• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-layer phenomena in petawatt laserdriven acceleration of heavy ions

    2024-03-19 02:36:58WanqingSU蘇琬晴XiguangCAO曹喜光ChunwangMA馬春旺YutingWANG王玉廷andGuoqiangZHANG張國強(qiáng)
    Plasma Science and Technology 2024年2期
    關(guān)鍵詞:張國強(qiáng)

    Wanqing SU (蘇琬晴),Xiguang CAO (曹喜光),Chunwang MA (馬春旺),Yuting WANG (王玉廷) and Guoqiang ZHANG (張國強(qiáng))

    1 College of Physics,Henan Normal University,Xinxiang 453007,People’s Republic of China

    2 Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,People’s Republic of China

    3 Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,People’s Republic of China

    4 University of Chinese Academy of Sciences,Beijing 100049,People’s Republic of China

    5 Institute of Nuclear Science and Technology,Henan Academy of Science,Zhengzhou 450046,People’s Republic of China

    Abstract Laser-accelerated high-flux-intensity heavy-ion beams are important for new types of accelerators.A particle-in-cell program (Smilei) is employed to simulate the entire process of Station of Extreme Light (SEL) 100 PW laser-accelerated heavy particles using different nanoscale short targets with a thickness of 100 nm Cr,Fe,Ag,Ta,Au,Pb,Th and U,as well as 200 nm thick Al and Ca.An obvious stratification is observed in the simulation.The layering phenomenon is a hybrid acceleration mechanism reflecting target normal sheath acceleration and radiation pressure acceleration,and this phenomenon is understood from the simulated energy spectrum,ionization and spatial electric field distribution.According to the stratification,it is suggested that high-quality heavy-ion beams could be expected for fusion reactions to synthesize superheavy nuclei.Two plasma clusters in the stratification are observed simultaneously,which suggest new techniques for plasma experiments as well as thinner metal targets in the precision machining process.

    Keywords: petawatt laser-plasma interaction,laser-driven heavy-ion accelerator for synthesizing superheavy nuclei,particle-in-cell,multi-layer phenomena,target fabrication

    1.Introduction

    The laser-plasma accelerator (LPA) is a new type of particle accelerator for future scientific research with three advantages over traditional particle accelerators: (1) its acceleration gradient is four orders of magnitude larger; (2) its pulse duration is three orders of magnitude shorter; (3) its transverse divergence is three orders of magnitude lower [1].Meanwhile,the potential applications of LPAs also lie in their compact size [2,3],low cost,simplicity and higher particle energies [4].With the generation of ultra-intense ultra-short lasers,research on laser-driven heavy-ion sources might lead to significant advances in the development of heavy-ion-driven inertial fusion [5],heavy-ion neoplasm therapy [6],generation of high-energy-density states in matter [7,8],cutting-edge research on quark-gluon plasma for heavy-ion collisions [9,10],the study of exotic nuclear structures [11] and material modification [12].Moreover,since the synthesis of superheavy element 118 (oganesson)in 2006,researchers are on an increasingly difficult voyage to explore heavier nuclei,and the new heavy-ion accelerator with a promising high-temperature and high-density plasma environment could provide new experimental opportunities[13,14].

    Experiments on particle acceleration by ultra-intense and ultra-short lasers are able to produce electron and ion beams;the acceleration of heavy ions to produce high-intensity heavy-ion beams remains to be explored.Simulated by a twodimensional (2D) particle-in-cell (PIC) code ELMIS [15],composite targets were shown be able to produce ion beams with an energy spread as low as 2% and Fe24+with energy up to 36 MeV/u at laser intensities of 1022W/cm2[16].Simulated results using a 2D PIC code KLAP2D [17,18]showed that a laser of 1 .1×1021W/cm2can turn out a singleenergy Fe24+beam with a peak energy of 100 MeV/u [19],and 2D PIC simulations with the EPOCH code [20] showed an acceleration ability with Au up to 1.2 GeV,which has been confirmed in experiments [21].

    Simulations suggest enhancement of the quality of heavyion beams from LPAs,giving stronger beam intensity and smaller divergence.The Station of Extreme Light (SEL),one of the end stations of the hard x-ray free electron laser system “SHINE” that is under construction in Shanghai,China,will provide high-intensity lasers up to 100 PW[22-24].In this work,using parameters of a SEL 100PW laser system,a 2D 3V (three-velocity) PIC code Smilei is employed to simulate the laser acceleration of ten types of metal targets,and the yields of ions and related properties are discussed.In section 2,a brief description of Smilei and the simulation parameters is presented.In section 3,available information about ions in the Smilei simulations is presented,including the ion spatial distribution,energy spectrum,ionization and spatial electric field distribution.In section 4,ion-beam parameters are further illustrated and discussed.The conclusions of this work are presented in section 5.

    2.Model description

    Smilei is a PIC code co-developed by high-performance computing specialists and physicists.In Smilei,particles satisfying Vlasov's equation are ionized in the electromagnetic field and gradually form a self-consistent dynamical system [25-27].The main theoretical formulae are

    wheresdenotes a given species consisting of particles with chargeqsand massms,x and p denote the position and momentum of a phase-space element,fs(x,p,t) is the distribution function of the plasma,is the relativistic Lorentz factor,cis the speed of light in a vacuum,and ?0,μ0,ρ and J are the vacuum permittivity and permeability and charge and current densities,respectively.

