• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Phase Sensitivities for Different Phase-Shift Configurations in an SU(1,1)Interferometer?

    2020-01-09 01:55:52FanWang王凡WeiZhong鐘偉LanZhou周瀾andYuBoSheng盛宇波
    Communications in Theoretical Physics 2019年12期
    關鍵詞:鐘偉

    Fan Wang (王凡), Wei Zhong (鐘偉),,2 Lan Zhou (周瀾), and Yu-Bo Sheng (盛宇波),4

    1Institute of Quantum Information and Technology,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2National Laboratory of Solid State Microstructures,Nanjing University,Nanjing 210093,China

    3School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    4Key Lab of Broadband Wireless Communication and Sensor Network Technology,Nanjing University of Posts and Telecommunications,Ministry of Education,Nanjing 210003,China

    Abstract We theoretically study the phase sensitivities of two different phase-shift configurations in an SU(1,1)interferometer with coherent ?squeezed vacuum states.According to quantum Cram′er-Rao theorem,we analytically obtain the ultimate phase sensitivities for two types of phase shift accumulating in one- and two-arm.Compared with the case of one-arm phase shift,the model with phase shift encoding in both arms may provide a better sensitivity when the strength of squeezed vacuum state is large enough.Furthermore,we discuss the achievable sensitivities with the homodyne measurement by invoking of error-propagation formula.In addition,we study the effect of internal and outernal photon losses on the phase sensitivity of the SU(1,1)interferometer and find that the unbalanced interferometer is helpful to improve precision even with high external losses.

    Key words: SU(1,1) interferometer,quantum Fisher information,one- and two-arm phase shifts,Homodyne measurement

    1 Introduction

    Quantum metrology aims to obtain the higher sensitivity in parameter estimation using quantum mechanics methods.[1?4]The physical quantities,e.g.gravitational waves,electric fields,weak magnetic fields,atomic frequencies,are generally transformed into phase shifts which can be accurately measured through interferometric experiments,[5]i.e.,Mach-Zehnder interferometer (MZI).The phase sensitivity in linear optical MZI with classical approaches is limited by shot noise limit (SNL),i.e.,whereNis the average number of photons inside the interferometer.However,more works have shown that the use of entangled state like NOON state[6]can lead to improved sensitivity in optical-phase measurements.Restricted by Heisenberg’s uncertain relationship,the improved sensitivity can beat the SNL and reaching the Heisenberg limit (HL),i.e.,1/N.[7]

    In 1981,Caveset al.[3]proposed a scheme in optical interferometry that the SNL can be beaten by using coherent?squeezed-vacuum light as input.This scheme has been used in gravitational wave detection experiments,for example GEO600[8]and LIGO.[9]In 1986,Yurkeet al.[4]proposed another novel nonlinear interferometer,which replaced the 50:50 beam splitter in traditional MZI with active elements of optical parameter amplification (OPA)or four-wave mixing (FWM).They called this nonlinear interferometer as the SU(1,1)interferometer and the linear MZI as the SU(2)interferometer.A series of recent studies have shown that the SU(1,1) interferometer not only improves the phase measurement sensitivity compared with the SU(2) interferometer,but also performs more robust in suppressing detection noise.[10?12]Recently,Plicket al.[13]improved the original SU(1,1) interferometer.In their scheme,a strong coherent light beam was added,which solved the problem of the low number of photons of squeezed state prepared by the original scheme,and greatly improved the sensitivity of phase measurement.The SU(1,1) interferometer has been successfully implemented in the experiment.[14?15]Loss is one of the limit factors in parameter estimation.Recently,Mathieu Manceauet al.[10]showed that for a given gain of the first parametric amplifier,unbalancing the interferometer by increasing the gain of the second amplifier improves the interferometer properties.In this scheme,one can gain the optimal sensitivity even with the existence of external losses.

    Recently,some researches on the phase sensitivity in SU(2) interferometry with two types of phase shiftone-arm and two-arm have been done.[16?17]The results showed different phase shifts have an important impact on the ultimate precision.Moreover,some relevant researches on one-arm[18?21]and two-arm[11,22?23]phaseaccumulated SU(1,1) interferometer have been proposed.In Refs.[18–19],the authors discussed the achievable sensitivity with homodyne detection and showed it can approach HL for coherent and squeezed vacuum states.As is well known,the fundamental phase sensitivity is set by the quantum Cram′er-Rao bound (QCRB).Does the homodyne detection can reach this sensitivity bound in the above scenario? This question has not yet been addressed in Refs.[18–19].Meanwhile,for two-arm phase accumulating case,the fundamental phase sensitivity for a several of probe states was obtained in Refs.[22–23],while the discussion about the feasible detection method approaching such sensitivity was missed.In this paper,we make a full analysis of the phase sensitivities in one-arm and two-arm phase-shift accumulating SU(1,1) interferometer by using coherent?squeezed vacuum states,and then discuss the achievable sensitivities with the homodyne measurement.By analytically calculating the QFI,we find that the twoarm case shows a better precision with high strength of squeezed vacuum state,when compared with the singlearm case.However,such advantage does not take place in realistic measurement.To clarify this,we derive the achievable sensitivity with homodyne detection by invoking of error-propagation formula.Our results show that the achievable sensitivities are identical in both two phase shift cases.Although they approach HL,they can not saturate the QCRB.Due to photon losses and detector imperfections,the actual measurement sensitivities are often worse than the theoretical results.We further discuss the effects of photon losses on the achievable sensitivities for the two phase shift cases.We finally find that the unbalanced interferometer helps to improve precision for both cases even with high external losses.

