• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of Al,Mg,Ca,and Zn in copper slag by LIBS combined with calibration curve and PLSR methods

    2024-03-19 02:37:24JunweiJIA賈軍偉ZhifengLIU劉志峰CongyuanPAN潘從元andHuaqinXUE薛驊骎
    Plasma Science and Technology 2024年2期
    關鍵詞:志峰

    Junwei JIA (賈軍偉),Zhifeng LIU (劉志峰),Congyuan PAN (潘從元) and Huaqin XUE (薛驊骎)

    1 School of Mechanical Engineering,Hefei University of Technology,Hefei 230009,People’s Republic of China

    2 Hefei GStar Intelligent Control Technical Co.Ltd.,Hefei 230088,People’s Republic of China

    3 Anhui Industrial Combustion Monitoring Technology and Equipment Engineering Laboratory,Hefei 230088,People’s Republic of China

    Abstract The precise measurement of Al,Mg,Ca,and Zn composition in copper slag is crucial for effective process control of copper pyrometallurgy.In this study,a remote laser-induced breakdown spectroscopy (LIBS) system was utilized for the spectral analysis of copper slag samples at a distance of 2.5 m.The composition of copper slag was then analyzed using both the calibration curve (CC) method and the partial least squares regression (PLSR) analysis method based on the characteristic spectral intensity ratio.The performance of the two analysis methods was gauged through the determination coefficient (R2),average relative error (ARE),root mean square error of calibration (RMSEC),and root mean square error of prediction (RMSEP).The results demonstrate that the PLSR method significantly improved both R2 for the calibration and test sets while reducing ARE,RMSEC,and RMSEP by 50% compared to the CC method.The results suggest that the combination of LIBS and PLSR is a viable approach for effectively detecting the elemental concentration in copper slag and holds potential for online detection of the elemental composition of high-temperature molten copper slag.

    Keywords: copper slag,element,remote,LIBS,PLSR

    1.Introduction

    In copper pyrometallurgy,copper slag is a vital product,and accurate control of the smelting process necessitates timely updates regarding the slag viscosity.This is because viscosity governs both heat and quality transfer in the slag and has a direct relationship with the loss of valuable elements and the durability of the smelting furnace.Al,Mg,and Ca content in the slag directly affects its viscosity,while Zn is a crucial element in the smelting process.Therefore,a precise and efficient determination of their respective concentrations is of great significance in achieving precise control of production processes.

    Currently,chemical analysis methods such as X-ray fluorescence analysis (XRF) [1,2] and inductively coupled plasma emission spectroscopy (ICP) [3] are commonly employed for determining the composition of copper slag.However,these methods require meticulous sampling and preparation procedures,resulting in long analysis time,which is incapable of meeting the demands of precise process control for the rapid analysis of copper slag composition.On the other hand,Laser-Induced Breakdown Spectroscopy (LIBS) is an atomic emission spectroscopy technology that enables quantitative or qualitative analysis of sample elemental composition.With its remote non-contact detection capabilities,absence of any complex sample pretreatment requirements,rapid analysis speed,simultaneous analysis of multiple elements,lack of radiation,and robust adaptability to harsh environments [4],it has been extensively applied in various fields [5] such as environmental monitoring [6],resource exploration [7-9],metal smelting [10],and agricultural production [11].

    In metal smelting,LIBS technology is mostly used for detecting the composition of alloys,stainless steel,steel slag,and other components [12-18].It is seldom used for detecting the composition of copper slag.Only Fran?oisetalstudied the feasibility of analyzing the slag composition in secondary copper production [19].Furthermore,traditional LIBS systems have short detection distances,making them unsuitable for detecting high-temperature melt composition in the smelting process.Yoonetalused LIBS and partial least squares regression (PLSR) method to analyze heavy metals in sediments [20].Kashiwakura and Wagatsuma used LIBS and PLSR method to analyze austenitic stainless steel[21].Brinkmannetalused laser-induced breakdown spectroscopy combined with PLSR method to determine copper in ores [22].These studies all indicated that LIBS combined with PLSR method is a good approach for component analysis.To address this issue,we utilized a remote LIBS system to detect the concentrations of Al,Mg,Ca,and Zn in copper slag.The results were subsequently analyzed and compared using the calibration curve and the PLSR methods.Implementing the LIBS system has established a viable solution for the online and rapid detection of molten slag composition for the copper smelting process.