    As an open-source,user-friendly,multi-purpose PIC code,Smilei has been applied to a wide range of physicsrelated studies from relativistic laser-plasma interaction to astrophysics [28].The Smilei program can simulate the dynamics effectively,which includes the primary acceleration mechanisms of laser-target interaction of target normal sheath acceleration (TNSA) [29-34],break-out afterburner[35-43] and radiation pressure acceleration (RPA) [44].The RPA mechanism is also classified as laser-piston [45],holeboring [46,47],light-sail [48,49] and phase-stable acceleration [50].The basic steps in a Smilei simulation include the initialization of time,space and electromagnetic fields,the loading of particles,time step,space step and input parameters,and then obtaining information about particles by loop conformity calculation according to conservation laws and ion ionization theory of ions.

    Both Smilei and EPOCH,which is extracted from the paper of Wanget al,simulate a laser (a0=80) hitting an Au target ( 150 nm) [21],as shown in figure 1(a).The tendencies of all Au ion energy spectra are approximately same.The ions are accelerated by the ultra-intense laser and then form a beam.To improve the beam quality,a short target can be considered to produce a high-intensity,low-divergence beam.

    The simulation parameters are set as follows.A circularly polarized Gaussian laser with wavelength λ=1μm,peak intensityI=1023W/cm2,which corresponds to a normalized laser amplitude ofa0≈190 and full-width-athalf-maximum (FWHM) of 7.5 fs,and focal spot size of 5μm is set in this 2D PIC simulation.The size of the space is 6λ×10λ with even partition mesh grids of 600×1000,while the time step is equal to 22 as .The heavy-ion metal target is located atx0=1μm,and every cell contains 49 metal ions with an initial charge of 1+and 49 electrons at the metal target position; the density of the metal target is the same as the corresponding density of the metallic solid.The simulated targets are 10 metals of length 4μm and a thickness of 100 nm (Al and Ca) or 200 nm (Cr,Fe,Ag,Ta,Au,Pb,Th and U).

    3.Simulation results

    3.1.Multi-layer phenomenon of Th target

    The PIC simulation can obtain the phase space data for every ion that moves forward under the propulsion of the ultraintense laser.Figures 1(b),(d) and (f) depict the spatial distributions of ions for Th targets of thickness 50 nm,100 nm and 500 nm at 120 fs with dimensionless areal densities σ=(ne×d)/(ncr×λ)≈ 1.52,3.04 and 15.18,respectively (neis the electron density,ncris the critical density anddis the thickness of target).It can be found that,as the target thickness increases,there are obvious differences in the spatial distribution of ions.The specific manifestation is that ions in the thinnest target move forward collectively,ions in a thinner target move forward but gradually split into two layers and ions in a thick target only move forward partially.

    Figure 1.(a) The ion energy spectrum simulated by Smilei and EPOCH,which is extracted from the paper of Wang et al [21] for an a0=80 laser on a 150-nm thick Au target.Ion spatial distributions simulated by Smilei for the SEL 100 PW laser on a Th target at 120 fs.The target thickness is 50 nm ,100 nm (which shows stratification) and 500 nm in (b),(d) and (f),respectively.Ion spatial distributions simulated by Smilei for a laser with I=1023 W/cm2 and FWHM =15 fs ,I=1022 W/cm2 and FWHM =7.5 fs ,and I=1022 W/cm2 and FWHM =20 fs on a Th target of thickness 100 nm at 120 fs in (c),(e) and (g),respectively.(h) The front and back layer ion energy spectra and charge distribution simulated by Smilei for the SEL 100 PW laser on a 100 nm thick Th target at 60 fs.See section 4 for beam parameters.

    As a further comparison,the laser is given three different sets of parameters.Figures 1(c),(e) and (g) show the spatial distributions of ions for Th targets of thickness 100 nm at 120 fs ,with a laser peak intensityI=1023W/cm2and FWHM of 15 fs ,a laser peak intensityI=1022W/cm2and FWHM of 7.5 fs,and a laser peak intensityI=1022W/cm2and FWHM of 20 fs,respectively.Th ions are given a greater acceleration by the laser with a larger FWHM and laser peak intensity.However,there is no distinct stratification in any of the three simulations described above.

    Collectively,the major acceleration mechanism of the thinnest target is RPA and that of the thickest target is obviously TNSA.The thinner target shows a hybrid acceleration mechanism,comprising contains RPA and TNSA [51].When the thickness of the Th target is 100 nm,the major acceleration mechanism for higher-energy lasers is RPA,whereas that for lower-energy lasers is TNSA.This is distinct from the conventional RPA or TNSA mechanism and is a highly intriguing new phenomenon that allows us to gain an in-deepth understanding of abnormal behaviors in the laser-accelerated heavy-ion process.

    The front and back layer energy spectra of Th ions are shown in figure 1(h); these are analyzed simulating a 100 nm Th target.The first peak is located atE=0,which overlaps with the energy spectrum of the latter Th ions(X<1.5μm ).The second peak appears nearE=1 GeV,which overlaps with the energy spectrum of the former Th ions (X≥1.5μm).We conclude that both form the final energy spectrum of Th ions and may induce the double-layer plasma of the metal target.

    Figure 2.(a) The charge distribution simulated by Smilei for the SEL 100 PW laser on a Th target of thickness of 100 nm at 60 fs.Electric field intensity distributions simulated by Smilei for the SEL 100 PW laser on a Th target of thickness of 100 nm at (b) 20 fs ,(c)40 fs and (d) 60 fs.

