• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structure,electronic,and nonlinear optical properties of superalkaline M3O(M =Li,Na)doped cyclo[18]carbon

    2024-02-29 09:17:12XiaoDongLiu劉曉東QiLiangLu盧其亮andQiQuanLuo羅其全
    Chinese Physics B 2024年2期
    關(guān)鍵詞:劉曉東

    Xiao-Dong Liu(劉曉東), Qi-Liang Lu(盧其亮),?, and Qi-Quan Luo(羅其全)

    1School of Physics and Material Science,Anhui University,Hefei 230601,China

    2Institute of Physical Science and Information Technology,Anhui University,Hefei 230601,China

    3Department of Chemical Physics,University of Science and Technology of China,Hefei 230026,China

    Keywords: superalkaline doped cyclo[18]carbon,structure and electronic properties,nonlinear optical properties,density functional theory(DFT)

    1.Introduction

    Carbon has long been a popular research topic.In 1985,Krotoet al.obtained sp-hybridized fullerene C60clusters[1]with a coordination number of three by laser vaporization.This result opened a new door for the study of lowdimensional materials.Since then, carbon nanotubes[2]and graphene[3]have been synthesized successively,and the family of molecular carbon allotropes has continued to expand.In 1966,Hoffman proposed the ring-like C18cluster.[4]Since the first detection of the C18ring in 1989,[5]small carbon clusters have attracted extensive attention from experimental and theoretical studies.[5–8]One of the most impressive advances in this field in recent years is the successful synthesis and characterization of a ring consisting of 18 carbon atoms, named cyclo[18]carbon,on the surface of Cu(111)by Kaiseret al.[9]Recently, Andersonet al.[10]proposed an efficient synthesis of C18from bromocyclic carbon (C18Br6).This discovery has attracted the extensive attention of scholars who wish to study cyclic[n]carbon, and its analogs and derivatives due to its potential use in practical applications.[11–36]Many studies have shown that the C–C bond of the most stable structure of C18cannot be simply described as alternating single and triple bonds but can only be described as alternating long and short bonds.[9,14,16,19]

    The diameter of cyclo[18]carbon is about 7.40 ?A,[17]which is equivalent to the size of C60(7.1 ?A).Cyclo[18]carbon provides sufficient space to encapsulate a range of other atoms or small molecules, thus forming a similar endohedral fullerene species.[37–40]This endohedral complex is an interesting structure from the perspective of research and application.Compared with many studies on the structure and properties of cyclo[18]carbon, work on the structure and properties of doped C18[41–49]and other carbon rings[50–53]is limited.Alkali metal atoms have the lowest ionization energy(5.39 eV–3.89 eV) in the periodic table.[54]However, some polyatomic molecules or clusters, which are called “superalkali” by Gutsev and Boldyrev,[55]have lower ionization energies than cesium atoms (3.89 eV).[54]Studies have also shown the formation of an electron donor–acceptor endohedral complex with superalkali inside C60[56]and Si12C12[57]nanocage.Their nonlinear optical properties are significantly improved.Liuet al.[29]systematically studied the electronic structure, electronic spectra, and optical nonlinearity of cyclo[18]carbon.They also investigated the properties of the Li@C18complex and its potential application in an optical molecular switch.[43]It has also been shown that C18molecules have strong electron acceptor properties.[33]Therefore, stable complexes can form between C18and electron donor species, which implies a strong capability of charge transfer within complexes and excellent optical properties.Therefore,investigating the structure and properties of superalkali-doped C18is worthwhile.In this work, we report systematic theoretical studies on the structure and properties of superalkalineM3O(M=Li,Na)-doped cyclo[18]carbons.

    2.Computational methods

    An extensive structural search for C18M3O (M= Li,Na) was conducted based on the two low-energy isomers of cyclo[18]carbon; namely, the alternating bond length structure and the transition state structure with equal bond length.[9,14,16,19]Superalkaline moleculesM3O (M=Li, Na)were placed on the inner/outer edges of the ring and in different regions above the ring.Geometry optimization was performed at the M06-2X/def2-TZVP level for these different initial structures by using the Gaussian 09 software package.[58]Single-point energy calculations were performed at the CCSD(T)/def2-TZVP level to confirm the lowest energy structure.Vibrational frequency analyses were conducted on optimized structures to determine whether they are at the minimum or saddle point on the potential energy surface.Zero-point energy and the counterpoise procedure for basis set superposition error (BSSE) were utilized to calculate energies.On the basis of the results of Gaussian 09,Mayer bond order[59–61]and localized orbital locator (LOL)analysis[62–64]were performed using Multiwfn 3.8.[65]Electrostatic potential (ESP) analysis was performed using Visual Molecular Dynamics (VMD) software[66]in combination with Multiwfn.Meanwhile,ωB97XD is reliable and robust for studying photophysical properties and optical nonlinearity of C18molecule and its analogs.[29,34,43,46]Therefore,ωB97XD is considered to be capable of describing the optical properties of the C18M3O system.Electron excitations were studied by using the time-dependent density functional theory (TD-DFT) method at theωB97XD/def2-TZVP level.Charge-transfer spectra(CTS)were plotted based on the results of TD-DFT.[58]The (hyper)polarizability of C18M3O complex was calculated by coupled-perturbed Kohn–Sham(CPKS) method at theωB97XD/aug-cc-pVTZ level.[46,67–70]Polarizability,the first hyperpolarizability,and the second hyperpolarizability were analyzed by Multiwfn and VMD.For the parameters of describing the nonlinear optical properties,we follow the formulas for calculating the response properties to electric field provided in Refs.[34,43].