    2.Experiment

    2.1.Experimental instrument

    The rendering of the schematic diagram of the LIBS system is shown in figure 1.A nanosecond Q-switched Nd: YAG laser (Quantel Ultra100) was employed at 1064 nm with a pulse energy of 100 mJ,a repetition rate of 10 Hz and a pulse duration of 7 ns.The pulse laser emitted by the laser is reflected by the dielectric film mirror (Beamsplitter,R> 96%at 1064 nm andT> 90 at 250-700 nm) and directly incident onto the convex mirror (Mirror1,R> 90% at 250-1100 nm)through a small hole in the center of the concave mirror(Mirror2,R> 90% at 250-1100 nm).It is subsequently reflected by the convex mirror to the concave mirror and focused on the sample in front to excite the plasma.The signal light emitted by the plasma returns along the original optical path focuses through the dielectric film mirror and is transmitted to the spectrometer through collecting lens and optical fiber for spectral collection.A spectrometer(AvaSpec-ULS2048CL-EVO,Avantes) with three channel was used to detect the spectral wavelength regions of 270-610 nm with a delay time of 1.28μs and the integration time of 1.05 ms,respectively.The focal length (detection distance) of the system can be changed by adjusting the position of the convex reflector,and the detection distance of this system is from 1.5 to 3.6 m.The details of the experimental system were described in our previous work [23,24].For this experiment,a detection distance of 2.5 m was applied.

    Figure 1.The rendering of the schematic diagram of the LIBS system.

    2.2.Samples

    105 slag powder samples were collected from a copper smelter company.Of these,74 samples were used for the calibration set,whereas 31 were reserved for the test set.Table 1 presents the certified concentration range of Al,Mg,Ca,and Zn elements in both the calibration and test set samples.To prepare the samples for analysis,the powder samples were pressed into pellets with a diameter of 36 mm and a thickness of 3 mm,using an electric hydraulic jack under pressure of 30 MPa for 5 min,followed by 3 min of dwell time,and 2 min of release time.For each particle sample,analysis was conducted on nine different positions,with each position subjected to 200 shots to generate an average spectrum that improved the signal-to-noise ratio(SNR).Consequently,each sample was represented by nine spectra from distinct positions.

    2.3.Analysis methods

    The calibration curve (CC) method is one of the most widely used and straightforward quantitative techniques.It involves generating a linear relationship between each element’s spectral intensity and concentration by analyzing a series of samples possessing known component information.However,this method is vulnerable to matrix effects,making it ideal for quantitative analysis of non-major elements in samples with similar matrices.

    Partial least squares regression (PLSR) is a novel technique that leverages multivariate statistical data analysis methods such as principal component analysis,canonical correlation analysis,and linear regression analysis to model multiple independent variables using either a single (PLSR1)or multiple (PLSR2) dependent variables.Compared to the CC method,PLSR has several advantages,particularly when dealing with multiple correlations between variables and small sample sizes in linear regression analysis.In this study,we employed a single dependent variable partial least squares regression (PLSR1) model to analyze the elemental composition of copper slag.

    To estimate and compare the analytical performance of the CC and PLSR methods regarding their quantitative analytical capabilities,we utilized several evaluation parameters,including the determination coefficient (R2),the aver-age relative error (ARE),as well as the root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP).The expressions of these parameters are provided below:

    Table 1.Measured elements in copper slag,concentration ranges of training,and test set.

    whereyi,predictedandyi,actualare the predicted and certified concentration of samplei,respectively.is the average value of the predicted concentration of samplei,kis the number of samples in the calibration or test set,andmis the number of samples in the calibration set,andnis the number of samples in the test set.

    3.Results and discussion

    3.1.Quantitative analysis with calibration curve (CC) method

    To account for the impact of self-absorption and pulse-topulse variations,we selected the normalized intensity ratios of Al 308.2 nm/Fe 351.3 nm,Mg 383.7 nm/Fe 353.6 nm,Ca 445.5 nm/Fe 427.2 nm,and Zn 481.1 nm/Fe 495.7 nm,with Fe serving as the standard internal element,to establish calibration curves for Al,Mg,Ca,and Zn elements.In order to reduce the influence of different channels,the characteristic spectral lines of the matrix Fe element and the target element in the normalized intensity of the target element are located in the same channel.The full channel spectrum of the slag sample and the characteristic spectral lines of the target element in different channels are shown in figure 2.All emission lines were identified based on a representative spectrum utilizing the NIST LIBS database [25].

    The calibration curves of Al,Mg,Ca,and Zn elements are shown in figure 3.As shown in figure 3,theR2values are 0.9309,0.9724,0.9507 and 0.9915,respectively.These results indicate a strong linear relationship between the concentration of elements and the spectral intensity of the respective calibration samples.