    The ionization rate of heavy ions is determined by the Ammosov-Delone-Krainov equation for each electron ionized in the electromagnetic field.Ionization occurs cumulatively as time increases,with ionization energy being converted into kinetic energy,and a new self-consistent dynamical system is formed.For this simulation,the ultraintense laser accelerates and ionizes Th ions,then new plasma images are constantly iterating and eventually Th ions that are fully ionized may obtain the maximum energy.For the 100-nm thick Th target,the charge distribution of Th ions at 60 fs is shown in figure 2(a).The minimum ionization state of Th ions is 46+,and these are mainly distributed in the position of the initial target.The maximum ionization state of Th ions reaches 89+,and these are mostly scattered in the end of the plasma cluster.Moreover,there are higher ionization states of Th ions spreading over the edge of the plasma cluster,and ions in intermediate ionization states are sporadically located around the target.The above discussion indicates that the approximate location of ions can be inferred from the degree of ionization.For instance,the smaller the charge state of the ion,the closer its position is to the target,while the larger the charge state of the ion,the further its position is from the target.

    The ions are influenced by the Lorentz force,and their motions inversely change the collective electromagnetic field,so the tendency of ion movement can also be visible from the evolution of the spatial electric field.For the same selection of a 100-nm thick Th target,the evolution of its spatial electric field intensity is shown in figures 2(b)-(d),where ω=1 is the reference frequency.The electric field intensity at both ends ofx-space is higher than that at the center position at 20 fs,as shown in figure 2(b).The electric field intensity at the edge ofx-yspace is larger than that in the middle,and the strength of the electric field increases from the center to the outside at 40 fs,as shown in figure 2(c).Figure 2(d) shows the distribution at 60 fs,which is similar to figure 2(c); however,the electric field intensity at the middle position presents a weak-strong-weak image,which may be the physical reason for the phenomenon of the layering of Th ions.

    The layering phenomenon demonstrates a three-stage evolution based on the results for the energy spectrum,ion ionization and electric field [52].

    (1) The super-intense laser strikes the surface of the dense target; this is called surface layer interaction.

    (2) The laser interacts with the plasma,which includes an ionization reaction.The front layer moves forward quickly,while the back layer moves slowly.

    (3) Stratification is generated.Two cluster plasmas move forward together.

    3.2.Multi-layer phenomena of metal targets

    Based on the pictures of the spatial distribution of the thinner nanometer-thick Th target,the stratifications are also seen in simulations of other metal targets.In the simulations for Al and Ca targets of thickness 200 nm,and Cr,Fe,Ag,Ta,Au,Pb,Th and U targets of thickness 100 nm at 60 fs,as shown in figures 3(a)-(j),distinct layering phenomena in spatial distributions can be seen.The delamination of metal targets with different target thicknesses is very distinctive due to the differences in atomic number,density,ionization properties,etc [53-55].Thicker targets containing lighter nuclei show delamination,while targets containing heavier nuclei are relatively harder to accelerate.Besides,the spatial distributions of targets with the same target thickness and different nuclei also differ from each other.Further discussion on this can be found below.

    Since the energy spectra of ions obtained from a single simulation of the above metal targets fluctuate obviously,we set different random number seeds in 10 simulations for each metal target and made an average to obtain the final energy of the ion.After the aforementioned procedure,the energy spectra reflecting the real ion energies were generated with more distinct trends.

    The energy spectra of metal ions with various targets of different thicknesses at 60 fs are displayed in figure 3.When the target thickness is 200 nm,the width of the Ca ion energy spectrum is larger than that of Al ions,as shown in figure 3(k).Their dimensionless areal densities are 12.04 and 4.61,respectively.Other metal targets (100 nm,Cr and Fe ions with the narrowest energy spectra) have almost the same energy distribution,meanwhile the maximum energy of Pb and Th ions with the widest energy spectra can reach 9-10 GeV.Their dimensionless areal densities are 8.32,8.46,3.30 and 3.04,respectively.The energy distributions of Ag,Ta,Au and U ions are similar to each other,and their energy spectra are in the middle of the range compared with other metal ions,as shown in figure 3(l).Their dimensionless areal densities are 5.87,5.55,5.90 and 4.83,respectively.In addition,there are two peaks in all the energy spectra,with the energy spectra of Cr and Fe ions having the most pronounced peaks.

    4.Discussion

    Figure 3.Ion spatial distributions simulated by Smilei for the SEL 100 PW laser on different metal targets: (a),(b) Al and Ca targets of thickness 200 nm at 60 fs ; (c)-(j) Cr,Fe,Ag,Ta,Au,Pb,Th and U targets,respectively,with a thickness of 100 nm at 60 fs.Ion energy spectra simulated by Smilei for SEL 100 PW laser on different metal targets: (k) Al and Ca targets with a thickness of 200 nm at 60 fs; (l)Cr,Fe,Ag,Ta,Au,Pb,Th and U targets with a thickness of 100 nm at 60 fs.(m) Energy distribution diagrams for different metal ions were simulated as above and obtained experimentally,as detailed in section 4.

    When it comes to the energy of these ions,there have already been some experiments conducted to measure ion energy.The average and maximum energies of these simulations,with experimental energies,are displayed in figure 3(m).The experimental energies of Al are 4 MeV/u,6.1 MeV/u and 11.5 MeV/u,respectively,in a laser-driven ion acceleration experiment by Neelyet alwith a 1019W/cm2laser and 100 nm Al target [56] and by Palaniyappanet alwith 2×1020W/cm2and 8×1020W/cm2lasers and 110 nm and 250 nm Al targets [57].The experimental energy of Au is 3.6 MeV/u in the laser-driven ion acceleration experiment by Wanget alwith a 1022W/cm2laser and 150 nm Au target [21].The experimental energy of Pb is 2.1 MeV/u in the laser-driven ion acceleration experiment by Clarket alwith a 5×1019W/cm2laser and 2 mm Pb target [58].As the laser intensity increases,a higher ion energy was recorded for a nanometer metal target.The experimental energies of Fe,Ag and Au were 16.1 MeV/u,26 MeV/u and 6.1 MeV/u,respectively,and three of these are higher than the average energy of simulations and come from composite targets [21,59,60].