    3.Results and discussion

    The most stable structures of C18M3O (M=Li, Na) are shown in Fig.1.Compared with the isolated cyclo[18]carbon,the C18ring in C18Na3O has higher structural deformation than that in C18Li3O.TheM3O moiety is not entrapped in the cyclo[18]carbon and is located some distance above the carbon ring.For C18Li3O, the distance between O atom and the center of C18is about 0.99 ?A.The projection of the oxygen atom on the C18plane is almost located in the geometric center of the optimized C18ring.However,for C18Na3O,the projection of the oxygen atom deviates far from the point.The four atoms of the Li3O moiety are no longer coplanar and three Li atoms are close to the C18ring.This finding may be attributed to the attraction between Li atoms and C18ring resulting from charge transfer,as discussed later on.The Li3plane is almost parallel to the C18plane.For C18Na3O,the Na3plane is at an angle to the C18plane.The three shortest distances of Li–C are in the range from 2.24 ?A to 2.27 ?A.The values of Na–C are in the range from 2.62 ?A to 2.68 ?A.

    Fig.1.Top and side views of the structure of C18M3O(M=Li,Na).

    Fig.2.Bond lengths(?A)of C18Li3O and C18Na3O.The lengths of pristine C18,Li3O and Na3O are given for comparison.

    Alternating C–C bond lengths (Fig.2) are also found in C18Li3O and C18Na3O.The C–C bond lengths of the isolated cyclo[18]carbon are 1.223 ?A and 1.344 ?A at the present level of theory.Compared with the values of the pristine C18ring,C18M3O has short C–C bonds that become shorter and long C–C bonds that become longer.Little difference can be found between theM–O bond length of C18M3O and the free-stateM3O.

    The binding energy (Eb) ofM3O to C18ring can be defined as follows:

    whereE(C18M3O) represents the energy of the most stable structure of C18M3O.E(C18) andE(M3O) represent the single-point energies of C18andM3O moieties, respectively,based on the ground-state structure of C18M3O.The obtainedEbvalues of Li3O and Na3O are 3.675 eV and 3.315 eV, respectively.Large binding energies suggest strong interactions betweenM3O and the C18ring.

    Fig.3.Natural charge populations of C18Li3O and C18Na3O.The values of isolated Li3O and Na3O are given for comparison.

    The calculated natural charge populations of C18Li3O and C18Na3O are shown in Fig.3.Their charge transfers are similar.The oxygen atom and C18ring are negatively charged,whereas alkali atoms lose electrons.The oxygen atom obtains about two-thirds of the transferred electrons.The remaining one-third of the transferred electrons are transferred to cyclo[18]carbon,resulting in a negatively charged ring.The C18ring obtains about 0.9eand 1.0echarges from Li3O and Na3O, respectively.The charge transfer betweenM3O and C18forms stable [M3O]+[C18]-ionic complexes.This result supports the previous statement that the C18molecule is a good electron acceptor.[33]Na atoms lose more electrons than Li atoms do.The negative charges are not evenly distributed on carbon atoms of the C18ring.Few carbon atoms located far away from Li and Na carry a positive charge of no more than 0.08e.Other atoms near alkali atoms are negatively charged.The threeMatoms possess almost identical charges in C18M3O.However,for isolatedM3O,significant differences can be found between Li3O and Na3O.The charges are evenly distributed on Li atoms.However, the number of charges of the two Na atoms is remarkably larger than that of the other Na atom.This finding indicates that the charge redistribution of Na3O is greater than that of the Li3O after doping into cyclo[18]carbon.

    Fig.4.Deformation electron densities of C18Li3O and C18Na3O(isovalue=0.15|e|).

    Fig.5.Isosurface maps of the ESP for C18Li3O and C18Na3O.Red and blue colors correspond to positive and negative parts of ESP,respectively.

    The deformation electron density of C18M3O is shown in Fig.4.A large number of electrons are predominantly distributed in two carbon atoms of the C18ring, indicating the covalent characteristics of the C–C bond.The alternating electron density also reveals the alternating bond strength between two carbon atoms, which is consistent with the analysis of bond length.Many electrons are distributed around the oxygen atom, indicating the existence of an ionic chemical bonding between alkali and oxygen atoms.This observation is confirmed by the result of natural charge population analysis.The charge transfer fromM3O to C18results in an electric field between the two moieties.ESP analysis[71]is an effective tool to understand the interaction betweenM3O(M=Li,Na)and C18.On the basis of the ESP map in Fig.5,the regions around alkali atoms are positive ESP,whereas the circular regions surrounding the C18ring and oxygen atom show negative values.The maximum ESP is near the alkali atoms,whereas the minimum ESP appears near the oxygen atom.Several local potential minimum points are distributed on the periphery of the C18ring.The distribution pattern of ESP sufficiently reflects intermolecular electrostatic interaction betweenM3O and C18.