    Furthermore,we employed the calibration curves to determine the element content in both the calibration and test sets.The analysis results for both sets are presented in figure 4.The calibration set ofR2values for each element is 0.9667,0.9793,0.9507,and 0.9955,respectively.The corresponding ARE values for each element in the calibration set are 11.87%,6.75%,14.11%,and 7.32%,while the RMSEC values for each element in the calibration set are 0.1536,0.0886,0.1895,and 0.0958,respectively.

    In figure 4,the test set ofR2values for each element in the test set are 0.9117,0.9662,0.9439,and 0.9927,respectively.The ARE values for each element in the calibration set are 11.24%,6.92%,9.53%,and 7.1%,respectively.The RMSEP values for each element in the calibration set are 0.1435,0.0904,0.1126,and 0.099,respectively.

    The limit of detections (LODs) of the target elements were calculated the standard IUPAC by 3σ/k,whereσis the standard deviation of the background near the analysis line,andkis the slope of the fitted line for the intensity ratio [26].The calculated LODs of Al,Mg,Ca,and Zn are 0.16 wt.%,0.091 wt.%,0.055 wt.%,and 0.11 wt.%,respectively.

    The results indicated that the calibration curve method was less impacted by matrix effects when the sample matrix was consistent.This was evidenced by theR2values of Al,Mg,Ca,and Zn elements in both the calibration and test set exceeding 0.90.Further,the RMSEC and RMSEP values were nearby,emphasizing the stability and accuracy of the calibration curve method for detecting elemental composition in pyrometallurgy copper slag samples.

    3.2.Quantitative analysis with partial least squares regression (PLSR) method

    Generally,PLSR is used for spectral data analysis,often using spectral data within the entire or partial band range as input data.These spectral data contain many useless noise signals,and the analysis results are susceptible to interference from noise signals.This article uses the normalized intensity of the target elements and matrix element spectral intensity ratio and the certified concentration of the target element as input data for the PLSR model,reducing the interference of different noise signals and the risk of overfitting.According to the NIST LIBS database,the spectra lines of the Al,Mg,Ca,and Zn elements are extracted,as shown in table 2.The emission lines of Fe are also selected as the internal standard lines.Using the Fe element as the internal standard element,we obtained the normalized intensity of each target element as the input data for PLSR analysis.

    Figure 2.Full channel spectrum (a) and characteristic spectral lines of different elements in channel 1 to channel 3 ((b)-(d)).

    Figure 3.The calibration curves of Al,Mg,Ca,and Zn elements.

    Figure 4.The calibration and test set results of the CC method.

    PLSR is a multivariate statistical analysis method based on factor analysis that can effectively eliminate multiple correlations.The selection of the number of principal components (PC) is a crucial parameter that affects the performance of the PLSR model.To avoid over-fitting or sub-fitting of the model,a 10-fold cross-validation method is used to optimize the selection of the number of principal components (PC).Figure 5 shows the relationship between the number of PCs for Al,Mg,Ca,and Zn elements and root mean square error of cross validation (RMSECV) of the validation model.The optimal PC numbers for Al,Mg,Ca,and Zn elements are 9,16,13,and 16,respectively,when the RMSECV values reach their minimum or constant values.

    Subsequently,we have built a PLSR model,utilizing the optimal number of PCs for each element,to determine the elemental content in the calibration and test set samples.The obtained results are displayed in figure 6.TheR2values of the calibration set for each element in the calibration set are 0.9906,0.9966,0.9969,and 0.9992,respectively.The corresponding ARE values for each element in the calibration set are 6.91%,2.89%,4.39%,and 4.08%,with the RMSEC values being 0.0823,0.0359,0.0541,and 0.0408,respectively.

    The results obtained for the test set,as shown in figure 6,indicate that theR2values of each element test set are 0.9543,0.99,0.972,and 0.9968,respectively.The correspondingAREvalues for each element in the test set are 7.24%,3.75%,7.19%,and 5.65%,respectively,with the RMSEP values being 0.021,0.0164,0.0033,and 0.0171,respectively.It is noteworthy that compared to the CC method,the PLSR method has enhanced the calibration set and test setR2values,reducing ARE,RMSEC,and RMSEP by approximately 50%.This suggests that the accuracy and stability of prediction have been significantly improved.Hence,it is evident that the PLSR method exhibits excellent quantitative analysis ability for elements in copper slag samplescompared to the CC method.

    Table 2.Emission lines selected for PLSR.

    Figure 5.The number of principal components versus RMSECV for Al,Mg,Ca,and Zn.

    Figure 6.The calibration and test set results of the PLSR method.

    Table 3.Comparisons of R2,ARE,RMSEC of Al,Mg,Ca,and Zn elements calculated by CC and PLSR analysis methods of the calibration set.