    This paper is organized as follows.In Sec.2,we first briefly introduce the standard SU(1,1)interferometer and compute the theoretical phase sensitivities with the different types of phase shift.In.Sec.3,we explicitly derive the ultimate phase sensitivities by homodyne detection.Moreover,in Sec.4,we specifically study the SU(1,1) interferometer in the presence of detection noise and internal losses.Finally,the conclusions are given in Sec.5.

    2 The SU(1,1) Interferometer with Two Different Phase Shifts

    A standard SU(1,1) interferometer setup consists of two OPAs and a phase shift,as is shown in Fig.1.The operation of OPA,denoted by OPAi(i=1,2),which satisfies the following relations[4]

    wheres1andθ1describe the gain factor and phase of the first OPA.a0(a?0) andb0(b?0) are the annihilation (creation) operators of the upper and lower input modes of the interferometer,respectively.

    Fig.1 (Color online)SU(1,1)interferometer model with two types of phase shift: one-arm and two-arm.The input state is After the first OPA,it accumulates an unknown phase,which is determinated byUθ.Then it goes through the second OPA and a homodyne measurement is performed.The pump field between the two OPAs has aπ phase difference.

    Theoretically,the phase measurement sensitivity is limited by the quantum Cram′er-Rao bound (QCRB),which is one of the most important quantities for both quantum estimation theory and quantum information theory,has been widely studied.[1?2,24]The lower bound of the QCRB is provided by the inverse of quantum Fisher information(QFI),which depends only on the probe state and phase accumulation.Regardless of the measurement part,the theoretical sensitivity according to the quantum Cram′er-Rao theorem satisfies the following inequality

    whereFrepresents the QFI andυis the times of experiment operations.[1?2,24]Generally,such a bound can be reached by the maximum likelihood estimator for sufficiently largeυwith Bayesian estimation methods.

    The mean photons on each arm are given byni=〈ni〉(i=a,b).Note thatna=|α|2andnb= sinh2r,so the total photon number of input state isN0=na+nb.Due to the nonlinear property of OPA,the total number of photons after the OPA1is enlarged as

    One can rewrite the expressions of Eqs.(3) and (4) in terms ofnaandnb.For given fixeds1,F/N2tis plotted in Fig.2.The green dashed line corresponds to the so-called“HL”,i.e.,?θHL=1/Nt,which is however not fundamental sensitivity limit when the particle number fluctuating presents.[25?28]From Fig.2,one can see the amount of the QFIs become higher as thenbincreases for a fixedN0.In the other words,one can get higher phase sensitivity by input a squeezed vacuum state with larger strength.

    Fig.2 (Color online)The variation ofF/N2t as the function ofna andnb for phase shift in (a) one-arm and (b)two-arms.The gain factor of OPA1 iss1 =2.

    Next,we compare the theoretical sensitivities for both two types of phase shift according to Eq.(2).The difference ofgiven by Eqs.(3) and(4) is plotted in Fig.3(a),as a function ofnaandnbwith the gain factors1= 1.The green dashed line represents the two sensitivities are identical.It is shown that the case with phase shift in both arms performs the better sensitivity when the strength of squeezed vacuum state is large enough.

    A special case is considered here,we assume thatr= 0.As shown in Fig.3(b),the ultimate sensitivitiesas a function of strength of coherent state|α|,show that the phase shift in one arm can achieve the better sensitivity in this case.

    Fig.3 (Color online) (a) Difference between the sensitivities of the two types of phase shift: The green dashed line represents the amount of QFIs in two cases is equal.(b) Phase sensitivity as a function of coherent amplitude|α| forr =0.The blue line is phase shift in one arm,the red line is phase shift in both arms.The gain factor of OPA1 iss1 =1.

    3 Achievable Sensitivities by Homodyne Measurement

    In this section,we discuss the measurement sensitivity achieved with typical measurement in two types of phase shifts.In general,the phase measurement uncertainty is still retrieved from a simplified error propagation theory,such that where

    denotes the mean value of observableXandis the root-mean-square fluctuation.In our scheme,we perform a homodyne detection on the outputb2,

    3.1 Phase Shift In One Arm

    We start with phase shift only in the lower arm.As depicted in Fig.1,homodyne measurement is made on the portb2.In this way the total transformation of inputoutput relations of the interferometer can be described by

    where

    such that|μ|2?|ν|2=1.