    According to the spatial distribution and ionization of heavy ions,a 2D target ( 4μm×0.1 or 0.2μm) can be extended to a 3D target ( 4μm×4μm×0.1 or 0.2μm),and the corresponding ion beam intensity can be obtained from equation (6),

    wherelis the length of the chosen space in thex-direction,Nis the number of ions,vis the average velocity of ions,is the average charge number of ions in the chosen space andeis the unit electric charge.The expression for the divergence of the ion beam in 2D space can be described by equation (7)

    The region of the ion beam isX∈[1.5μm,6μm] andY∈[3μm,7μm] .The conversion efficiency η can be obtained fromEions/Elaser,whereEionsis the energy of all ions andElaser≈ 212 J is the energy of the laser presented above.The beam intensity,divergence and laser-to-ion energy conversion efficiency of all metal ions can be obtained from the above equations and compared with the respective results of simulations at 60 fs; these are listed in table 1.

    Compared with the beam intensity of 1.8 mA obtained by Dubenkovet alfor Ta ions accelerated by a 10 J/μs CO2laser in 1996 [12],this result is about five to six orders of magnitude higher.While compared with the beam intensity of 1.4 MA obtained by Wanget alfor Fe ions simulated with a linearly polarized laser intensityI0=1.1×1021W/cm2and an 800-nm thick target in 2014 [19],this result is of the same order of magnitude.The stronger laser and the thinner metaltarget separately cause the beam intensity in this simulation to be larger than both the above.In some way they also reflect the variability of results from different acceleration mechanisms.Here the target is small and pure metal,and the conversion efficiency is thereby relatively low compared with the efficiency of 30% calculated by Domanskiet alfor a 100 nm Pb target with a 20 nm pre-plasma layer at the front irradiated by a 1023W/cm2laser (corresponding to laser energy of 270 J ,pulse duration 30 fs and focal spot 3μm ) [55],8% calculated by Petrovet alfor a 20 nm Au target with a 5 nm contaminant layer on the back irradiated by a 3×1021W/cm2laser [53] and 15% - 19% experimentally acquired by Badziaket alfor a 3μm Au target with a 5μm CH ablator at the front irradiated by a 200 J laser [61].Furthermore,the parameters controlling the stratification are not only the target thickness but also the laser parameters,of which the main factor is the laser energy,including the FWHM and focal spot size,which should be comparable to the length of the target.In other words,stronger lasers might be able to stratify thicker targets when the parameters of both the laser and the target are appropriate.

    Table 1.Target thicknesses (D),intensities (L) and divergences ( ε)of the ion beams,and laser-to-ion energy conversion efficiencies ( η)simulated by Smilei for the SEL 100 PW laser.

    The LPA,as a new type of accelerator,might become a unique experimental approach for exploring nucleosynthesis,such as superheavy nuclei.The maximum energy of the Th ion beam above is about 43.9 MeV/u,which is up to 7.5 - 6.1 MeV/u of the multinucleon transfer reaction with the Texas A&M University (TAMU) Cyclotron [62].A LPA with a 100 mA class Au+ion source has been well designed[63],and the low divergence of the primary ion beam may greatly simplify the design of the experimental setup.Additionally,a LPA might be used to separate highly ionized heavy ions with different charge states in order to further improve the beam quality and produce a pure beam of highflux-intensity heavy ions in future [55].

    In addition,a thinner target can be prepared when the front layer is peeled off,and there is no doubt that a short metal target is key to this manufacturing process.We can then splice into one piece of large and ultra-thin foil or put a coat on the surface of the material directly,such as active colloidal particles.

    5.Conclusion

    In conclusion,we used the PIC program Smilei to simulate the SEL 100 PW ultra-intense ultra-short laser hitting an easy-to-manufacture and accelerated metal target.Stratification is seen,and the motion,energy and charge of metal heavy ions in an electric field are discussed as well.Ion energies can reach an order of magnitude of 10 GeV,the ion beam intensity is about 1 MA and the divergence is about 0.05 mm×mradin this simulation.Unique scenarios in the RPA and TNSA hybrid acceleration mechanisms are the intriguing layering phenomena,which can provide a new solution to laser selection and the type and size of metal targets with heavy nuclei in future experiments.This process can be applied to study LPAs for heavy-ion beams,laser manufacturing of thinner metal targets and heavy-ion fusion reactions in a plasma environment.The better performance of the target is likely to be used in the future research,such as heat resistance and no ready generation of other compounds like oxides,carbides or nitrides [36].However,the layering phenomenon still has to be confirmed and investigated by probing ion motion trajectories or energy spectra in experiments.It is innovative to optimize the heavy-ion beam generated by a LPA.If better conditions for heavy-ion nuclear reactions can be achieved using a high-power laser source,new superheavy nuclei can be explored or the chart of nuclides may be enlarged [64,65].

