩av免费高清视频| 我的女老师完整版在线观看| 在线观看一区二区三区| 日韩av不卡免费在线播放| 午夜福利网站1000一区二区三区| 亚洲成人av在线免费| 国产 一区 欧美 日韩| 乱人视频在线观看| 国产伦精品一区二区三区视频9| 成人亚洲欧美一区二区av| 欧美人与善性xxx| 赤兔流量卡办理| 中文字幕久久专区| 极品少妇高潮喷水抽搐| 九九爱精品视频在线观看| 免费看日本二区| 国产精品伦人一区二区| 欧美 日韩 精品 国产| 色视频www国产| 人妻少妇偷人精品九色| 日韩av在线大香蕉| 久久精品国产鲁丝片午夜精品| 国产精品美女特级片免费视频播放器| 国产精品嫩草影院av在线观看| 久久6这里有精品| av免费在线看不卡| 边亲边吃奶的免费视频| 寂寞人妻少妇视频99o| 日产精品乱码卡一卡2卡三| 91aial.com中文字幕在线观看| 神马国产精品三级电影在线观看| 日日撸夜夜添| 日韩强制内射视频| 丰满少妇做爰视频| 国产69精品久久久久777片| 日本三级黄在线观看| 国产 一区 欧美 日韩| 在线播放无遮挡| 麻豆久久精品国产亚洲av| 身体一侧抽搐| 亚洲精品视频女| 日韩伦理黄色片| 美女国产视频在线观看| av播播在线观看一区| 一个人看的www免费观看视频| 18+在线观看网站| 秋霞伦理黄片| 欧美人与善性xxx| av福利片在线观看| 91久久精品电影网| 免费高清在线观看视频在线观看| 国产一区二区在线观看日韩| 国产精品人妻久久久影院| 舔av片在线| 成人午夜高清在线视频| 国产老妇伦熟女老妇高清| 亚洲欧美日韩无卡精品| 国产精品不卡视频一区二区| 欧美+日韩+精品| 午夜福利高清视频| 日韩制服骚丝袜av| 爱豆传媒免费全集在线观看| 国产精品精品国产色婷婷| 亚洲欧美清纯卡通| 免费看av在线观看网站| 亚洲三级黄色毛片| 久久久精品免费免费高清| 久久久久久久亚洲中文字幕| 午夜福利视频1000在线观看| 国产亚洲精品久久久com| 一级黄片播放器| 亚洲美女搞黄在线观看| 夜夜爽夜夜爽视频| 日日摸夜夜添夜夜添av毛片| 国产白丝娇喘喷水9色精品| 久久精品熟女亚洲av麻豆精品 | 国产91av在线免费观看| 中文字幕久久专区| 天堂av国产一区二区熟女人妻| 国产黄片美女视频| 国产真实伦视频高清在线观看| 在线观看一区二区三区| 日本爱情动作片www.在线观看| 久久99热6这里只有精品| 亚洲av成人精品一区久久| 午夜久久久久精精品| 国产亚洲av片在线观看秒播厂 | 国产 一区精品| 久久精品综合一区二区三区| 亚洲高清免费不卡视频| 午夜爱爱视频在线播放| 久久精品国产亚洲av天美| 精品一区二区三卡| 伦精品一区二区三区| av福利片在线观看| 2021天堂中文幕一二区在线观| 我的女老师完整版在线观看| 97超视频在线观看视频| 午夜福利在线在线| 国产三级在线视频| 欧美bdsm另类| 国产成人福利小说| 一二三四中文在线观看免费高清| 精品久久久噜噜| 亚洲乱码一区二区免费版| 丰满少妇做爰视频| 精品少妇黑人巨大在线播放| 久久人人爽人人爽人人片va| 亚洲精品影视一区二区三区av| 精品久久国产蜜桃| 国产老妇女一区| 成人亚洲欧美一区二区av| 国产一级毛片七仙女欲春2| 中文天堂在线官网| 国产黄色免费在线视频| 在线a可以看的网站| 亚洲欧美一区二区三区黑人 | 亚洲精品影视一区二区三区av| 老女人水多毛片| 免费高清在线观看视频在线观看| 欧美激情在线99| 免费看日本二区| 亚洲最大成人中文| 日韩一本色道免费dvd| 精品久久久久久电影网| 日本欧美国产在线视频| 国产色婷婷99| 天堂中文最新版在线下载 | 亚洲色图av天堂| 国产伦精品一区二区三区视频9| 一级毛片我不卡| 国产一区有黄有色的免费视频 | 亚洲精品久久午夜乱码| 国产精品久久久久久久久免| h日本视频在线播放| 亚洲真实伦在线观看| 偷拍熟女少妇极品色| 超碰97精品在线观看| 免费黄频网站在线观看国产| 三级男女做爰猛烈吃奶摸视频| av免费在线看不卡| 成人无遮挡网站| 午夜老司机福利剧场| 国产亚洲av片在线观看秒播厂 | 高清av免费在线| 校园人妻丝袜中文字幕| 亚洲av电影不卡..在线观看| 欧美激情国产日韩精品一区| 神马国产精品三级电影在线观看| 久久综合国产亚洲精品| 三级男女做爰猛烈吃奶摸视频| 寂寞人妻少妇视频99o| 亚洲欧美日韩无卡精品| 视频中文字幕在线观看| 特大巨黑吊av在线直播| av福利片在线观看| 亚洲国产欧美在线一区| 麻豆成人午夜福利视频| 黄色欧美视频在线观看| 免费看a级黄色片| 亚洲va在线va天堂va国产| 免费看光身美女| 激情五月婷婷亚洲| 欧美97在线视频| 国内揄拍国产精品人妻在线| 亚洲人与动物交配视频| 亚洲第一区二区三区不卡| 欧美激情在线99| 中文资源天堂在线| 久久久久久久午夜电影| 日韩视频在线欧美| 免费不卡的大黄色大毛片视频在线观看 | 毛片一级片免费看久久久久| 国产精品99久久久久久久久| 亚洲最大成人av| 天堂影院成人在线观看| 少妇人妻一区二区三区视频| 久久久久性生活片| 国产永久视频网站| 精品久久久精品久久久| 亚洲色图av天堂| 欧美日韩视频高清一区二区三区二| 免费观看精品视频网站| 亚洲av福利一区| 天堂影院成人在线观看| 亚洲av男天堂| 亚洲图色成人| 久久精品久久久久久噜噜老黄| 午夜激情福利司机影院| 亚洲欧美精品自产自拍| 亚洲av免费高清在线观看| 亚洲色图av天堂| 国产黄色小视频在线观看| 日韩欧美一区视频在线观看 | 看黄色毛片网站| 免费不卡的大黄色大毛片视频在线观看 | 久久热精品热| 国产淫片久久久久久久久| 大陆偷拍与自拍| 国产高清有码在线观看视频| 成人高潮视频无遮挡免费网站| 成人漫画全彩无遮挡| 日韩欧美国产在线观看| 少妇人妻一区二区三区视频| 蜜桃亚洲精品一区二区三区| 日产精品乱码卡一卡2卡三| 精品一区二区三区视频在线| 91在线精品国自产拍蜜月| 久久这里有精品视频免费| 国产一区亚洲一区在线观看| 国产综合懂色| 菩萨蛮人人尽说江南好唐韦庄| 美女高潮的动态| 高清午夜精品一区二区三区| 一级毛片久久久久久久久女| 搞女人的毛片| 欧美日韩视频高清一区二区三区二| 人人妻人人看人人澡| 日本猛色少妇xxxxx猛交久久| 直男gayav资源| 亚洲精品自拍成人| 水蜜桃什么品种好| 国产永久视频网站| 午夜激情福利司机影院| 国产精品国产三级专区第一集| 日韩欧美精品免费久久| h日本视频在线播放| 免费观看无遮挡的男女| h日本视频在线播放| 91久久精品国产一区二区成人| 免费看光身美女| 观看美女的网站| 亚洲在线自拍视频| 久久国产乱子免费精品| 亚洲av电影不卡..在线观看| 亚洲美女视频黄频| 日日啪夜夜爽| 日韩欧美 国产精品| 五月天丁香电影| 三级国产精品欧美在线观看| 免费观看的影片在线观看| 国产精品99久久久久久久久| 2018国产大陆天天弄谢| 中文字幕免费在线视频6| 一级a做视频免费观看| videossex国产| 亚洲av中文字字幕乱码综合| 久久99精品国语久久久| 街头女战士在线观看网站| or卡值多少钱| 极品教师在线视频| 国产精品麻豆人妻色哟哟久久 | 非洲黑人性xxxx精品又粗又长| 成人一区二区视频在线观看| 亚洲欧美一区二区三区黑人 | 大话2 男鬼变身卡| 欧美性感艳星| 亚洲精品一区蜜桃| 免费高清在线观看视频在线观看| 午夜免费激情av| 精品久久久久久久人妻蜜臀av| 在线观看一区二区三区| 亚洲精品第二区| 国产精品久久久久久久电影| 有码 亚洲区| 午夜福利成人在线免费观看| 国产免费一级a男人的天堂| 国产成人a∨麻豆精品| 亚洲精华国产精华液的使用体验| 亚洲一级一片aⅴ在线观看| 国产精品国产三级国产专区5o| 欧美+日韩+精品| 丰满人妻一区二区三区视频av| 一级av片app| 欧美日韩一区二区视频在线观看视频在线 | 99热这里只有是精品50| 日韩av在线免费看完整版不卡| 久久99热这里只频精品6学生| 国产高清三级在线| 欧美日韩在线观看h| 欧美成人一区二区免费高清观看| 免费看不卡的av| 成人国产麻豆网| 色视频www国产| 国产爱豆传媒在线观看| 一区二区三区免费毛片| 精品久久久久久久人妻蜜臀av| 97超视频在线观看视频| 亚洲精品国产av蜜桃| 老司机影院毛片| 91精品一卡2卡3卡4卡| 边亲边吃奶的免费视频| 午夜亚洲福利在线播放| 精品久久久久久久久久久久久| 亚洲精品日韩在线中文字幕| 亚洲aⅴ乱码一区二区在线播放| 成人一区二区视频在线观看| 纵有疾风起免费观看全集完整版 | 九九在线视频观看精品| 一级a做视频免费观看| 国产乱人偷精品视频| 少妇人妻一区二区三区视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 91精品国产九色| 国产一级毛片七仙女欲春2| 视频中文字幕在线观看| 精品一区二区三卡| 日韩制服骚丝袜av| 麻豆乱淫一区二区| 三级男女做爰猛烈吃奶摸视频| 搡老乐熟女国产| 精品久久久久久久久久久久久| 日本色播在线视频| 一本一本综合久久| 国产精品99久久久久久久久| 国产国拍精品亚洲av在线观看| 久久精品国产鲁丝片午夜精品| 久久国产乱子免费精品| 韩国av在线不卡| 美女大奶头视频| 中文字幕制服av| 哪个播放器可以免费观看大片| 青春草国产在线视频| 亚洲av中文av极速乱| 成人二区视频| 日日撸夜夜添| 久久久精品免费免费高清| 欧美性感艳星| 免费av不卡在线播放| 亚洲四区av| 日韩av在线免费看完整版不卡| 亚洲一区高清亚洲精品| 最新中文字幕久久久久| 免费少妇av软件| 国产视频首页在线观看| 国产精品一区二区三区四区免费观看| 欧美成人一区二区免费高清观看| 91久久精品电影网| 国产一级毛片在线| 亚洲欧洲国产日韩| 大又大粗又爽又黄少妇毛片口| 噜噜噜噜噜久久久久久91| 日本熟妇午夜| 嫩草影院入口| 一个人看视频在线观看www免费| 欧美成人a在线观看| 天堂中文最新版在线下载 | 99久国产av精品| 熟女人妻精品中文字幕| 看免费成人av毛片| 国产精品国产三级国产av玫瑰| 欧美成人精品欧美一级黄| 日日啪夜夜撸| 国产精品一区www在线观看| 天堂中文最新版在线下载 | 一级片'在线观看视频| 亚洲久久久久久中文字幕| 亚洲精品日韩av片在线观看| 亚洲一区高清亚洲精品| 2021天堂中文幕一二区在线观| 在线免费观看不下载黄p国产| 亚洲欧美精品自产自拍| 18禁裸乳无遮挡免费网站照片| 久久鲁丝午夜福利片| 国产亚洲最大av| 成人一区二区视频在线观看| 丰满人妻一区二区三区视频av| 亚洲精品中文字幕在线视频 | 久久久精品94久久精品| 成人二区视频| 精品不卡国产一区二区三区| 视频中文字幕在线观看| 久久久欧美国产精品| 国产黄a三级三级三级人| 天堂网av新在线| 亚洲综合色惰| 国产乱人偷精品视频| 