    The SU(1,1) interferometer is typically studied in a balanced configuration in which the second parametric process is set to “undo” what the first parametric process did.Here,we first consider the balanced SU(1,1)interferometer configuration (i.e.,s1=s2=s).To satisfy the optimal phase condition given previously,we also set?α=?ξ=?1= 0.According to Ref.[19],when the phase of the second OPA?2=πmay provide the maximal achievable sensitivity.Therefore the mean value〈XA〉and the expectation ofX2Aare given by respectively,

    Submitting Eqs.(10) and (11) into Eq.(6) yields

    To approach the “HL”,we need to find the optimal condition of the photon numbers at the input of the SU(1,1) interferometer.In the asymptotic limitθ →0,?θAreduces to

    By using the relationships ofna=|α|2andnb= sinh2r,one can rewrite this expression in terms ofnaandnb.Figure 4 is plotted byNt?θA|θ→0corresponding tonaandnbfrom 0 to 100.Similar to the MZI,[29]the photon numbers in two input ports of the SU(1,1)interferometer also need to balance to approach the optimal sensitivity.[19]

    Fig.4 (Color online) The sensitivityNt?θA|θ→0 as a function ofna andnb with coherent state and squeezed vacuum state as the input state.Nt is the total photons throughout the model.

    Figure 5(a) is plotted by Eq.(12) to show the ultimate sensitivity with phase shift in the lower arm.As discussed above,the photon numbers of two input states need to balance,i.e.,|α|=sinhr.As shown in the figure,the minimum of phase sensitivity occurs atθ= 0,given by Eq.(13).One can see this sensitivity in a range beats SNL far and approaches HL,which shows the same performance as discussed in Ref.[19].In addition,we compare this result with the QCRB discussed in Sec.2.We find it is close to QCRB at the optimal point,which means homodyne detection is a sub-optimal measurement in this case.

    3.2 Phase Shift In Both Arms

    Below we consider the case of phase shift in both arms,which is missed in Ref.[22].In that case,the QFI for coherent and squeezed states was chiefly calculated.Similar to the previous process,we first get the total transform

    where

    The phase matching condition is still the?α=?ξ=?1=0.We similarly consider the balanced case (s1=s2=sandθ2=π).Using the same approach as in case A,the ultimate sensitivity is given by,

    where

    In the same way,we study the relation between two input ports photon numbers.Whenθ=0,Eq.(16) reduces to

    Interestingly,the optimal sensitivity is still obtained under the condition ofna=nb,which satisfies with that in single-arm phase shift case.

    Figure 5(b) shows the Eq.(16) as a function ofθ.These results are very similar to the ones calculated for case A.θ=0 is still the optimal condition to achieve the ultimate sensitivity and likewise homodyne detection is still sub-optimal in this case.However,one can see the sensitivity is lower whenθis away from zero point.

    Fig.5 (Color online)Log-plots of the phase sensitivities?θA and ?θB for both two cases with homodyne measurement (blue line),Eqs.(12) and (16),as a function ofθ.The strength of two OPAs iss = 2.The parameters of input state are as follows:r = 2.5,|α| = sinhr.The SNL is gray line and HL is purple line.The QCRB is presented by black line.

    4 Effects of Experimental Noises and Unbalanced Scheme

    As has been previously pointed out,the phase sensitivity is extremely affected by the photon losses both inside and outside of the interferometer due to the imperfections in the device and defects in the detector.We now turn to the effect of both of two types of losses on the measurement sensitivity in our scheme.Traditionally,photon losses can be modeled by adding an imaginary beam splitter and part of photons are dissipated into the environment when photons pass through,which can be described by

    whereTiis the efficiency of imaginary beam splitters.As shown in Fig.6,T1andT2represent the transmission rates in presence of the internal and external losses respectively.caandcbare the annihilation operators of the upper and lower loss modes of the interferometer.Here,we consider losses in both arms and continue to use coherent?squeezed vacuum states as input state.Below,we detailly discuss the phase sensitivities achieved by the homodyne detection in the presence of both inside and outside losses separately.

    Fig.6 (Color online)The loss model of SU(1,1)interferometer with homodyne measurement.The internal and external loss can be modeled by imaginary beam splitters.

    4.1 Phase Shift In One Arm

    First,we discuss the sensitivity with phase shift in the lower arm under condition ofs1=s2=s.Then the ultimate sensitivity with homodyne measurement is given by,

    which is composed of two parts,the first term is the ideal lossless sensitivity given by Eq.(12)and the second is the extra term due to the internal and external losses.WhenT1andT2equal to 1,the second term vanishes,and the sensitivity in this case will reduce to the ideal lossless case.

    Figures 7(a) and 7(b) show the phase sensitivity ?θALgiven by Eq.(20)in a narrow range close to 0.In Fig.7(a),we study the effect of internal losses on the interferometer by settingT2= 1 (no external losses).As can be seen from this figure,the increase of internal losses degrades the phase sensitivity.WhenT1= 0.5,it is impossible to beat the SNL.As shown in Fig.7(b),it shows that the effect of the detection efficiency by makingT1=1.Compared to Fig.7(a),one can see that SU(1,1)interferometer with phase shift in one arm shows the better performance in external noise resistance.

    Now we study the unbalanced interferometer(s12)with the existence of internal and external losses.The optimal conditionθ= 0 is considered here.Under this condition,the phase sensitivity is given by

    whereμ=coshs1coshs2?sinhs1sinhs2.