    Acknowledgments

    The authors are grateful to X.Q.Yan at Peking University,H.W.Wang at Shanghai Advanced Research Institute,Chinese Academy of Sciences and J.Pu,K.X.Cheng,Y.F.Guo and C.Y.Qiao at Henan Normal University for fruitful discussion.Cao and Su are grateful for support from the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB34030000),the National Key R & D Program of China (No.2022YFA1602404),National Natural Science Foundation of China (No.U1832129) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No.2017309).Ma,Su and Wang thank the Program for Innovative Research Team (in Science and Technology) in University of Henan Province of China (No.21IRTSTHN011).

    猜你喜歡
    張國強(qiáng)
    社??諕毂祝阂粚?zhǔn)親家失控的界限感
    SF6放電的發(fā)射光譜特性分析與放電識別
    張國強(qiáng) 我就是這行里的戲蟲子
    時代人物(2017年3期)2017-07-16 21:54:49
    答完形填空題的三大易錯點(diǎn)
    愛的力量
    嫁給警察
    嫁給警察
    文藝論壇(2016年19期)2016-11-21 11:59:01
    北京首例房產(chǎn)證加名案始末王平英
    百姓生活(2012年9期)2012-04-29 12:08:22
    張國強(qiáng):從“小人物”到“大明星”
    名人傳記(2009年10期)2009-05-17 01:45:23
    張國強(qiáng):我的人生不順溜
    51午夜福利影视在线观看| 欧美成人性av电影在线观看| www日本黄色视频网| 精品人妻偷拍中文字幕| 男女下面进入的视频免费午夜| 高清日韩中文字幕在线| 九九热线精品视视频播放| 丝袜美腿在线中文| 亚洲va日本ⅴa欧美va伊人久久| 日日夜夜操网爽| 九九在线视频观看精品| 午夜免费观看网址| 在线观看午夜福利视频| 国产精品美女特级片免费视频播放器| 亚洲不卡免费看| 老司机深夜福利视频在线观看| 又粗又爽又猛毛片免费看| 国产精品,欧美在线| 亚洲黑人精品在线| www.熟女人妻精品国产| 欧美不卡视频在线免费观看| avwww免费| 男女之事视频高清在线观看| 桃色一区二区三区在线观看| 在线播放无遮挡| 一进一出抽搐gif免费好疼| 亚洲精品色激情综合| 欧美成人一区二区免费高清观看| 级片在线观看| 99视频精品全部免费 在线| 一区福利在线观看| 久久天躁狠狠躁夜夜2o2o| 色av中文字幕| 99久久九九国产精品国产免费| 亚洲欧美日韩无卡精品| 免费观看人在逋| 非洲黑人性xxxx精品又粗又长| 成人一区二区视频在线观看| 在线观看av片永久免费下载| 天天添夜夜摸| a在线观看视频网站| 成人午夜高清在线视频| 青草久久国产| 桃色一区二区三区在线观看| 亚洲av电影不卡..在线观看| 脱女人内裤的视频| 国产精品国产高清国产av| 亚洲精品在线美女| 97人妻精品一区二区三区麻豆| 亚洲精品在线观看二区| 亚洲中文字幕一区二区三区有码在线看| 国产爱豆传媒在线观看| 无遮挡黄片免费观看| 久久精品国产亚洲av香蕉五月| 亚洲18禁久久av| 毛片女人毛片| 国产伦精品一区二区三区四那| 老熟妇仑乱视频hdxx| 免费高清视频大片| 久久久国产成人免费| 国产精品电影一区二区三区| 久久人人精品亚洲av| 免费看美女性在线毛片视频| 99热这里只有精品一区| 一级黄色大片毛片| 麻豆国产97在线/欧美| 久久久国产成人免费| 国产激情欧美一区二区| 好男人电影高清在线观看| 女生性感内裤真人,穿戴方法视频| 99精品久久久久人妻精品| 看免费av毛片| 我的老师免费观看完整版| 亚洲国产欧洲综合997久久,| 精品一区二区三区视频在线 | 老汉色∧v一级毛片| 老汉色av国产亚洲站长工具| 国内精品久久久久久久电影| 18+在线观看网站| 亚洲精品一区av在线观看| 欧美性感艳星| 法律面前人人平等表现在哪些方面| 国产精品98久久久久久宅男小说| 男女做爰动态图高潮gif福利片| 色精品久久人妻99蜜桃| 可以在线观看毛片的网站| ponron亚洲| 亚洲国产欧洲综合997久久,| 