    The obtainedR2,ARE,RMSEC,and RMSEP values for Al,Mg,Ca,and Zn elements from the CC and PLSR analysis method are summarized in tables 3 and 4.These results establish that the PLSR method surpasses the CC method regarding predictive accuracy.Leveraging multivariate input data with various spectral line intensity ratios,we reduced the influence of matrix and self-absorption effects.This study demonstrates that integrating LIBS and PLSR enables accurate detection of the elemental concentration in copper slag,thus serving as a reliable and practical approach.Furthermore,this study could serve as a valuable reference for online detection of the elemental composition of hightemperature molten copper slag using the LIBS system.

    4.Conclusions

    In conclusion,a remote LIBS system combined with CC and PLSR methods based on characteristic spectral intensity ratios has been successfully utilized to detect Al,Mg,Ca,and Zn elements in copper slag samples from pyrometallurgy processes.The precision and accuracy of the two analysis methods were investigated and evaluated using a comparison with reference values.It was evident that the PLSR method outperformed the CC method in terms of the improvement ofR2for both the calibration set and test set,as well as the significant reduction in ARE,RMSEC,and RMSEP to approximately half of those of the CC method.This indicates that the PLSR method demonstrates a higher accuracy in the quantitative analysis of elements in copper slag samples.Based on the results,the combination of LIBS and PLSR is a viable approach to detecting the elemental concentration in copper slag.It could serve as a reference for online detection of the elemental composition of hightemperature molten copper slag using the LIBS system.

    Table 4.Comparisons of R2,ARE,RMSEP of Al,Mg,Ca,and Zn elements calculated by CC and PLSR analysis methods of the test set.

    Acknowledgments

    This work is supported by funding for research activities of postdoctoral researchers in Anhui Province and special funds for developing Anhui Province’s industrial “three highs” and high-tech industries.