    Figure 6 shows the Mayer bond order of C18Li3O and C18Na3O to further reveal the nature of theM3O–C18interaction and the bonding situation in the system.The bond orders between O and alkali atoms are no more than 0.41, indicating that the O–M covalent bond does not exist.This finding also confirms the results of population analysis and deformation electron density sections.The bond orders of C–M are less than 0.08,indicating that the chemical bond does not exist.This result probably occurred because the transferred electrons fromM3O are decentralized on other carbon atoms(Fig.3).The C18ring still exhibits alternating C–C bond orders.Most short bonds roughly satisfy double bonds, except for some bonds that deviate from 2.0.The orders of all long C–C bonds are larger than those of pristine cyclo[18]carbon.[16]

    Fig.6.Mayer bond orders of C18Li3O and C18Na3O.

    Fig.7.The localized orbital locator of C18Li3O.

    The LOL has useful real space functions in the range of 0–1 to unravel the delocalization ofπelectrons of the system.Given that the two planes of C18ring and Li3moiety are almost parallel to each other,only the color-fill mapped LOL of C18Li3O is shown in Fig.7.Vast regions between Li3O and C18ring have LOL values much smaller than 0.5, indicating the absence of covalent bonds.We discussed earlier that they bind together by electrostatic attraction.A large LOL value(>0.5)in the middle of the C–C bond indicates a strong covalent bond and exhibits alternating characteristics.The regions of the short C–C bonds are evidently broader than those of the long C–C bond.This result indicates that theπ-electron delocalization of long C–C bonds is more difficult than that of short ones.Figure 7(b) shows the LOL–πmap of the Li3O at 1.4 Bohr above the C18ring plane.Regions with a value larger than 0.5 are spherically distributed around the O atom.The values in the middle of the O–Li are small.These results further reveal that the O–M is not a covalent bond but an ionic bond.LOL based onπmolecular orbitals can reflect the delocalization ofπelectrons in C18M3O (Fig.S1).The inside isosurface of the C18ring is broader than the outside ones for in-plane occupiedπmolecular orbitals,indicating that the delocalization over theπregion inside the ring occurred somewhat easily.The out-of-plane orbitals centering onM3O are not perpendicular to C18ring; instead, they tilt outward the C18ring slightly.

    The electronic absorption spectrum can reflect electronic transition behavior in the C18M3O system.As observed from Fig.8,three absorption peaks exist for C18Li3O,in which two peaks are located at about 430 nm and 720 nm in the visible light region.The other one is a weak absorption at about 970 nm in the far infrared region.The spectrum of C18Na3O is different from that of C18Li3O,showing two absorption peaks at about 424 nm and 725 nm.The absorption range of the C18Li3O is wider than that of the C18Na3O,but its absorption intensity is much weaker than that of the latter.

    Fig.8.Simulated absorption spectra and charge-transfer spectra of C18Li3O and C18Na3O.Gaussian broaden for the full width at halfmaximum(FWHM)of 2800 cm-1 was employed.

    Luet al.proposed a concept called CTS[43,46]to further reveal the nature of electron excitation from the charge redistribution within the fragment and charge transfer between two fragments of C18moiety andM3O.It can graphically present the contribution of charge redistribution.The colored CTSs are shown in Fig.8.For C18Li3O, the contribution for the electron excitation overwhelmingly originates from the electron redistribution inside the C18moiety, while the contribution of Li3O group is almost negligible.The electron transfers from Li3O to C18have a significant proportion.In contrast,the nature of electron excitation of C18Na3O is different from that of the C18Li3O because many excitations of the former in the range of 340 nm–470 nm originate from the electron redistribution inside the Na3O.The contribution of electron transfers from Na3O to C18to the absorption spectrum is also non-negligible.

    Hole–electron analysis can intuitively reveal the excitation characteristics of electrons in a system.[29]The isosurface maps of hole and electron distributions related to their maximum absorptions of C18Li3O and C18Na3O are collectively given in the supplementary material (Fig.S2).As discussed earlier, the charges of three Na atoms are not equal before Na3O doping into cyclo[18]carbon.The charge transfer within the Na3O (charge redistribution) results in hole and electron distributions.Figure S2 shows that the absorption peak(397 nm) that corresponds to electron excitation (S0→S47)originates from electron redistribution inside the Na3O.This situation is not observed for C18Li3O.Thus, C18Na3O and C18Li3O have different electron excitations.

    Polarizability and hyperpolarizability are the response characteristics of a molecule to an external electric field.Polarizability reflects the change in the dipole moment caused by applying one unit of electric field and hyperpolarizability represents the nonlinear polarization effect.Table 1 shows the calculated isotropic average polarizability (αiso), the projection of the first hyperpolarizability on the molecular dipole(βvec), and the average of the second hyperpolarizability (γ||)of C18M3O(M=Li,Na)under electric fields at different frequencies (λ= ∞; 1907 nm and 1460 nm).The calculated static and dynamic(hyper)polarizability of free C18ring at the present theory level are given in the table.The corresponding results of Ref.[29] are also listed for comparison.Our results are very close to those of Ref.[29].Theαiso(∞)values of C18M3O (M=Li, Na) are 1.20 and 1.25 times that of the free C18ring(293.9 a.u.).[29]Theβvecof the cyclo[18]carbon is zero due to its the centrosymmetric structure.However,the introduction ofM3O causes a considerable magnitude of staticβvec.C18Li3O and C18Na3O present a larger staticγ||(λ=∞)than the pristine C18ring(140909 a.u.).[29]