    Fig.7 (Color online) Log-plots of phase sensitivities with the existence of internal loss and external loss.(a),(b) Phase sensitivity ?θAL as a function ofθ in one-arm case.Different color curves represent different values ofT1 orT2.(c),(d)Phase sensitivity ?θBL as a function ofθ in two-arm case.The SNL is gray line and HL is purple line.The QCRB is presented by black line.The parameters are as follows:s=2,r =2.5 andα=sinhr.

    We keep the parameters ofT1ands1unchanged and study the effect ofs2on the ultimate sensitivity.Figure 8(a) shows the phase sensitivitygiven by Eq.(21),as a function ofs2for different values ofT2.It is confirmed that an increase of the second gain factor is helpful to improve precision even with high external losses and the ultimate sensitivity is close to ideal case.Similar results have been observed in Ref.[10].

    4.2 Phase Shift In Both Arms

    Next,we investigate the loss SU(1,1) interferometer with phase shift in both arms.Using the same approach as above,the ultimate sensitivity is given by:

    As was done before,we separately consider the effect of internal losses and external losses on phase sensitivity in this case.The extra term is very similar to the one calculated for case A.Figures 7(c) and 7(d) are plotted by Eq.(22).As shown in the figure,the phase sensitivities achieved in both cases have the similar performance in noise resistance.

    Finally,unbalanced interferometer is considered to study the influence of gain factors2on the phase sensitivity with internal and external losses.In this case,the phase sensitivity is given by

    whereμ=coshs1coshs2?sinhs1sinhs2.

    Figure 8(b) shows Eq.(23) as a function ofs2,and the result is much similar to the ones calculated for case A.When we introduce noise,an unbalanced interferometer model is good at resisting external loss.No matter what cases of phase shift,an increase of second gain factors2will improve the ultimate sensitivity and finally eliminate the interference of external loss.

    Fig.8 (Color online) Phase sensitivities (a) ?θAUL and (b) ?θBUL as a function of gain factors2 for various values of the detection efficiencyT2 in unbalanced SU(1,1) interferometer.The parameters of input state are as follows:r =3,α=sinhr.Note thats1 =1 andT1 =0.9.

    5 Conclusion

    In conclusion,we have studied the phase sensitivities of the SU(1,1) interferometer with two types of phase shift:One-arm and two-arms.For both two cases,we first exactly calculated the theoretical sensitivities for a mixing coherent state and squeezed vacuum state.We found that the sensitivity for two-arm phase shift case may outperform the single-arm case.We also considered the achievable sensitivity with homodyne measurement based on error propagation theory.Interestingly,we found that the achievable sensitivities for the two types of phase shift configuration provide the same sensitivity.It indicates that the advantage of sensitivity enhancement demonstrated above does not occur within practical measurement.Besides,we also showed that the homodyne detection is a sub-optimal measurement which can not saturate the QCRB but approach the HL.Finally,we considered effects of photon losses on the sensitivity of the SU(1,1) interferometer.We found that the achievable sensitivity degrades substantially when the internal and external losses exit.More importantly,in the unbalanced SU(1,1) interferometer,an increase of the gain of second OPA is helpful to resist and even eliminate the external loss for both two phase shift scenarios.

    Note addedRecently,Ref.[23] appeared,which derived a general phase-matching condition for maximal QFI in SU(1,1) interferometers for certain states,such as,coherent and even coherent states,squeezed vacuum and even coherent states,squeezed thermal and even coherent states.In this paper,we consider a different case by injecting a mixing of coherent state and squeezed vacuum state.The previous obtained phase-matching condition is also hold in our case,which can be complementary to applications in Ref.[23].Our results on maximal QFI for two different phase shift configurations and phase sensitivities accessible by homodyne measurement with and without noises,however,are not covered in Ref.[23].