    猜你喜歡
    志峰
    韓志峰
    當代作家(2023年5期)2023-07-10 22:13:48
    Spatiotemporal control of femtosecond laser filament-triggered discharge and its application in diagnosing gas flow fields
    廖志峰運用六味地黃湯治療雜病經(jīng)驗
    芝士店
    山西文學(2018年6期)2018-11-13 10:43:08
    Sex determination and differentiation in Aurelia sp.1: the absence of temperature dependence*
    一題多變各顯其彰
    “廣廈獎”評審委員會
    Thermal and tilt effects on bearing characteristics of hydrostatic oil pad in rotary table*
    Effect of Starch Dodecenylsuccinylation on the Adhesion and Film Properties of Dodecenylsuccinylated Starch for Polyester Warp Sizing
    陳志峰:野性之魅
    中國攝影家(2012年8期)2012-04-29 00:44:03
    一级,二级,三级黄色视频| 日本wwww免费看| 一级毛片 在线播放| 国产日韩一区二区三区精品不卡| 亚洲欧美日韩另类电影网站| 亚洲精品久久成人aⅴ小说| av有码第一页| 人人妻人人澡人人看| 日本av手机在线免费观看| av女优亚洲男人天堂| 日本91视频免费播放| 国产精品一区二区在线观看99| 久久狼人影院| 99精国产麻豆久久婷婷| 国产麻豆69| 国产av国产精品国产| 久久精品久久久久久久性| 久久久精品免费免费高清| 最近最新中文字幕大全免费视频 | a级毛片黄视频| 乱码一卡2卡4卡精品| 精品少妇黑人巨大在线播放| av在线观看视频网站免费| 97在线视频观看| 亚洲国产精品成人久久小说| 两个人免费观看高清视频| 国产福利在线免费观看视频| 欧美少妇被猛烈插入视频| 成年人午夜在线观看视频| 一级爰片在线观看| 国产成人精品在线电影| 精品国产一区二区久久| 久久韩国三级中文字幕| 国产精品蜜桃在线观看| 欧美日本中文国产一区发布| 波多野结衣一区麻豆| 亚洲av电影在线观看一区二区三区| 狂野欧美激情性bbbbbb| 午夜视频国产福利| 国产免费一级a男人的天堂| 亚洲精品色激情综合| 最近手机中文字幕大全| 国产乱人偷精品视频| 亚洲经典国产精华液单| 亚洲美女视频黄频| 99久久综合免费| 欧美成人精品欧美一级黄| 国产伦理片在线播放av一区| 亚洲精品,欧美精品| 免费观看a级毛片全部| 精品一品国产午夜福利视频| 日韩电影二区| 亚洲丝袜综合中文字幕| 免费人成在线观看视频色| 宅男免费午夜| 国产亚洲av片在线观看秒播厂| 久久久a久久爽久久v久久| 国产在线一区二区三区精| 久久久久久人人人人人| 九色成人免费人妻av| xxx大片免费视频| 高清av免费在线| 国产成人av激情在线播放| 久久精品国产综合久久久 | 人人妻人人爽人人添夜夜欢视频| 欧美日韩综合久久久久久| 亚洲一区二区三区欧美精品| 日本色播在线视频| 爱豆传媒免费全集在线观看| 欧美性感艳星| 我要看黄色一级片免费的| 国产精品国产三级国产专区5o| 久久久久久人妻| 久久av网站| 交换朋友夫妻互换小说| 多毛熟女@视频| 人妻少妇偷人精品九色| 另类亚洲欧美激情| 18在线观看网站| 亚洲av电影在线观看一区二区三区| 青春草国产在线视频| 成年女人在线观看亚洲视频| 久久久精品免费免费高清| 婷婷色综合www| 国产黄色视频一区二区在线观看| 97人妻天天添夜夜摸| 18禁观看日本| 国产日韩欧美在线精品| 看免费成人av毛片| 永久免费av网站大全| 日本色播在线视频| 我的女老师完整版在线观看| 中国国产av一级| 国产精品嫩草影院av在线观看| 超碰97精品在线观看| 日本欧美视频一区| 成人免费观看视频高清| 两性夫妻黄色片 | 午夜精品国产一区二区电影| av.