    No significant difference is observed between static and dynamic polarizability (αiso).αisochanges slightly with frequency.Table 1 shows that the hyperpolarizability values(βvecandγ||)for C18Li3O decrease rapidly with the frequency of the external electric field.Atλ=1907 nm and 1460 nm,C18Li3O hasγ||values of 115 and 5.8 times, respectively, which are higher than those of pristine C18ring.[29]Theβvecvalues are 32.4 and 2.8 times,respectively,and theγ||values are 14.6 and 4.7 times,respectively,which are as much as the static values at the two frequencies.C18Na3O also exhibits a strong polarization resonance effect under the dynamic external field at a low frequency becauseβvecis 46 and 47 times higher,andγ||is 723 and 21 times higher than the static values atλ=1907 nm and 1460 nm,respectively.

    Table 1.Polarizabilities,the first-and the second-order hyperpolarizabilities(in a.u.) of C18Li3O,C18Na3O,and free C18 ring in zero-frequency limit case (λ = ∞) and frequency-dependent case (λ = 1907 nm and 1460 nm).The corresponding results of C18 of Ref.[29]are also listed.

    Some values ofβvecandγ||are negative.Luet al.explained the meaning and the reason for their different signs.[43]The molecular volume is defined as the area surrounded by the electron density isosurface and has a close positive correlation with polarizability.This conclusion is also basically applicable to different types of molecules.[72]Therefore,the positive and negative signs ofβxxxandγxxxxcan be attributed to whether the molecular volume increases or decreases when the electric field is applied,which turns the problem into how the electric field affects the electronic structure of the system.The external electric field can affect the electron distribution of molecules.As a result, the effective volume of electron density changes,and polarizability also changes.[43]

    The unit sphere representation of (hyper)polarizability can be used to visualize and comprehensively characterize the (hyper)polarizability tensor,[73]and can intuitively reflect the molecular global and local features of response properties.Figure 9 shows the unit sphere representation of (hyper)polarizability of C18M3O (M= Li, Na) under the electrostatic field.The molecular plane of C18ring is set as the xy-plane.The(hyper)polarizability of C18M3O(M=Li,Na)in the electrostatic field exhibits evident anisotropy.Thexandy- components of polarizability on the molecular plane are evidently larger than the component in the vertical direction(z-component).However, thez-component cannot be ignored because of dipole moments that result from the charge transfer between the C18ring andM3O.The tensor of all(hyper)polarizability suggests that some vector distributions(blue arrow) are perpendicular to the C18plane, indicating that the response of (hyper)polarizability in this direction is not negligible.C18Li3O and C18Na3O exhibit similar characteristics of first-order hyperpolarizability tensors.Theirx- andz-components are zero and have vanished in Figs.9(b) and 9(e).However, a significant difference is observed in terms of the second-order hyperpolarizability.Thex-component of C18Li3O is remarkably larger than that of C18Na3O.In contrast, they- andz-components of C18Na3O are much larger than those of C18Li3O.The two components of C18Li3O are small and negligible.

    Fig.9.Unit sphere representation of (hyper)polarizability for C18Li3O and C18Na3O in static electric field.The longer and redder arrow indicates a larger tensor value in the corresponding direction.

    4.Conclusion

    In this paper, we theoretically investigate the structural,electronic,electronic absorption spectrum,and nonlinear optical properties ofM3O (M=Li, Na)-doped cyclo[18]carbon.M3O and the C18ring are not coplanar.Alternating C–C bond lengths are found in the two complexes.The charge,electrostatic potential, bond order, and delocalization ofπelectrons are analyzed.Specifically, C18Li3O and C18Na3O show striking optical nonlinearity,i.e.,their first-and secondorder hyperpolarizability (βvecandγ||) increase significantly atλ=1907 nm and 1460 nm.The relevant results are expected to provide theoretical guidance for the development of advanced cyclo[18]carbon-based functional molecules.

    Acknowledgments

    Project supported by the Natural Science Foundation of Anhui Province(Grant No.1908085MA12)and the National Natural Science Foundation of China(Grant No.21703222).