免费电影在线观看免费观看| videos熟女内射| 我的女老师完整版在线观看| 在线观看人妻少妇| 激情 狠狠 欧美| 黄色日韩在线| 国产人妻一区二区三区在| 欧美激情久久久久久爽电影| 日本wwww免费看| 街头女战士在线观看网站| 最近中文字幕高清免费大全6| 一级毛片aaaaaa免费看小| 精品久久久久久电影网| 亚洲欧美一区二区三区国产| 肉色欧美久久久久久久蜜桃 | 嫩草影院新地址| 尾随美女入室| 偷拍熟女少妇极品色| 免费看不卡的av| 亚洲最大成人av| 欧美不卡视频在线免费观看| 国产亚洲av嫩草精品影院| 蜜臀久久99精品久久宅男| 极品教师在线视频| 亚洲av男天堂| 日日摸夜夜添夜夜添av毛片| 国语对白做爰xxxⅹ性视频网站| 22中文网久久字幕| 干丝袜人妻中文字幕| 亚洲国产精品专区欧美| 日韩一区二区视频免费看| 嫩草影院新地址| 永久网站在线| 欧美3d第一页| 久久99热这里只有精品18| videos熟女内射| 最近视频中文字幕2019在线8| 在线a可以看的网站| 久久人人爽人人片av| 精品久久久久久电影网| 欧美高清成人免费视频www| 一区二区三区免费毛片| 亚洲精品久久久久久婷婷小说| 亚洲精品一区蜜桃| 嫩草影院精品99| 波野结衣二区三区在线| 秋霞在线观看毛片| 在线观看一区二区三区| 亚洲av中文字字幕乱码综合| 亚洲精品影视一区二区三区av| 亚洲精品亚洲一区二区| 亚洲精品乱码久久久v下载方式| 国产精品日韩av在线免费观看| 99re6热这里在线精品视频| 亚洲av免费高清在线观看| 日本色播在线视频| 精品国内亚洲2022精品成人| 亚洲自偷自拍三级| 亚洲在线观看片| 国产精品一区二区三区四区久久| 丰满少妇做爰视频| 日韩一区二区三区影片| 男的添女的下面高潮视频| 国产精品一区www在线观看| 国产精品综合久久久久久久免费| 18禁裸乳无遮挡免费网站照片| 三级毛片av免费| 91午夜精品亚洲一区二区三区| 久久久久精品性色| 国产有黄有色有爽视频| 日韩亚洲欧美综合| 看免费成人av毛片| 国产免费视频播放在线视频 | 男女边吃奶边做爰视频| 联通29元200g的流量卡| 男女国产视频网站| 麻豆成人av视频| 色播亚洲综合网| 亚洲国产高清在线一区二区三| 日韩亚洲欧美综合| 亚洲av中文av极速乱| 乱码一卡2卡4卡精品| 少妇裸体淫交视频免费看高清| 国产有黄有色有爽视频| 国产v大片淫在线免费观看| 日本猛色少妇xxxxx猛交久久| 人人妻人人澡人人爽人人夜夜 | 国产高潮美女av| 亚洲精品乱码久久久v下载方式| 亚洲最大成人av| 精品熟女少妇av免费看| 免费看日本二区| 亚洲欧洲日产国产| 黄色配什么色好看| 人妻少妇偷人精品九色| 亚洲综合色惰| 特级一级黄色大片| 国产精品一区www在线观看| 久久久成人免费电影| 久久久精品免费免费高清| 一级毛片我不卡| 哪个播放器可以免费观看大片| 午夜免费观看性视频| 日韩欧美精品免费久久| 日本色播在线视频| 欧美变态另类bdsm刘玥| 男插女下体视频免费在线播放| 人人妻人人澡欧美一区二区| 精品一区二区三卡| 久久午夜福利片| 深夜a级毛片| 日韩视频在线欧美| 久久午夜福利片| 亚洲熟女精品中文字幕| 精品久久久久久久人妻蜜臀av| 久久久久九九精品影院| 精品人妻视频免费看| 日本一本二区三区精品| 少妇猛男粗大的猛烈进出视频 | 亚洲精品久久午夜乱码| 国产乱人视频| 久久精品国产鲁丝片午夜精品| 午夜亚洲福利在线播放| 久久精品人妻少妇| 亚洲天堂国产精品一区在线| 国产高清有码在线观看视频| freevideosex欧美| 亚洲三级黄色毛片| 69av精品久久久久久|