在线天堂| 国产亚洲欧美精品永久| 亚洲欧美中文字幕日韩二区| 亚洲在久久综合| 免费播放大片免费观看视频在线观看| 中文乱码字字幕精品一区二区三区| 精品人妻在线不人妻| 2022亚洲国产成人精品| 精品少妇久久久久久888优播| 久久久久久久国产电影| 欧美日韩综合久久久久久| 国产男人的电影天堂91| 少妇熟女欧美另类| 精品少妇黑人巨大在线播放| 国产欧美另类精品又又久久亚洲欧美| 久久精品久久久久久久性| 九草在线视频观看| 日本vs欧美在线观看视频| 亚洲欧美清纯卡通| 人妻 亚洲 视频| 91国产中文字幕| 91精品国产国语对白视频| 新久久久久国产一级毛片| 最近最新中文字幕大全免费视频 | 精品酒店卫生间| 精品一区二区免费观看| 亚洲四区av| 一区二区日韩欧美中文字幕 | 9热在线视频观看99| 国产精品人妻久久久久久| 街头女战士在线观看网站| 亚洲欧洲精品一区二区精品久久久 | av在线app专区| 男女免费视频国产| 欧美另类一区| 久热久热在线精品观看| 精品国产一区二区三区四区第35| 久久99蜜桃精品久久| 日本猛色少妇xxxxx猛交久久| 最后的刺客免费高清国语| 巨乳人妻的诱惑在线观看| 日韩人妻精品一区2区三区| 亚洲av电影在线观看一区二区三区| 女的被弄到高潮叫床怎么办| 99精国产麻豆久久婷婷| 97在线视频观看| 亚洲成人一二三区av| 性高湖久久久久久久久免费观看| 我的女老师完整版在线观看| 51国产日韩欧美| 99re6热这里在线精品视频| 国产一区二区在线观看av| 久久久久网色| 国产在线免费精品| 亚洲精品乱久久久久久| 一边摸一边做爽爽视频免费| 国产男女超爽视频在线观看| 欧美少妇被猛烈插入视频| 国产成人欧美| 成人毛片60女人毛片免费| 亚洲av电影在线观看一区二区三区| 国产成人aa在线观看| 黄色视频在线播放观看不卡| 欧美日韩精品成人综合77777| 中文天堂在线官网| 国产一区二区在线观看日韩| 少妇人妻久久综合中文| 亚洲欧洲精品一区二区精品久久久 | 精品国产国语对白av| 亚洲成人一二三区av| 久久av网站| 亚洲一区二区三区欧美精品| 国产男女内射视频| 欧美人与性动交α欧美软件 | 久久久久精品久久久久真实原创| 亚洲情色 制服丝袜| 国产成人aa在线观看| 男人添女人高潮全过程视频| 日本-黄色视频高清免费观看| 色婷婷av一区二区三区视频| 午夜91福利影院| 韩国精品一区二区三区 | 亚洲国产毛片av蜜桃av| 午夜福利视频在线观看免费| 深夜精品福利| 永久免费av网站大全| 亚洲av成人精品一二三区| www.熟女人妻精品国产 | 插逼视频在线观看| 国产国语露脸激情在线看| 人人澡人人妻人| 在线免费观看不下载黄p国产| 成年动漫av网址| 亚洲欧美精品自产自拍| 亚洲国产av影院在线观看| 亚洲欧美日韩卡通动漫| 飞空精品影院首页| 精品少妇黑人巨大在线播放| 国产黄频视频在线观看| 久久久精品94久久精品| 欧美国产精品va在线观看不卡| 嫩草影院入口| 国产精品欧美亚洲77777| 街头女战士在线观看网站| 一本—道久久a久久精品蜜桃钙片| 男女边吃奶边做爰视频| 如日韩欧美国产精品一区二区三区| 黑人高潮一二区| 国产成人免费无遮挡视频| 欧美3d第一页| 欧美精品国产亚洲| 亚洲五月色婷婷综合| 有码 亚洲区| av卡一久久| 久久精品国产综合久久久 | 国产精品麻豆人妻色哟哟久久| 久久99热这里只频精品6学生| 高清不卡的av网站| 嫩草影院入口| 国产精品一区www在线观看| 久久久精品区二区三区| 高清毛片免费看| 国产午夜精品一二区理论片| 欧美激情国产日韩精品一区| 免费观看在线日韩| 五月伊人婷婷丁香| 国产精品免费大片| 91精品伊人久久大香线蕉| 麻豆乱淫一区二区| 成人亚洲精品一区在线观看| 免费高清在线观看视频在线观看| 久久精品久久久久久噜噜老黄| 丰满乱子伦码专区| 日韩伦理黄色片| 精品一区二区三区四区五区乱码 | 最近最新中文字幕大全免费视频 | 成人漫画全彩无遮挡| 国产精品熟女久久久久浪| 飞空精品影院首页| 午夜免费男女啪啪视频观看| 熟女电影av网| 精品国产乱码久久久久久小说| 国产国拍精品亚洲av在线观看| 人人妻人人添人人爽欧美一区卜| 一级黄片播放器| 国产成人精品在线电影| 中文字幕最新亚洲高清| 日本91视频免费播放| 日本与韩国留学比较| 亚洲欧美清纯卡通| 不卡视频在线观看欧美| 国产国拍精品亚洲av在线观看| 中文字幕亚洲精品专区| 天天躁夜夜躁狠狠久久av| 午夜福利视频精品| 久久久欧美国产精品| 精品一区二区免费观看| 天堂俺去俺来也www色官网| 男人添女人高潮全过程视频| 人妻一区二区av| 18在线观看网站| 18禁在线无遮挡免费观看视频| 国产成人午夜福利电影在线观看| 亚洲精品色激情综合| 999精品在线视频| 国产成人午夜福利电影在线观看| 交换朋友夫妻互换小说| 最新中文字幕久久久久| 黑人高潮一二区| 国产成人免费无遮挡视频| 欧美成人精品欧美一级黄| 在线精品无人区一区二区三| 观看av在线不卡| 高清不卡的av网站| 内地一区二区视频在线| 亚洲成人av在线免费| 精品一区二区三区四区五区乱码 | 成人18禁高潮啪啪吃奶动态图| 韩国av在线不卡| av在线老鸭窝| 亚洲成色77777| 