    猜你喜歡
    劉曉東
    例析通過構(gòu)造常數(shù)列進(jìn)行解題的基本規(guī)律
    棉花GhIQM1基因克隆及抗黃萎病功能分析
    羔羊早期斷母乳技術(shù)研究應(yīng)用的進(jìn)展
    《鐵單質(zhì)的化學(xué)性質(zhì)》教學(xué)設(shè)計
    權(quán)力“變現(xiàn)”高手的人生結(jié)局是什么?
    ——山東省某區(qū)開發(fā)區(qū)管委會原副主任劉曉東(正處級)受賄案紀(jì)實
    兩個自我的不能承受之重
    讀書(2019年9期)2019-09-23 08:15:12
    “雷擊哥”劉曉東:做有“靈魂”的氣象人
    蝴蝶發(fā)卡
    作品(2018年11期)2018-11-15 04:57:40
    光是購物卡就收了51萬元
    方圓(2018年11期)2018-07-03 05:53:52
    權(quán)力“變現(xiàn)”高手
    欧美日韩亚洲综合一区二区三区_| 啪啪无遮挡十八禁网站| 精品视频人人做人人爽| 国产真人三级小视频在线观看| 国产精品麻豆人妻色哟哟久久| 男人舔女人的私密视频| 天天躁日日躁夜夜躁夜夜| 一级毛片精品| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩亚洲国产一区二区在线观看 | 欧美在线黄色| 国产野战对白在线观看| 久久人人97超碰香蕉20202| 久久久久久久国产电影| 三上悠亚av全集在线观看| 丰满饥渴人妻一区二区三| 国产精品99久久99久久久不卡| 欧美精品亚洲一区二区| 精品少妇一区二区三区视频日本电影| 国产亚洲av高清不卡| 午夜激情av网站| 国产在视频线精品| 亚洲欧美清纯卡通| 夜夜骑夜夜射夜夜干| 亚洲av成人一区二区三| 男男h啪啪无遮挡| netflix在线观看网站| 亚洲精品国产av成人精品| 中文字幕高清在线视频| 亚洲 欧美一区二区三区| 99久久国产精品久久久| 免费高清在线观看视频在线观看| 永久免费av网站大全| 欧美在线一区亚洲| 国产黄色免费在线视频| 日韩大码丰满熟妇| 亚洲黑人精品在线| 1024视频免费在线观看| 麻豆av在线久日| 制服诱惑二区| 69精品国产乱码久久久| 久久精品久久久久久噜噜老黄| 99久久精品国产亚洲精品| 亚洲国产欧美在线一区| 爱豆传媒免费全集在线观看| 亚洲国产中文字幕在线视频| 国产男人的电影天堂91| 午夜激情久久久久久久| 欧美另类亚洲清纯唯美| 丰满人妻熟妇乱又伦精品不卡| 亚洲伊人久久精品综合| 菩萨蛮人人尽说江南好唐韦庄| 成年女人毛片免费观看观看9 | 在线观看免费高清a一片| 丁香六月欧美| 人妻人人澡人人爽人人| 不卡av一区二区三区| 99热全是精品| 18禁观看日本| 免费黄频网站在线观看国产| 精品国产一区二区三区四区第35| 国产淫语在线视频| 欧美午夜高清在线| www.999成人在线观看| 啦啦啦 在线观看视频| 亚洲人成77777在线视频| 99国产精品免费福利视频| 十八禁网站免费在线| 亚洲精品国产精品久久久不卡| 啦啦啦 在线观看视频| 国产伦人伦偷精品视频| 欧美亚洲 丝袜 人妻 在线| 午夜精品久久久久久毛片777| 欧美黄色淫秽网站| 午夜成年电影在线免费观看| 国精品久久久久久国模美| 亚洲av成人一区二区三| 美女国产高潮福利片在线看| 亚洲精品中文字幕在线视频| 自线自在国产av| 一个人免费看片子| 青春草视频在线免费观看| 久久亚洲国产成人精品v| 啦啦啦 在线观看视频| 满18在线观看网站| 一级片免费观看大全| 超色免费av| 亚洲av男天堂| 欧美少妇被猛烈插入视频| 久久青草综合色| 欧美国产精品va在线观看不卡| 一边摸一边做爽爽视频免费| 午夜免费成人在线视频| 国产xxxxx性猛交| 考比视频在线观看| 亚洲av美国av| 51午夜福利影视在线观看| 嫁个100分男人电影在线观看| 91国产中文字幕| 国产成人免费观看mmmm| 免费av中文字幕在线| 日日爽夜夜爽网站| netflix在线观看网站| www日本在线高清视频| 国产日韩欧美视频二区| 老熟女久久久| 18禁国产床啪视频网站| 亚洲国产欧美一区二区综合| 69精品国产乱码久久久| 老司机午夜十八禁免费视频| 啪啪无遮挡十八禁网站| 久久久久久久久久久久大奶| 亚洲av电影在线进入| 99国产精品一区二区蜜桃av | 一边摸一边抽搐一进一出视频| 国产精品国产三级国产专区5o| 精品亚洲成国产av| 久久久精品免费免费高清| 亚洲av美国av| 亚洲精品中文字幕一二三四区 | 久久九九热精品免费| 汤姆久久久久久久影院中文字幕| 亚洲五月婷婷丁香| 午夜老司机福利片| 免费av中文字幕在线| 色播在线永久视频| 欧美精品亚洲一区二区| 