    猜你喜歡
    鐘偉
    One-step quantum dialogue
    再出發(fā)的勇氣
    Measurement-device-independent one-step quantum secure direct communication
    Measurement-device-independent quantum secret sharing with hyper-encoding
    上翼面開縫的翼傘翼型氣動特性研究
    職場小白警示錄:公車追愛驚變“翻車現(xiàn)場”
    硬漢鐘偉
    領導文萃(2019年23期)2019-01-13 09:47:56
    漂亮女友玩曖昧,精英男命殞“分手糾結(jié)期”
    敢頂撞林彪的解放軍少將
    你的身邊,溜走的是誰
    分憂(2015年1期)2015-01-30 02:21:52
    亚洲黑人精品在线| 全区人妻精品视频| 成人国产一区最新在线观看| 最好的美女福利视频网| av在线播放免费不卡| 国产精品一及| 听说在线观看完整版免费高清| 国产精品久久久久久人妻精品电影| 免费看十八禁软件| 久久久精品国产亚洲av高清涩受| 校园春色视频在线观看| 久久伊人香网站| 怎么达到女性高潮| 久久精品亚洲精品国产色婷小说| 国产精品98久久久久久宅男小说| 午夜两性在线视频| 亚洲 国产 在线| 亚洲激情在线av| a级毛片a级免费在线| 午夜日韩欧美国产| 欧美色欧美亚洲另类二区| www.精华液| 一级毛片高清免费大全| 老熟妇乱子伦视频在线观看| 成人国产一区最新在线观看| 他把我摸到了高潮在线观看| 天天添夜夜摸| 国产成人影院久久av| 欧美日韩福利视频一区二区| 精品午夜福利视频在线观看一区| 亚洲人成网站高清观看| 欧美绝顶高潮抽搐喷水| 亚洲中文字幕一区二区三区有码在线看 | 欧美zozozo另类| 久久久久九九精品影院| 女人被狂操c到高潮| 黑人欧美特级aaaaaa片| 好看av亚洲va欧美ⅴa在| 老熟妇乱子伦视频在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲成人国产一区在线观看| 免费看美女性在线毛片视频| 午夜精品久久久久久毛片777| 无人区码免费观看不卡| 欧美日韩一级在线毛片| 国产成人欧美在线观看| 国产av麻豆久久久久久久| 黑人巨大精品欧美一区二区mp4| 国产男靠女视频免费网站| 在线免费观看的www视频| 欧美日韩乱码在线| 国产真实乱freesex| 午夜成年电影在线免费观看| 搡老熟女国产l中国老女人| 999久久久精品免费观看国产| 亚洲欧美日韩无卡精品| www.999成人在线观看| 国产成人精品久久二区二区91| 久久香蕉激情| 在线播放国产精品三级| 亚洲最大成人中文| 日韩精品青青久久久久久| 宅男免费午夜| 日日干狠狠操夜夜爽| 一进一出抽搐动态| 一本精品99久久精品77| 亚洲欧美日韩东京热| 欧美+亚洲+日韩+国产| 中文字幕人成人乱码亚洲影| 视频区欧美日本亚洲| 国产成人影院久久av| 特大巨黑吊av在线直播| 中文字幕高清在线视频| 国产亚洲精品久久久久久毛片| 美女免费视频网站| 九九热线精品视视频播放| 色精品久久人妻99蜜桃| 欧美中文日本在线观看视频| 日日爽夜夜爽网站| 国产亚洲av高清不卡| 国产男靠女视频免费网站| 国产三级黄色录像| 国产av又大| 欧美中文综合在线视频| 9191精品国产免费久久| 三级国产精品欧美在线观看 | videosex国产| 日本一二三区视频观看| 亚洲国产中文字幕在线视频| 国产伦一二天堂av在线观看| 国内少妇人妻偷人精品xxx网站 | 香蕉丝袜av| 国产精华一区二区三区| svipshipincom国产片| 亚洲专区字幕在线| 欧美+亚洲+日韩+国产| 九色成人免费人妻av| a在线观看视频网站| 老司机福利观看| 一本大道久久a久久精品| 97碰自拍视频| 亚洲精品国产精品久久久不卡| 日本一二三区视频观看| 国内久久婷婷六月综合欲色啪| 一本大道久久a久久精品| 久久久久亚洲av毛片大全| 亚洲中文av在线| 午夜精品在线福利| 亚洲天堂国产精品一区在线| 成人国产综合亚洲| 久久久国产欧美日韩av| 麻豆国产97在线/欧美 | 男男h啪啪无遮挡| 亚洲国产高清在线一区二区三| 99国产极品粉嫩在线观看| 19禁男女啪啪无遮挡网站| 在线观看午夜福利视频| 欧美另类亚洲清纯唯美| 日韩欧美在线乱码| 999久久久精品免费观看国产| 欧美av亚洲av综合av国产av| 精品久久久久久久毛片微露脸| 午夜精品久久久久久毛片777| 亚洲第一电影网av| 白带黄色成豆腐渣| 国产精品久久久av美女十八| 91av网站免费观看| 一进一出抽搐动态| 