搡女人真爽免费视频火全软件| 久久 成人 亚洲| 性色avwww在线观看| 嫩草影院入口| 久久久久久伊人网av| 免费观看无遮挡的男女| 国产乱来视频区| 两个人免费观看高清视频| 母亲3免费完整高清在线观看 | 永久免费av网站大全| 亚洲成国产人片在线观看| 亚洲综合精品二区| 国产亚洲av片在线观看秒播厂| 女人久久www免费人成看片| freevideosex欧美| 一级片'在线观看视频| xxxhd国产人妻xxx| 热re99久久精品国产66热6| 欧美老熟妇乱子伦牲交| 亚洲精品视频女| 激情五月婷婷亚洲| 国产精品一二三区在线看| 国产毛片在线视频| 日产精品乱码卡一卡2卡三| 制服人妻中文乱码| 亚洲成人手机| 免费日韩欧美在线观看| 欧美丝袜亚洲另类| av在线老鸭窝| 欧美日韩综合久久久久久| 日韩不卡一区二区三区视频在线| 看免费av毛片| 女人被躁到高潮嗷嗷叫费观| 久久久久精品人妻al黑| 最黄视频免费看| 国产av国产精品国产| 如何舔出高潮| 性高湖久久久久久久久免费观看| 日韩不卡一区二区三区视频在线| 一级毛片我不卡| 天天躁夜夜躁狠狠躁躁| 1024视频免费在线观看| 欧美日韩av久久| 中文字幕人妻丝袜制服| 精品国产国语对白av| 亚洲久久久国产精品| www.熟女人妻精品国产 | 激情五月婷婷亚洲| 久久久精品免费免费高清| 少妇的丰满在线观看| 久久精品国产亚洲av天美| 亚洲色图 男人天堂 中文字幕 | 亚洲欧美精品自产自拍| 亚洲综合精品二区| 九九在线视频观看精品| 毛片一级片免费看久久久久| 午夜影院在线不卡| 永久网站在线| 桃花免费在线播放| 视频中文字幕在线观看| 精品国产国语对白av| 老熟女久久久| 亚洲人成77777在线视频| 色婷婷av一区二区三区视频| 毛片一级片免费看久久久久| 成年av动漫网址| 色网站视频免费| 一级毛片 在线播放| av电影中文网址| 免费人成在线观看视频色| 丝袜人妻中文字幕| 欧美日韩视频高清一区二区三区二| 热re99久久精品国产66热6| 国产免费现黄频在线看| 亚洲精品色激情综合| 国产 精品1| www.av在线官网国产| 人人澡人人妻人| 热99久久久久精品小说推荐| 成人漫画全彩无遮挡| 宅男免费午夜| 成人漫画全彩无遮挡| 亚洲欧美成人精品一区二区| 中文字幕最新亚洲高清| 久久亚洲国产成人精品v| 91久久精品国产一区二区三区| 精品一品国产午夜福利视频| 国产精品欧美亚洲77777| 国产日韩欧美在线精品| 国产亚洲欧美精品永久| 精品国产一区二区三区四区第35| 少妇的逼好多水| 国产又爽黄色视频| 国产精品免费大片| 天天躁夜夜躁狠狠躁躁| 欧美xxⅹ黑人| av一本久久久久| 国产精品久久久久久精品电影小说| 日本欧美视频一区| 亚洲一区二区三区欧美精品| 午夜福利视频精品| 赤兔流量卡办理| 亚洲国产精品专区欧美| 侵犯人妻中文字幕一二三四区| 亚洲精品美女久久久久99蜜臀 | 国产极品天堂在线| 9色porny在线观看| 国产欧美日韩一区二区三区在线| 伦精品一区二区三区| 大香蕉久久成人网| 久久ye,这里只有精品| 亚洲国产欧美日韩在线播放| 免费高清在线观看日韩| 亚洲内射少妇av| 晚上一个人看的免费电影| 国产精品久久久久久久电影| 久久热在线av| 国产色爽女视频免费观看| 国产精品国产三级专区第一集| 99久久综合免费| 一区二区日韩欧美中文字幕 | 美女内射精品一级片tv| 国产xxxxx性猛交| 国产一区二区在线观看日韩| 老司机影院成人| 在线天堂中文资源库| 少妇的丰满在线观看| 久久久精品区二区三区| 一级毛片黄色毛片免费观看视频| 欧美性感艳星| 国产免费又黄又爽又色| 免费观看a级毛片全部| 亚洲四区av| 国产毛片在线视频| 国产麻豆69| 国产精品一区www在线观看| 90打野战视频偷拍视频| 亚洲情色 制服丝袜| 久久精品国产a三级三级三级| 日本-黄色视频高清免费观看| 成人影院久久| 晚上一个人看的免费电影| 国产精品蜜桃在线观看| 日本免费在线观看一区| 男女国产视频网站| 少妇 在线观看| 在线精品无人区一区二区三| 国产欧美日韩综合在线一区二区| 黄片播放在线免费| 99久久人妻综合| 超色免费av| 欧美国产精品va在线观看不卡| 深夜精品福利| 免费久久久久久久精品成人欧美视频 | 国产亚洲最大av| 青春草视频在线免费观看| av又黄又爽大尺度在线免费看| 蜜桃国产av成人99| 男女边摸边吃奶| 国产精品久久久久成人av| 欧美最新免费一区二区三区| 又黄又粗又硬又大视频| 国产精品 国内视频| 欧美丝袜亚洲另类| www.