女人高潮潮喷娇喘18禁视频| 国产一卡二卡三卡精品| 99精国产麻豆久久婷婷| 男女下面插进去视频免费观看| 久久性视频一级片| 亚洲男人天堂网一区| 国产欧美亚洲国产| 天天操日日干夜夜撸| 亚洲一卡2卡3卡4卡5卡精品中文| 爱豆传媒免费全集在线观看| 青春草亚洲视频在线观看| 黑人操中国人逼视频| 人妻人人澡人人爽人人| 亚洲欧美日韩另类电影网站| 亚洲av成人不卡在线观看播放网 | 两人在一起打扑克的视频| 亚洲精品国产色婷婷电影| 一区二区三区乱码不卡18| 九色亚洲精品在线播放| 日韩制服丝袜自拍偷拍| 久久精品熟女亚洲av麻豆精品| 国产精品二区激情视频| 国产亚洲精品久久久久5区| 两性夫妻黄色片| 成人国产av品久久久| 操出白浆在线播放| 色综合欧美亚洲国产小说| 久久久久久久久免费视频了| av电影中文网址| 一边摸一边做爽爽视频免费| av天堂在线播放| 国产又色又爽无遮挡免| 亚洲中文av在线| 欧美精品人与动牲交sv欧美| 欧美日韩一级在线毛片| 成人影院久久| 又黄又粗又硬又大视频| 亚洲国产成人一精品久久久| 国产又爽黄色视频| 国产精品.久久久| 丝袜人妻中文字幕| 国产成人av教育| 亚洲欧洲精品一区二区精品久久久| 中文字幕高清在线视频| 天堂俺去俺来也www色官网| 国产一区有黄有色的免费视频| 亚洲精品国产精品久久久不卡| 亚洲av国产av综合av卡| 久久久久视频综合| 国产免费一区二区三区四区乱码| 欧美成人午夜精品| videos熟女内射| 国产在线视频一区二区| 国产精品久久久久久人妻精品电影 | 欧美亚洲日本最大视频资源| 精品国产一区二区三区四区第35| 国产成人精品在线电影| 麻豆av在线久日| 少妇的丰满在线观看| 一级毛片女人18水好多| 欧美精品亚洲一区二区| 亚洲精品一区蜜桃| 国产一区二区三区综合在线观看| 最近最新免费中文字幕在线| 国产成人欧美在线观看 | 国产精品二区激情视频| 久久天躁狠狠躁夜夜2o2o| 亚洲免费av在线视频| 啦啦啦视频在线资源免费观看| 又紧又爽又黄一区二区| 国产在线观看jvid| 成人免费观看视频高清| 亚洲一卡2卡3卡4卡5卡精品中文| svipshipincom国产片| 亚洲精品国产av成人精品| 丰满饥渴人妻一区二区三| 日韩电影二区| 国产精品av久久久久免费| 热99re8久久精品国产| 久久热在线av| 亚洲专区国产一区二区| 久久精品国产亚洲av香蕉五月 | 一边摸一边做爽爽视频免费| 青春草视频在线免费观看| 成在线人永久免费视频| 国产熟女午夜一区二区三区| 午夜久久久在线观看| 99国产精品99久久久久| 亚洲精品国产区一区二| 日韩欧美一区视频在线观看| 精品国产一区二区三区久久久樱花| 女警被强在线播放| 日本av手机在线免费观看| 一级a爱视频在线免费观看| 他把我摸到了高潮在线观看 | 大香蕉久久网| 免费高清在线观看视频在线观看| 成人影院久久| 久久人人爽人人片av| 国产欧美日韩一区二区三 | 在线观看免费午夜福利视频| 中国国产av一级| 久久人人爽人人片av| 丁香六月天网| 考比视频在线观看| 99国产精品一区二区蜜桃av | 欧美+亚洲+日韩+国产| 亚洲男人天堂网一区| 欧美亚洲 丝袜 人妻 在线| 免费久久久久久久精品成人欧美视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品第二区| 欧美97在线视频| 亚洲性夜色夜夜综合| 欧美日韩一级在线毛片| 日本av手机在线免费观看| 亚洲精品中文字幕在线视频| 国产精品香港三级国产av潘金莲| 少妇裸体淫交视频免费看高清 | 在线十欧美十亚洲十日本专区| 精品人妻一区二区三区麻豆| 国产三级黄色录像| 久久性视频一级片| 国产精品 欧美亚洲| 国产精品免费视频内射| videos熟女内射| 黄色视频,在线免费观看| 一区二区av电影网| 99久久99久久久精品蜜桃| 亚洲国产欧美日韩在线播放| 国产伦理片在线播放av一区| 18在线观看网站| 国产高清国产精品国产三级| 久热爱精品视频在线9| 国产亚洲av片在线观看秒播厂| 女人久久www免费人成看片| 欧美成狂野欧美在线观看| 国产日韩一区二区三区精品不卡| 欧美日韩av久久| 成年动漫av网址| 久久精品国产亚洲av高清一级| 国产一区二区在线观看av| 91精品伊人久久大香线蕉| 婷婷成人精品国产| 1024香蕉在线观看| 国产精品成人在线| 一级毛片电影观看| 国产精品一区二区精品视频观看| 美女午夜性视频免费| 日韩欧美免费精品| 各种免费的搞黄视频| 啦啦啦视频在线资源免费观看| 欧美 日韩 精品 国产| www.999成人在线观看| 青草久久国产| 久久国产精品人妻蜜桃| 亚洲精品成人av观看孕妇| 亚洲第一青青草原| 汤姆久久久久久久影院中文字幕| 国产高清国产精品国产三级| 侵犯人妻中文字幕一二三四区| 