国产激情偷乱视频一区二区| 两个人的视频大全免费| 99精品欧美一区二区三区四区| 1024视频免费在线观看| svipshipincom国产片| 欧美日韩精品网址| 日韩 欧美 亚洲 中文字幕| 狂野欧美激情性xxxx| 国产亚洲精品av在线| 久久久久亚洲av毛片大全| 亚洲av日韩精品久久久久久密| 午夜老司机福利片| 成人精品一区二区免费| 国产三级中文精品| 中文字幕熟女人妻在线| 欧美3d第一页| 国产免费男女视频| 美女免费视频网站| 国产精品久久久久久人妻精品电影| 法律面前人人平等表现在哪些方面| 亚洲一区中文字幕在线| 亚洲国产看品久久| 精品久久久久久久末码| 正在播放国产对白刺激| 国产视频一区二区在线看| av欧美777| 成人午夜高清在线视频| 一卡2卡三卡四卡精品乱码亚洲| 99国产精品一区二区三区| 国产成人系列免费观看| 国产亚洲精品久久久久5区| 两人在一起打扑克的视频| 好看av亚洲va欧美ⅴa在| 亚洲国产精品sss在线观看| 叶爱在线成人免费视频播放| 久久久国产成人精品二区| 亚洲最大成人中文| 在线视频色国产色| 最好的美女福利视频网| av有码第一页| 别揉我奶头~嗯~啊~动态视频| 久久 成人 亚洲| 日韩精品青青久久久久久| 日韩欧美免费精品| 精品欧美一区二区三区在线| 国产精品免费视频内射| 美女黄网站色视频| 精品欧美国产一区二区三| 日日夜夜操网爽| 男人舔奶头视频| 一个人免费在线观看电影 | 午夜精品一区二区三区免费看| 我的老师免费观看完整版| 女生性感内裤真人,穿戴方法视频| 午夜老司机福利片| 成人永久免费在线观看视频| 欧美在线黄色| 啪啪无遮挡十八禁网站| 精品久久久久久久久久久久久| 欧美成人午夜精品| 国产一区二区激情短视频| 精品无人区乱码1区二区| 国产伦一二天堂av在线观看| avwww免费| 18禁裸乳无遮挡免费网站照片| 99热这里只有是精品50| 精品电影一区二区在线| 久久久精品欧美日韩精品| 国产日本99.免费观看| 日韩国内少妇激情av| 男人舔女人下体高潮全视频| 舔av片在线| 18美女黄网站色大片免费观看| 亚洲欧美精品综合久久99| 热99re8久久精品国产| netflix在线观看网站| 最好的美女福利视频网| 十八禁网站免费在线| 制服诱惑二区| 精品国产乱子伦一区二区三区| 一进一出抽搐gif免费好疼| 国产91精品成人一区二区三区| 在线观看午夜福利视频| 亚洲五月婷婷丁香| 国产成人啪精品午夜网站| 一边摸一边做爽爽视频免费| 色噜噜av男人的天堂激情| 中亚洲国语对白在线视频| 欧美另类亚洲清纯唯美| 国产亚洲精品久久久久久毛片| 国产一区二区在线观看日韩 | 99久久综合精品五月天人人| 国产伦一二天堂av在线观看| av欧美777| 91av网站免费观看| 黄色片一级片一级黄色片| 亚洲专区字幕在线| 国产精品久久久av美女十八| 一级片免费观看大全| 美女扒开内裤让男人捅视频| 麻豆成人av在线观看| 一级a爱片免费观看的视频| 18美女黄网站色大片免费观看| 高潮久久久久久久久久久不卡| 久久婷婷成人综合色麻豆| 亚洲性夜色夜夜综合| 国产成人av教育| 国产免费男女视频| 欧美av亚洲av综合av国产av| 亚洲精华国产精华精| 两人在一起打扑克的视频| 亚洲专区国产一区二区| 男女床上黄色一级片免费看| 午夜精品在线福利| 韩国av一区二区三区四区| 久久久久亚洲av毛片大全| 99国产精品一区二区蜜桃av| 国产精品亚洲av一区麻豆| 变态另类成人亚洲欧美熟女| 岛国视频午夜一区免费看| 一本久久中文字幕| 看片在线看免费视频| 日本黄大片高清| 国产精品久久久人人做人人爽| 精品久久久久久久末码| 可以免费在线观看a视频的电影网站| 欧美 亚洲 国产 日韩一| 草草在线视频免费看| 日本 欧美在线| 免费观看精品视频网站| 亚洲中文字幕一区二区三区有码在线看 | 女人爽到高潮嗷嗷叫在线视频| 色哟哟哟哟哟哟| 男女床上黄色一级片免费看| 国产区一区二久久| 免费在线观看视频国产中文字幕亚洲| 婷婷六月久久综合丁香| 国产成人系列免费观看| 在线观看免费日韩欧美大片| 免费一级毛片在线播放高清视频| 大型黄色视频在线免费观看| 亚洲一码二码三码区别大吗| 少妇的丰满在线观看| 国产精品一区二区精品视频观看| 18禁黄网站禁片免费观看直播| 男人的好看免费观看在线视频 | 成人国产一区最新在线观看| 最近最新中文字幕大全免费视频| 欧美极品一区二区三区四区| 久久精品91蜜桃| 女生性感内裤真人,穿戴方法视频| 欧美一级毛片孕妇| 香蕉久久夜色| 天堂动漫精品| 久久草成人影院| 老熟妇乱子伦视频在线观看| 变态另类丝袜制服| 无人区码免费观看不卡| 亚洲午夜精品一区,二区,三区| 欧美av亚洲av综合av国产av| 亚洲成av人片免费观看| 亚洲一区二区三区不卡视频| 