日本黄色片子视频| 亚洲国产欧美网| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久人妻精品电影| 校园春色视频在线观看| 国产极品精品免费视频能看的| 免费高清视频大片| 桃色一区二区三区在线观看| 在线观看66精品国产| 亚洲激情在线av| 嫁个100分男人电影在线观看| 国产成人av激情在线播放| av在线蜜桃| 午夜福利免费观看在线| 欧美色欧美亚洲另类二区| 欧美乱码精品一区二区三区| 热99在线观看视频| 成人性生交大片免费视频hd| 亚洲国产欧美网| 91av网一区二区| 免费人成视频x8x8入口观看| 国产又黄又爽又无遮挡在线| 欧美又色又爽又黄视频| 母亲3免费完整高清在线观看| 天堂影院成人在线观看| 此物有八面人人有两片| 99久久无色码亚洲精品果冻| 国产色婷婷99| 午夜福利18| 99国产精品一区二区蜜桃av| 脱女人内裤的视频| 欧美bdsm另类| 欧美乱妇无乱码| av专区在线播放| 最好的美女福利视频网| 一边摸一边抽搐一进一小说| 窝窝影院91人妻| 午夜福利在线在线| 天天躁日日操中文字幕| 欧美最黄视频在线播放免费| 国产野战对白在线观看| 中国美女看黄片| 99热这里只有是精品50| 日韩成人在线观看一区二区三区| a在线观看视频网站| 怎么达到女性高潮| 久久欧美精品欧美久久欧美| 色播亚洲综合网| 99热这里只有精品一区| 成人国产一区最新在线观看| 国产精品女同一区二区软件 | 美女 人体艺术 gogo| 特级一级黄色大片| 亚洲18禁久久av| 国产单亲对白刺激| 日本黄色视频三级网站网址| 叶爱在线成人免费视频播放| xxx96com| www日本黄色视频网| 国产成人影院久久av| 国内精品久久久久精免费| 久久香蕉精品热| 19禁男女啪啪无遮挡网站| 桃色一区二区三区在线观看| 精品一区二区三区视频在线观看免费| 免费大片18禁| 国产在线精品亚洲第一网站| 国产真实伦视频高清在线观看 | 香蕉丝袜av| svipshipincom国产片| 亚洲中文字幕一区二区三区有码在线看| 露出奶头的视频| 国产单亲对白刺激| 国产精品乱码一区二三区的特点| 又黄又粗又硬又大视频| 母亲3免费完整高清在线观看| 蜜桃久久精品国产亚洲av| 亚洲欧美日韩高清在线视频| 欧美激情久久久久久爽电影| 丝袜美腿在线中文| 欧美另类亚洲清纯唯美| 级片在线观看| 老汉色∧v一级毛片| 欧美日韩中文字幕国产精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 久久久国产精品麻豆| 色吧在线观看| 国产一区二区亚洲精品在线观看| 成人午夜高清在线视频| 51午夜福利影视在线观看| 亚洲欧美精品综合久久99| 少妇熟女aⅴ在线视频| 欧美一区二区精品小视频在线| 久久久久久国产a免费观看| 欧美成狂野欧美在线观看| 人妻久久中文字幕网| 午夜免费男女啪啪视频观看 | 天堂av国产一区二区熟女人妻| 欧美绝顶高潮抽搐喷水| av在线蜜桃| 男女做爰动态图高潮gif福利片| 国内毛片毛片毛片毛片毛片| 无人区码免费观看不卡| 国产成人av激情在线播放| 亚洲午夜理论影院| 欧美+亚洲+日韩+国产| 丰满的人妻完整版| 制服丝袜大香蕉在线| 在线免费观看不下载黄p国产 | 久久久精品欧美日韩精品| 欧美乱妇无乱码| 中文字幕人妻熟人妻熟丝袜美 | 两个人看的免费小视频| 啦啦啦韩国在线观看视频| 每晚都被弄得嗷嗷叫到高潮| 国产精品一及| 在线观看免费午夜福利视频| 久久久久久久久中文| 91av网一区二区| 嫩草影院入口| 欧美最黄视频在线播放免费| 神马国产精品三级电影在线观看| 九九热线精品视视频播放| 给我免费播放毛片高清在线观看| 国内精品久久久久精免费| 亚洲 国产 在线| 性色av乱码一区二区三区2| 美女 人体艺术 gogo| 欧美绝顶高潮抽搐喷水| 亚洲片人在线观看| 成人无遮挡网站| 免费在线观看日本一区| 色在线成人网| 一区二区三区免费毛片| 级片在线观看| 久久精品人妻少妇| 丝袜美腿在线中文| 天堂网av新在线| 日韩欧美国产一区二区入口| 51午夜福利影视在线观看| 黄色丝袜av网址大全| h日本视频在线播放| 久久精品国产亚洲av香蕉五月| 亚洲七黄色美女视频| 免费看日本二区| 三级男女做爰猛烈吃奶摸视频| 亚洲国产欧洲综合997久久,| 国产成人aa在线观看| 午夜视频国产福利| 欧美+亚洲+日韩+国产| 精品久久久久久,| av在线天堂中文字幕| 精品一区二区三区视频在线 | 亚洲国产精品999在线| 国产欧美日韩精品亚洲av| 99国产综合亚洲精品| 亚洲成a人片在线一区二区| 波多野结衣巨乳人妻| 久久欧美精品欧美久久欧美| 精品久久久久久久毛片微露脸| 欧美大码av| 国产成人系列免费观看| 在线看三级毛片| 999久久久精品免费观看国产| 亚洲av第一区精品v没综合| 国产精品野战在线观看| 亚洲18禁久久av| 内地一区二区视频在线| 成人三级黄色视频| aaaaa片日本免费| 精品一区二区三区人妻视频| 一边摸一边抽搐一进一小说| 亚洲欧美日韩东京热| 