色视频.com| 精品一区二区三卡| 亚洲国产精品一区三区| 黄色配什么色好看| 大香蕉97超碰在线| 这个男人来自地球电影免费观看 | 日韩 亚洲 欧美在线| 成人手机av| 精品99又大又爽又粗少妇毛片| 精品久久久久久电影网| 在线观看免费视频网站a站| 青春草亚洲视频在线观看| 国产在线视频一区二区| 午夜影院在线不卡| 久久这里只有精品19| 91成人精品电影| 国产精品欧美亚洲77777| 欧美激情国产日韩精品一区| 9191精品国产免费久久| 亚洲av欧美aⅴ国产| 日韩一区二区三区影片| 日本wwww免费看| 成人综合一区亚洲| 9色porny在线观看| 色网站视频免费| 人妻少妇偷人精品九色| 日本午夜av视频| 国产日韩欧美亚洲二区| 黑人猛操日本美女一级片| 精品人妻熟女毛片av久久网站| 好男人视频免费观看在线| 满18在线观看网站| 亚洲成人一二三区av| 草草在线视频免费看| 国产又爽黄色视频| 国产成人av激情在线播放| 波野结衣二区三区在线| 欧美日韩av久久| 亚洲天堂av无毛| 免费黄频网站在线观看国产| 久久久精品94久久精品| videosex国产| 丝袜脚勾引网站| 哪个播放器可以免费观看大片| 亚洲少妇的诱惑av| 成人影院久久| 黑丝袜美女国产一区| 国产成人aa在线观看| 国产熟女午夜一区二区三区| av在线老鸭窝| 亚洲情色 制服丝袜| 久久国产精品大桥未久av| 国产精品99久久99久久久不卡 | 丝袜人妻中文字幕| 国产在线一区二区三区精| 色哟哟·www| 久久久久精品人妻al黑| 国产精品熟女久久久久浪| 中文欧美无线码| 高清在线视频一区二区三区| 国产片内射在线| 岛国毛片在线播放| 在线 av 中文字幕| 如日韩欧美国产精品一区二区三区| 乱人伦中国视频| 免费久久久久久久精品成人欧美视频 | 蜜臀久久99精品久久宅男| 成年av动漫网址| 国产激情久久老熟女| 久久鲁丝午夜福利片| 婷婷色综合www| 汤姆久久久久久久影院中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 十八禁网站网址无遮挡| 婷婷色综合www| 大香蕉久久成人网| 免费黄频网站在线观看国产| 黑人欧美特级aaaaaa片| 99国产综合亚洲精品| 欧美xxxx性猛交bbbb| 少妇人妻 视频| 成年动漫av网址| 国精品久久久久久国模美| 高清黄色对白视频在线免费看| 啦啦啦啦在线视频资源| 我的女老师完整版在线观看| 少妇的逼水好多| 亚洲婷婷狠狠爱综合网| 久久久亚洲精品成人影院| 欧美成人午夜免费资源| 黑人猛操日本美女一级片| 久久久久久久久久久免费av| 国产成人aa在线观看| 亚洲美女视频黄频| 国产精品人妻久久久久久| 久久精品国产综合久久久 | 熟妇人妻不卡中文字幕| 国产成人精品婷婷| 伦理电影大哥的女人| 男人爽女人下面视频在线观看| av免费观看日本| 久久国产精品男人的天堂亚洲 | 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦啦在线视频资源| xxx大片免费视频| 成年人免费黄色播放视频| 99久国产av精品国产电影| 只有这里有精品99| 久久久a久久爽久久v久久| 色视频在线一区二区三区| 男女免费视频国产| 18禁观看日本| 国国产精品蜜臀av免费| 亚洲成人av在线免费| 天堂俺去俺来也www色官网| 免费不卡的大黄色大毛片视频在线观看| 熟女av电影| 国产在视频线精品| 哪个播放器可以免费观看大片| 男女无遮挡免费网站观看| 日日摸夜夜添夜夜爱| 91午夜精品亚洲一区二区三区| 亚洲少妇的诱惑av| 人人澡人人妻人| 最近最新中文字幕大全免费视频 | 2018国产大陆天天弄谢| 久久久久久久久久久免费av| 亚洲精品成人av观看孕妇| 亚洲国产精品专区欧美| 人人妻人人爽人人添夜夜欢视频| 老司机影院成人| 少妇人妻 视频| a级片在线免费高清观看视频| av电影中文网址| 久久久久视频综合| 亚洲精品一二三| 日本欧美国产在线视频| 欧美人与性动交α欧美精品济南到 | 纯流量卡能插随身wifi吗| 国产精品免费大片| 国产高清不卡午夜福利| 激情视频va一区二区三区| 久久久久视频综合| 亚洲中文av在线| 人妻系列 视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产在线免费精品| 欧美成人午夜精品| 欧美精品国产亚洲| 国产成人精品在线电影| 啦啦啦啦在线视频资源| 亚洲内射少妇av| 欧美日韩综合久久久久久| 欧美亚洲日本最大视频资源| 一级a做视频免费观看| 99国产综合亚洲精品| 亚洲国产欧美日韩在线播放| 男女国产视频网站| 熟女电影av网| 三上悠亚av全集在线观看| 久久午夜综合久久蜜桃| 国产成人精品无人区| 老熟女久久久| 人人妻人人添人人爽欧美一区卜| 母亲3免费完整高清在线观看 | 蜜桃在线观看..| 亚洲av免费高清在线观看| 国产欧美日韩综合在线一区二区| 日韩成人伦理影院| 国产片特级美女逼逼视频| 精品一区二区免费观看|