一级a爱片免费观看的视频| 给我免费播放毛片高清在线观看| 精品久久久久久久久久免费视频| 久久久久亚洲av毛片大全| 男女之事视频高清在线观看| 亚洲av成人精品一区久久| 久久久久久九九精品二区国产 | 久久久久国内视频| 午夜精品久久久久久毛片777| 99久久99久久久精品蜜桃| 美女大奶头视频| 毛片女人毛片| 国产精品野战在线观看| 村上凉子中文字幕在线| 久久亚洲真实| 免费一级毛片在线播放高清视频| 一边摸一边做爽爽视频免费| 在线观看美女被高潮喷水网站 | 国内毛片毛片毛片毛片毛片| 亚洲天堂国产精品一区在线| 999久久久精品免费观看国产| 极品教师在线免费播放| 国产av一区在线观看免费| 亚洲成人免费电影在线观看| or卡值多少钱| 亚洲一区高清亚洲精品| 久久精品91蜜桃| 亚洲精品国产精品久久久不卡| 欧美成人免费av一区二区三区| 国产精品1区2区在线观看.| a级毛片a级免费在线| 性欧美人与动物交配| 两个人的视频大全免费| 亚洲av电影在线进入| 国产又黄又爽又无遮挡在线| 夜夜看夜夜爽夜夜摸| 宅男免费午夜| 桃色一区二区三区在线观看| 久久精品亚洲精品国产色婷小说| 久久精品影院6| 成熟少妇高潮喷水视频| 小说图片视频综合网站| 在线观看美女被高潮喷水网站 | 久久这里只有精品19| 精品高清国产在线一区| 欧美黄色片欧美黄色片| 中出人妻视频一区二区| 精品不卡国产一区二区三区| 日韩三级视频一区二区三区| 桃色一区二区三区在线观看| 亚洲一区二区三区色噜噜| 深夜精品福利| 亚洲成a人片在线一区二区| 亚洲精品在线美女| 久久久久久大精品| 中文字幕最新亚洲高清| 黄色 视频免费看| a级毛片在线看网站| 亚洲午夜理论影院| 18禁黄网站禁片免费观看直播| 操出白浆在线播放| 色综合婷婷激情| 国产一区二区在线观看日韩 | 一级毛片女人18水好多| 男女下面进入的视频免费午夜| 又大又爽又粗| 欧美精品啪啪一区二区三区| 国产三级在线视频| 真人一进一出gif抽搐免费| 国产精品一区二区精品视频观看| 变态另类丝袜制服| 久久久久精品国产欧美久久久| 日韩中文字幕欧美一区二区| 两个人视频免费观看高清| 日日夜夜操网爽| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲人成电影免费在线| 国产激情偷乱视频一区二区| 日韩欧美三级三区| 99在线视频只有这里精品首页| 日本成人三级电影网站| 我要搜黄色片| 蜜桃久久精品国产亚洲av| 国产亚洲精品第一综合不卡| 精品久久久久久久末码| 亚洲va日本ⅴa欧美va伊人久久| 欧美一区二区国产精品久久精品 | 国产成人av激情在线播放| 国产精品久久久久久亚洲av鲁大| 男女视频在线观看网站免费 | 国产精品免费一区二区三区在线| 成人三级做爰电影| 小说图片视频综合网站| 亚洲av第一区精品v没综合| 久久国产精品人妻蜜桃| 五月伊人婷婷丁香| 国产成人影院久久av| 色综合婷婷激情| 亚洲18禁久久av| aaaaa片日本免费| 午夜视频精品福利| 1024视频免费在线观看| 色综合婷婷激情| 国产av不卡久久| 99久久综合精品五月天人人| 国产三级在线视频| 久久香蕉激情| 欧美精品啪啪一区二区三区| 舔av片在线| 午夜成年电影在线免费观看| 一级a爱片免费观看的视频| aaaaa片日本免费| 精品少妇一区二区三区视频日本电影| 国产精品精品国产色婷婷| 亚洲人成电影免费在线| 999精品在线视频| 亚洲精品色激情综合| 麻豆成人午夜福利视频| 在线观看www视频免费| av超薄肉色丝袜交足视频| 可以在线观看毛片的网站| 宅男免费午夜| 国产成人av教育| 一级黄色大片毛片| 久久精品国产亚洲av高清一级| 国产av一区在线观看免费| 久久亚洲精品不卡| 99热6这里只有精品| 天堂av国产一区二区熟女人妻 | 草草在线视频免费看| av福利片在线| 国产伦一二天堂av在线观看| 午夜福利免费观看在线| 一卡2卡三卡四卡精品乱码亚洲| av天堂在线播放| а√天堂www在线а√下载| 亚洲人成网站高清观看| 香蕉av资源在线| 桃色一区二区三区在线观看| 人人妻,人人澡人人爽秒播| 亚洲一码二码三码区别大吗| 久久香蕉国产精品| 色综合欧美亚洲国产小说| 国产野战对白在线观看| 无人区码免费观看不卡| 国产精品免费视频内射| 国产精品久久久久久人妻精品电影| 精品午夜福利视频在线观看一区| 女人高潮潮喷娇喘18禁视频| 久久久精品国产亚洲av高清涩受| 一边摸一边做爽爽视频免费| 午夜福利在线观看吧| 亚洲天堂国产精品一区在线| 国产精品一及| 一本精品99久久精品77| 搡老岳熟女国产| 99久久综合精品五月天人人| 天天躁狠狠躁夜夜躁狠狠躁| 99在线视频只有这里精品首页| 午夜两性在线视频| 