久久香蕉国产精品| 国产成人a区在线观看| 国产不卡一卡二| 51国产日韩欧美| 亚洲 欧美 日韩 在线 免费| 欧美黑人巨大hd| 欧美乱码精品一区二区三区| 露出奶头的视频| 久久久精品大字幕| 亚洲在线自拍视频| 午夜a级毛片| 国产视频内射| 日韩欧美国产一区二区入口| 18禁黄网站禁片午夜丰满| 亚洲成人免费电影在线观看| 亚洲五月天丁香| 欧美乱色亚洲激情| 90打野战视频偷拍视频| 免费人成在线观看视频色| 热99在线观看视频| 国产单亲对白刺激| 久久国产乱子伦精品免费另类| 国产成人aa在线观看| 日本黄色视频三级网站网址| 一本久久中文字幕| 免费av不卡在线播放| 性色av乱码一区二区三区2| 啦啦啦观看免费观看视频高清| 午夜福利欧美成人| aaaaa片日本免费| 亚洲中文字幕日韩| 久久天躁狠狠躁夜夜2o2o| 99国产精品一区二区三区| 露出奶头的视频| 真实男女啪啪啪动态图| 最新中文字幕久久久久| 女人被狂操c到高潮| 一进一出抽搐gif免费好疼| 日韩高清综合在线| 欧美最新免费一区二区三区 | 日本一二三区视频观看| 亚洲成人免费电影在线观看| 夜夜爽天天搞| 少妇高潮的动态图| 叶爱在线成人免费视频播放| 91九色精品人成在线观看| 国产高清视频在线观看网站| 天堂网av新在线| 国产伦精品一区二区三区视频9 | 亚洲成人精品中文字幕电影| 欧美黄色淫秽网站| 国产真实伦视频高清在线观看 | 给我免费播放毛片高清在线观看| 亚洲 欧美 日韩 在线 免费| 18禁裸乳无遮挡免费网站照片| 成人高潮视频无遮挡免费网站| 久久久久久国产a免费观看| 夜夜躁狠狠躁天天躁| 91麻豆精品激情在线观看国产| 欧美3d第一页| 亚洲自拍偷在线| 午夜激情欧美在线| 婷婷精品国产亚洲av在线| av女优亚洲男人天堂| 中文亚洲av片在线观看爽| 色精品久久人妻99蜜桃| 一级黄色大片毛片| 久久久久九九精品影院| 亚洲人成网站在线播放欧美日韩| www.www免费av| 亚洲专区国产一区二区| 在线观看午夜福利视频| 成人特级黄色片久久久久久久| 嫩草影院入口| 欧美区成人在线视频| 日本a在线网址| 国产熟女xx| 久久久久久久午夜电影| 成人欧美大片| 亚洲av日韩精品久久久久久密| 国产激情欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区| 少妇的逼水好多| 床上黄色一级片| 欧美一级a爱片免费观看看| 免费av毛片视频| 亚洲国产精品久久男人天堂| 久久久久久久久大av| 国产av一区在线观看免费| 热99在线观看视频| 级片在线观看| 日本精品一区二区三区蜜桃| 一级毛片女人18水好多| 亚洲内射少妇av| 免费观看精品视频网站| 久久精品综合一区二区三区| 看黄色毛片网站| 午夜福利免费观看在线| 国产午夜精品论理片| 18禁在线播放成人免费| 欧美乱色亚洲激情| 亚洲欧美日韩卡通动漫| av福利片在线观看| 青草久久国产| 国产高潮美女av| 麻豆成人午夜福利视频| 国产三级中文精品| xxxwww97欧美| 亚洲国产精品999在线| 少妇的丰满在线观看| 国产野战对白在线观看| 色综合欧美亚洲国产小说| 精华霜和精华液先用哪个| 欧美3d第一页| 最新中文字幕久久久久| 午夜久久久久精精品| 久久精品国产清高在天天线| 欧美一级a爱片免费观看看| 国产欧美日韩精品亚洲av| 欧美最黄视频在线播放免费| 一个人免费在线观看的高清视频| 特级一级黄色大片| 一个人观看的视频www高清免费观看| 免费无遮挡裸体视频| 69人妻影院| 国产精品乱码一区二三区的特点| 夜夜爽天天搞| 亚洲 欧美 日韩 在线 免费| 真人一进一出gif抽搐免费| 成人av一区二区三区在线看| 18美女黄网站色大片免费观看| 国产亚洲精品av在线| 国产男靠女视频免费网站| 女人高潮潮喷娇喘18禁视频| 国产精品 国内视频| 最近最新中文字幕大全电影3| 男人舔奶头视频| 精品免费久久久久久久清纯| 国内久久婷婷六月综合欲色啪| 色哟哟哟哟哟哟| 在线观看美女被高潮喷水网站 | 一进一出好大好爽视频| 两人在一起打扑克的视频| 在线观看免费视频日本深夜| 亚洲精品色激情综合| 热99re8久久精品国产| 亚洲av五月六月丁香网| 亚洲精品美女久久久久99蜜臀| 一卡2卡三卡四卡精品乱码亚洲| 亚洲专区中文字幕在线| 91久久精品国产一区二区成人 | 色在线成人网| 禁无遮挡网站| 熟妇人妻久久中文字幕3abv| av天堂在线播放| 国产亚洲av嫩草精品影院| 亚洲国产精品合色在线| 亚洲av日韩精品久久久久久密| 亚洲精品456在线播放app | 最近最新中文字幕大全电影3| av中文乱码字幕在线| 国产麻豆成人av免费视频| av天堂在线播放| 国产单亲对白刺激| 国产精品久久久人人做人人爽| 真实男女啪啪啪动态图| 丰满乱子伦码专区| 特级一级黄色大片| 国模一区二区三区四区视频| 白带黄色成豆腐渣| 51午夜福利影视在线观看| 亚洲无线观看免费| 中文字幕人妻丝袜一区二区| 国产黄色小视频在线观看| 热99在线观看视频| 