久久精品国产亚洲av香蕉五月 | 日本av手机在线免费观看| 亚洲五月色婷婷综合| 美女高潮喷水抽搐中文字幕| 免费人妻精品一区二区三区视频| 一级毛片电影观看| 国产精品一二三区在线看| 高清视频免费观看一区二区| 一级,二级,三级黄色视频| av网站在线播放免费| 国产精品99久久99久久久不卡| 久久毛片免费看一区二区三区| 久久久久国内视频| 两个人看的免费小视频| 欧美成人午夜精品| 亚洲第一青青草原| 黄片大片在线免费观看| 欧美久久黑人一区二区| 精品少妇一区二区三区视频日本电影| 国产又色又爽无遮挡免| 久久性视频一级片| 久久青草综合色| 亚洲 国产 在线| 亚洲av日韩精品久久久久久密| 最黄视频免费看| 亚洲精品国产av成人精品| av在线老鸭窝| 国产一区二区三区在线臀色熟女 | 国产精品亚洲av一区麻豆| 精品久久久精品久久久| 日本91视频免费播放| 亚洲精品中文字幕一二三四区 | 老司机午夜十八禁免费视频| 天天躁日日躁夜夜躁夜夜| 国产日韩欧美在线精品| 男女下面插进去视频免费观看| 亚洲国产中文字幕在线视频| 亚洲一区中文字幕在线| 蜜桃在线观看..| 香蕉国产在线看| 亚洲av片天天在线观看| 亚洲少妇的诱惑av| 亚洲七黄色美女视频| 国产高清国产精品国产三级| 亚洲精品中文字幕在线视频| 久久女婷五月综合色啪小说| 亚洲成国产人片在线观看| 午夜福利影视在线免费观看| 欧美精品高潮呻吟av久久| 欧美精品人与动牲交sv欧美| 亚洲精品国产色婷婷电影| 另类精品久久| 亚洲av日韩精品久久久久久密| 少妇人妻久久综合中文| 国产成+人综合+亚洲专区| 午夜福利视频在线观看免费| 69av精品久久久久久 | 在线av久久热| 久久精品亚洲熟妇少妇任你| 国产免费av片在线观看野外av| 汤姆久久久久久久影院中文字幕| 50天的宝宝边吃奶边哭怎么回事| 国产野战对白在线观看| 亚洲一区二区三区欧美精品| 一区二区三区四区激情视频| 精品亚洲成国产av| 后天国语完整版免费观看| 亚洲国产欧美网| videos熟女内射| 亚洲国产日韩一区二区| 国产伦人伦偷精品视频| 国产成人免费观看mmmm| 精品卡一卡二卡四卡免费| 欧美97在线视频| 最黄视频免费看| 无限看片的www在线观看| 国产一区有黄有色的免费视频| 国产精品久久久久久人妻精品电影 | 国产成人精品在线电影| 老司机午夜福利在线观看视频 | 国产精品免费大片| 日韩 亚洲 欧美在线| 老汉色av国产亚洲站长工具| 久久这里只有精品19| 777久久人妻少妇嫩草av网站| 黄片小视频在线播放| 别揉我奶头~嗯~啊~动态视频 | 在线天堂中文资源库| 国产一区二区在线观看av| 五月天丁香电影| 人妻一区二区av| 亚洲免费av在线视频| 欧美日韩av久久| 久久毛片免费看一区二区三区| 两性夫妻黄色片| 欧美乱码精品一区二区三区| 青春草视频在线免费观看| 国产色视频综合| 丰满人妻熟妇乱又伦精品不卡| 女人被躁到高潮嗷嗷叫费观| 丝袜美腿诱惑在线| 男女高潮啪啪啪动态图| 飞空精品影院首页| 性色av乱码一区二区三区2| 久久国产精品人妻蜜桃| 十八禁高潮呻吟视频| a级毛片在线看网站| 成人影院久久| 悠悠久久av| 男女之事视频高清在线观看| 亚洲精品国产色婷婷电影| 飞空精品影院首页| 男女之事视频高清在线观看| 国产成人啪精品午夜网站| 欧美日韩黄片免| 90打野战视频偷拍视频| 一级片'在线观看视频| 老熟妇仑乱视频hdxx| 亚洲av欧美aⅴ国产| 看免费av毛片| 在线观看人妻少妇| 麻豆av在线久日| 亚洲精品久久午夜乱码| 波多野结衣av一区二区av| 美女主播在线视频| 久久精品亚洲熟妇少妇任你| 男女床上黄色一级片免费看| 国产区一区二久久| 另类精品久久| 大型av网站在线播放| 日日爽夜夜爽网站| 亚洲第一av免费看| 免费人妻精品一区二区三区视频| 亚洲欧美日韩高清在线视频 | 老司机靠b影院| 亚洲欧美精品自产自拍| 天堂8中文在线网| av在线老鸭窝| 欧美日韩视频精品一区| 亚洲欧美清纯卡通| 高清视频免费观看一区二区| av网站在线播放免费| 日韩欧美国产一区二区入口| 亚洲人成电影观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久这里只有精品19| 中文字幕制服av| 亚洲精品粉嫩美女一区| 国产精品免费大片| 亚洲少妇的诱惑av| 欧美人与性动交α欧美精品济南到| 欧美性长视频在线观看| 性高湖久久久久久久久免费观看| 国产亚洲欧美精品永久| 97在线人人人人妻| 99香蕉大伊视频| 精品福利观看| 99国产综合亚洲精品| 日本av手机在线免费观看| 午夜福利乱码中文字幕| 十分钟在线观看高清视频www| 飞空精品影院首页| 99国产精品一区二区蜜桃av | 高清黄色对白视频在线免费看| 我的亚洲天堂| 欧美午夜高清在线| 