琪琪午夜伦伦电影理论片6080| 麻豆一二三区av精品| 99在线人妻在线中文字幕| 国产精品久久电影中文字幕| 亚洲国产看品久久| 国产单亲对白刺激| 日韩欧美 国产精品| 国产欧美日韩一区二区精品| 亚洲av成人一区二区三| 国产三级黄色录像| 国产激情欧美一区二区| 国产精品一及| xxx96com| 美女高潮喷水抽搐中文字幕| www国产在线视频色| 精品久久久久久,| 久久久久国内视频| 亚洲成人免费电影在线观看| 俺也久久电影网| 国产午夜精品论理片| 日本免费a在线| 国产免费男女视频| 日本a在线网址| 9191精品国产免费久久| 亚洲人成77777在线视频| 成人国语在线视频| 五月伊人婷婷丁香| 色av中文字幕| 嫩草影视91久久| 这个男人来自地球电影免费观看| 一级毛片精品| 99精品欧美一区二区三区四区| 国产成人av激情在线播放| 欧美日韩黄片免| 成年人黄色毛片网站| 国产成+人综合+亚洲专区| 亚洲片人在线观看| a在线观看视频网站| 亚洲一区二区三区色噜噜| 精品欧美国产一区二区三| 又紧又爽又黄一区二区| 青草久久国产| 三级国产精品欧美在线观看 | 国产精品影院久久| 久久久久久亚洲精品国产蜜桃av| 精品人妻1区二区| 欧美日韩福利视频一区二区| 91字幕亚洲| 非洲黑人性xxxx精品又粗又长| 一级黄色大片毛片| 亚洲精品久久国产高清桃花| 欧美高清成人免费视频www| 欧美日韩乱码在线| 在线十欧美十亚洲十日本专区| 黄色视频不卡| 亚洲av中文字字幕乱码综合| 国产亚洲欧美在线一区二区| 国产高清videossex| 国产免费av片在线观看野外av| av片东京热男人的天堂| 一区二区三区激情视频| 精品欧美国产一区二区三| 国产精品久久久久久久电影 | 精品国产乱子伦一区二区三区| 国产av一区二区精品久久| 国内久久婷婷六月综合欲色啪| 国产三级在线视频| 久久久久国产一级毛片高清牌| 国产精品久久久久久亚洲av鲁大| 欧美人与性动交α欧美精品济南到| 精品福利观看| 99riav亚洲国产免费| 变态另类成人亚洲欧美熟女| а√天堂www在线а√下载| 中文字幕高清在线视频| 99久久精品热视频| 狂野欧美激情性xxxx| 日韩精品免费视频一区二区三区| 国内精品久久久久久久电影| 97人妻精品一区二区三区麻豆| www.精华液| 午夜免费成人在线视频| 精品日产1卡2卡| 久久亚洲精品不卡| 欧美一级毛片孕妇| 午夜免费观看网址| 啦啦啦观看免费观看视频高清| 一进一出好大好爽视频| 精品第一国产精品| 中文字幕人成人乱码亚洲影| xxxwww97欧美| 一级a爱片免费观看的视频| av福利片在线| 精品久久久久久,| 99热这里只有精品一区 | 日本三级黄在线观看| 久久这里只有精品中国| 久久国产精品人妻蜜桃| 91麻豆精品激情在线观看国产| 国产精品电影一区二区三区| 亚洲性夜色夜夜综合| 精品高清国产在线一区| 欧美成人性av电影在线观看| 久久国产精品影院| 亚洲一区二区三区色噜噜| 久久精品91无色码中文字幕| 999久久久精品免费观看国产| 这个男人来自地球电影免费观看| 少妇粗大呻吟视频| 97超级碰碰碰精品色视频在线观看| 少妇粗大呻吟视频| 国产精品亚洲av一区麻豆| 久久亚洲精品不卡| 一卡2卡三卡四卡精品乱码亚洲| 岛国视频午夜一区免费看| 久久 成人 亚洲| 久久久久久国产a免费观看| 欧美 亚洲 国产 日韩一| 人成视频在线观看免费观看| 欧美精品啪啪一区二区三区| 久久久久国内视频| 中文亚洲av片在线观看爽| 国产欧美日韩一区二区精品| 精品国产超薄肉色丝袜足j| 亚洲人成伊人成综合网2020| 亚洲熟女毛片儿| 99国产精品一区二区蜜桃av| 亚洲成av人片在线播放无| 大型av网站在线播放| 亚洲国产日韩欧美精品在线观看 | 亚洲av五月六月丁香网| 国产精华一区二区三区| 一边摸一边做爽爽视频免费| 午夜老司机福利片| 日韩欧美精品v在线| 在线看三级毛片| 久久精品夜夜夜夜夜久久蜜豆 | 免费在线观看视频国产中文字幕亚洲| a级毛片在线看网站| 亚洲va日本ⅴa欧美va伊人久久| 桃红色精品国产亚洲av| 嫩草影视91久久| 亚洲人与动物交配视频| 男人舔女人下体高潮全视频| 九色国产91popny在线| 精品国产美女av久久久久小说| 天堂影院成人在线观看| 1024香蕉在线观看| 成熟少妇高潮喷水视频| 香蕉av资源在线| 日韩欧美在线乱码| 一个人免费在线观看的高清视频| 一本综合久久免费| 中文字幕熟女人妻在线| 国产精品野战在线观看| 国产高清有码在线观看视频 | 亚洲国产中文字幕在线视频| 99在线人妻在线中文字幕| 亚洲专区字幕在线| 黄频高清免费视频| 久久久久久免费高清国产稀缺| 亚洲人成伊人成综合网2020| 久久久久久人人人人人| 色av中文字幕| 十八禁网站免费在线|