在线观看日韩欧美| h日本视频在线播放| а√天堂www在线а√下载| 啦啦啦观看免费观看视频高清| 美女高潮喷水抽搐中文字幕| 少妇的丰满在线观看| 黄片大片在线免费观看| 欧美+日韩+精品| 精品国产三级普通话版| 成年免费大片在线观看| 精品人妻1区二区| 午夜激情欧美在线| 91久久精品电影网| 亚洲精华国产精华精| 香蕉久久夜色| 久久精品综合一区二区三区| 精品一区二区三区av网在线观看| 免费电影在线观看免费观看| 亚洲欧美激情综合另类| 一区二区三区激情视频| 久久国产精品人妻蜜桃| 夜夜看夜夜爽夜夜摸| 搡老妇女老女人老熟妇| 怎么达到女性高潮| 2021天堂中文幕一二区在线观| 国产亚洲欧美98| 男女午夜视频在线观看| 无人区码免费观看不卡| 国产高清视频在线播放一区| 国产精品嫩草影院av在线观看 | 草草在线视频免费看| 97超级碰碰碰精品色视频在线观看| 久久久久久人人人人人| 一本一本综合久久| 在线天堂最新版资源| 国产精品 国内视频| 国产黄片美女视频| 亚洲狠狠婷婷综合久久图片| 丁香六月欧美| 精品国产美女av久久久久小说| 美女高潮的动态| 亚洲精品一区av在线观看| 亚洲人与动物交配视频| ponron亚洲| 免费在线观看成人毛片| 大型黄色视频在线免费观看| 欧美成狂野欧美在线观看| 夜夜看夜夜爽夜夜摸| 中国美女看黄片| 国产精品98久久久久久宅男小说| 香蕉丝袜av| 伊人久久精品亚洲午夜| 最近最新中文字幕大全免费视频| 9191精品国产免费久久| 叶爱在线成人免费视频播放| 国产伦一二天堂av在线观看| 天天添夜夜摸| 欧美乱码精品一区二区三区| 听说在线观看完整版免费高清| 免费在线观看日本一区| 19禁男女啪啪无遮挡网站| 免费人成在线观看视频色| 国产成人福利小说| 国产 一区 欧美 日韩| 免费电影在线观看免费观看| 亚洲国产精品久久男人天堂| 在线观看一区二区三区| 色尼玛亚洲综合影院| 亚洲自拍偷在线| 亚洲成av人片免费观看| 一区二区三区激情视频| 99riav亚洲国产免费| 亚洲成人免费电影在线观看| 久久天躁狠狠躁夜夜2o2o| 一个人看的www免费观看视频| 一区二区三区免费毛片| 身体一侧抽搐| 国产淫片久久久久久久久 | 国产精品电影一区二区三区| 国产一区二区在线av高清观看| 99久久99久久久精品蜜桃| av视频在线观看入口| h日本视频在线播放| 两个人视频免费观看高清| 日本熟妇午夜| 国产高清有码在线观看视频| 国产精品国产高清国产av| 亚洲欧美一区二区三区黑人| 国产免费男女视频| 乱人视频在线观看| 丁香六月欧美| 岛国视频午夜一区免费看| 99精品在免费线老司机午夜| 床上黄色一级片| 99久久精品一区二区三区| 国产精品日韩av在线免费观看| 波多野结衣巨乳人妻| 国产精品精品国产色婷婷| 国产探花极品一区二区| 69av精品久久久久久| 婷婷精品国产亚洲av| 国产精品久久视频播放| 一个人看的www免费观看视频| 欧美成狂野欧美在线观看| 日韩欧美精品v在线| 观看免费一级毛片| 精品免费久久久久久久清纯| 亚洲成人久久性| 精品日产1卡2卡| 19禁男女啪啪无遮挡网站| 亚洲av五月六月丁香网| 三级毛片av免费| 色综合亚洲欧美另类图片| 国产亚洲精品av在线| 男人的好看免费观看在线视频| 久久国产乱子伦精品免费另类| 亚洲在线自拍视频| 亚洲欧美日韩卡通动漫| 亚洲 国产 在线| 在线播放国产精品三级| 琪琪午夜伦伦电影理论片6080| av福利片在线观看| 国产亚洲欧美98| 国产高清视频在线观看网站| 岛国在线观看网站| 国产成人av教育| 国产精品久久久久久精品电影| 亚洲午夜理论影院| 毛片女人毛片| 日韩 欧美 亚洲 中文字幕| 欧美最黄视频在线播放免费| 男女视频在线观看网站免费| 久久久久亚洲av毛片大全| 久久人妻av系列| 观看美女的网站| 成人av一区二区三区在线看| 亚洲国产精品久久男人天堂| 听说在线观看完整版免费高清| 精品国产超薄肉色丝袜足j| 亚洲精品456在线播放app | 黄色女人牲交| 久久精品国产综合久久久| 国产精华一区二区三区| 精华霜和精华液先用哪个| 国产精品野战在线观看| 在线观看午夜福利视频| 成人三级黄色视频| 国产激情偷乱视频一区二区| 欧美xxxx黑人xx丫x性爽| 亚洲自拍偷在线| 成人一区二区视频在线观看| 一区二区三区免费毛片| 精品久久久久久,| 成人一区二区视频在线观看| 18美女黄网站色大片免费观看| 色在线成人网| 国产av麻豆久久久久久久| 中国美女看黄片| 亚洲国产精品sss在线观看| 日日夜夜操网爽| 亚洲精品久久国产高清桃花| 亚洲精品日韩av片在线观看 | 日本精品一区二区三区蜜桃| 亚洲av五月六月丁香网| 两人在一起打扑克的视频| 久久精品影院6| av天堂中文字幕网| 国产单亲对白刺激| 久久精品综合一区二区三区| 一区二区三区激情视频| 欧美另类亚洲清纯唯美| a级毛片a级免费在线| 国产亚洲精品久久久久久毛片| 老司机午夜福利在线观看视频| 国产三级黄色录像| 精品不卡国产一区二区三区| 又爽又黄无遮挡网站| 国产黄a三级三级三级人| 欧美最新免费一区二区三区 |