大码成人一级视频| 在线亚洲精品国产二区图片欧美| 亚洲av国产av综合av卡| 老司机影院成人| 午夜福利在线免费观看网站| 久久ye,这里只有精品| 在线观看人妻少妇| 一进一出抽搐动态| 久久久精品区二区三区| 电影成人av| 日韩免费高清中文字幕av| 亚洲成av片中文字幕在线观看| 亚洲国产欧美在线一区| 91字幕亚洲| 久久久国产成人免费| 精品少妇一区二区三区视频日本电影| 亚洲av日韩在线播放| 大片免费播放器 马上看| 国产精品二区激情视频| 国产人伦9x9x在线观看| 亚洲国产毛片av蜜桃av| 极品人妻少妇av视频| 亚洲成人免费电影在线观看| 一级片免费观看大全| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲精品久久久久5区| 国产一区二区在线观看av| 久久久久精品国产欧美久久久 | 精品福利观看| 搡老岳熟女国产| 亚洲一卡2卡3卡4卡5卡精品中文| 一边摸一边抽搐一进一出视频| 久久女婷五月综合色啪小说| 黑人猛操日本美女一级片| 久久久国产欧美日韩av| 十八禁人妻一区二区| 国产精品一区二区精品视频观看| 性色av乱码一区二区三区2| 精品久久久精品久久久| 视频区欧美日本亚洲| 国产av国产精品国产| 久久久欧美国产精品| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人免费av在线播放| 日本vs欧美在线观看视频| 另类精品久久| 亚洲一区二区三区欧美精品| 欧美日韩精品网址| 肉色欧美久久久久久久蜜桃| 搡老熟女国产l中国老女人| 色94色欧美一区二区| 久久国产亚洲av麻豆专区| 国产在线免费精品| 一区二区三区四区激情视频| 亚洲男人天堂网一区| 久久国产精品人妻蜜桃| 午夜福利乱码中文字幕| av又黄又爽大尺度在线免费看| 国产日韩欧美亚洲二区| 亚洲国产av新网站| www.自偷自拍.com| 99热国产这里只有精品6| 中文字幕制服av| 欧美日韩福利视频一区二区| 免费在线观看影片大全网站| 亚洲av国产av综合av卡| 国产精品免费视频内射| 肉色欧美久久久久久久蜜桃| 亚洲精品国产av成人精品| 午夜福利在线免费观看网站| 中文字幕高清在线视频| 五月开心婷婷网| 中文字幕av电影在线播放| 美女高潮喷水抽搐中文字幕| 久久热在线av| 久久av网站| 欧美精品av麻豆av| 欧美黑人精品巨大| 欧美另类亚洲清纯唯美| 日韩 欧美 亚洲 中文字幕| 精品久久蜜臀av无| 欧美精品高潮呻吟av久久| 桃花免费在线播放| 久久精品国产a三级三级三级| 日本wwww免费看| 日韩欧美国产一区二区入口| 视频在线观看一区二区三区| 黑人巨大精品欧美一区二区mp4| 电影成人av| 亚洲欧美精品综合一区二区三区| a级毛片在线看网站| 97人妻天天添夜夜摸| 中亚洲国语对白在线视频| 亚洲欧美日韩另类电影网站| 亚洲精品自拍成人| 国产视频一区二区在线看| 这个男人来自地球电影免费观看| 日韩一区二区三区影片| 视频在线观看一区二区三区| 欧美精品亚洲一区二区| 久久久久久久久久久久大奶| 黄色视频在线播放观看不卡| 电影成人av| 热99国产精品久久久久久7| 黄频高清免费视频| 99久久99久久久精品蜜桃| 亚洲久久久国产精品| 50天的宝宝边吃奶边哭怎么回事| 久久久国产欧美日韩av| 久久久精品国产亚洲av高清涩受| 日韩欧美国产一区二区入口| 99久久精品国产亚洲精品| av在线老鸭窝| 亚洲综合色网址| 人妻 亚洲 视频| www.精华液| 国产av一区二区精品久久| 久久ye,这里只有精品| 亚洲国产精品999| 久久青草综合色| 久久久水蜜桃国产精品网| 一级毛片精品| 国产亚洲欧美在线一区二区| 美女福利国产在线| 亚洲av日韩精品久久久久久密| 亚洲国产欧美网| 亚洲性夜色夜夜综合| 免费在线观看视频国产中文字幕亚洲 | 天天操日日干夜夜撸| a 毛片基地| 男女边摸边吃奶| 国产精品国产三级国产专区5o| 69精品国产乱码久久久| 成人国产一区最新在线观看| 免费观看a级毛片全部| 超碰97精品在线观看| 精品国产乱码久久久久久小说| 丝瓜视频免费看黄片| 18禁裸乳无遮挡动漫免费视频| 欧美97在线视频| 国产男女内射视频| 国产不卡av网站在线观看| 色综合欧美亚洲国产小说| 久久精品国产亚洲av香蕉五月 | 国产精品九九99| 亚洲成人手机| 狠狠婷婷综合久久久久久88av| 亚洲中文日韩欧美视频| 日韩熟女老妇一区二区性免费视频| 亚洲国产欧美网| 免费高清在线观看日韩| 午夜福利影视在线免费观看| 精品福利永久在线观看| 国产亚洲av高清不卡| 午夜精品久久久久久毛片777| 极品少妇高潮喷水抽搐| 国产亚洲欧美精品永久| 免费在线观看完整版高清| 国产av国产精品国产| 叶爱在线成人免费视频播放| 欧美日韩精品网址|