圍術(shù)期神經(jīng)認(rèn)知功能障礙(perioperative neurocognitive disorders,PND)是在以往的術(shù)后譫妄(postopera-tive delirium,POD)和術(shù)后神經(jīng)認(rèn)知功能障礙(postoperative congnitive dysfunctiong,POCD)的基礎(chǔ)上,增加了術(shù)前就已經(jīng)存在的認(rèn)知功能障礙,囊括了POD、神經(jīng)認(rèn)知恢復(fù)延遲、術(shù)后神經(jīng)認(rèn)知障礙以及術(shù)前就存在的認(rèn)知功能障礙[1]。認(rèn)知功能障礙作為手術(shù)麻醉后,尤其是老年患者的常見術(shù)后并發(fā)癥,通常表現(xiàn)為患者在術(shù)后出現(xiàn)情緒焦慮、記憶受損、人格改變、精神錯亂等,不僅嚴(yán)重降低了患者術(shù)后生活質(zhì)量,甚至增加了患者術(shù)后癡呆和死亡的風(fēng)險[2]。體外循環(huán)(extracorporeal circulation,ECC)也稱心肺轉(zhuǎn)流(cardiopulmonary bypass,CPB),它采用一種特殊裝置將靜脈血引至體外,經(jīng)過人工方法進行氣體交換輸回動脈的生命支持設(shè)施[3]。體外循環(huán)心臟手術(shù)被認(rèn)為是術(shù)后神經(jīng)認(rèn)知功能障礙發(fā)生率最高的手術(shù)類型之一[4]。HOGUE等[5]發(fā)現(xiàn)體外循環(huán)手術(shù)后卒中發(fā)生率為1%~3%,而輕微記憶力減退以及術(shù)后PND發(fā)生率高達30%~60%。因此,降低體外循環(huán)心臟手術(shù)后PND的發(fā)生率是目前心外科和麻醉領(lǐng)域廣泛研究的重要問題。本文就體外循環(huán)手術(shù)后PND的發(fā)生機制及防治研究進展進行總結(jié),期望為防治體外循環(huán)手術(shù)后PND的發(fā)生提供更多研究依據(jù)。
1 PND概述
PND以術(shù)后記憶力、注意力、語言理解、思維邏輯和社交能力損傷為主要特征,常發(fā)生在70歲以上的圍術(shù)期老年患者中。PND主要用以描述術(shù)前及術(shù)后發(fā)生的譫妄及認(rèn)知功能障礙兩大類臨床表現(xiàn)。PND根據(jù)其發(fā)生時間可分為以下5種:(1)術(shù)前已經(jīng)存在的認(rèn)知功能損害;(2)術(shù)后譫妄:即患者術(shù)后至出院前出現(xiàn)的精神功能障礙;(3)延遲神經(jīng)功能恢復(fù):即患者術(shù)后1個月內(nèi)出現(xiàn)的認(rèn)知功能障礙;(4)術(shù)后神經(jīng)認(rèn)知損害:即患者術(shù)后1個月至1年內(nèi)存在的認(rèn)知功能下降;(5)認(rèn)知功能減退:即手術(shù)1年后首次診斷為認(rèn)知功能減退[1]。PND的影響因素一直是目前研究的重中之重,以往研究發(fā)現(xiàn)高齡、術(shù)前即存在的心腦血管疾病、受教育水平低、術(shù)中和術(shù)后并發(fā)癥以及術(shù)中血流動力學(xué)變化都可能與PND的發(fā)生相關(guān),但結(jié)論尚不明確[6]。
2 體外循環(huán)中PND的發(fā)生機制
2.1 腦血管自身調(diào)節(jié)機制
目前大部分心臟外科手術(shù)都離不開體外循環(huán)的參與,心臟手術(shù)操作復(fù)雜,雖然CPB期間可以通過調(diào)整泵流量增加心排血量,但術(shù)中炎癥因子的釋放和縮血管物質(zhì)的升高等不可避免會對大腦氧供產(chǎn)生影響。LEI等[7]在一項隨機對照研究中發(fā)現(xiàn),術(shù)中CPB時間越長,術(shù)后發(fā)生PND的風(fēng)險越高。腦血流動力學(xué)紊亂尤其是動態(tài)腦自身調(diào)節(jié)(dCA)的改變有可能是CPB術(shù)后患者出現(xiàn)PND的一大病理機制[8]。dCA是腦血管進行適當(dāng)?shù)哪X血管收縮和舒張來抑制腦灌注壓的急性劇烈波動,減輕對腦血流量(CBF)的影響[9]。KUMPAITIENE等[10]在臨床研究中發(fā)現(xiàn),CPB術(shù)中dCA的受損與PND的發(fā)生密切相關(guān),單個dCA受損的持續(xù)時間是術(shù)后發(fā)生PND的相關(guān)風(fēng)險因素[11],其他相關(guān)研究也驗證了這一結(jié)果。此外,相對高的腦灌注也會破壞大腦的自我調(diào)節(jié),并可能在PND中發(fā)揮重要作用。KASPUTYT等[12]在研究中發(fā)現(xiàn),老年患者在CPB過程中對血流速度加速較為敏感,同時,腦生物標(biāo)志物膠質(zhì)纖維酸性蛋白(GFAP)在相對高灌注組中術(shù)后48 h明顯升高。
2.2 膽堿能系統(tǒng)功能障礙機制
中樞膽堿能系統(tǒng)與日常學(xué)習(xí)和記憶密切相關(guān),它可以合成和分泌神經(jīng)營養(yǎng)因子,支持神經(jīng)元的生長、發(fā)育和功能完整。有研究表明,中樞膽堿能神經(jīng)元被mu-p75-sap預(yù)損傷的小鼠進行手術(shù)后出現(xiàn)明顯的神經(jīng)認(rèn)知障礙,同時,其膽堿乙酰轉(zhuǎn)移酶(ChAT)、乙酰膽堿酯酶(AChE)等中樞膽堿能生物標(biāo)志物出現(xiàn)衰減,表明了中樞膽堿能神經(jīng)元可促進PND的發(fā)展[13-14]。大量研究顯示,七氟醚麻醉與PND發(fā)生密切相關(guān),其發(fā)生機制與七氟醚可以影響中樞基底前膽堿能神經(jīng)元的完整性和功能性有關(guān)[15-17]。XIONG等[18]在研究中發(fā)現(xiàn),七氟醚麻醉分組的小鼠出現(xiàn)明顯的認(rèn)知功能障礙,其基底前膽堿能神經(jīng)元數(shù)量也明顯減少,同時ChAT、AChE等含量明顯降低。這些研究證明PND與中樞膽堿能系統(tǒng)功能障礙有關(guān)。
2.3 神經(jīng)炎癥和血腦屏障損傷機制
近期研究表明,神經(jīng)炎癥特別是中樞神經(jīng)系統(tǒng)的炎癥反應(yīng)與PND的發(fā)生發(fā)展有顯著相關(guān)性[19-20]。LIU等[21]發(fā)現(xiàn)CPB術(shù)后2 h,大鼠出現(xiàn)明顯的認(rèn)知障礙,且大鼠海馬CA3區(qū)出現(xiàn)腦血栓形成和缺氧狀態(tài),其機制可能與神經(jīng)炎癥和血腦屏障受損有關(guān),QIN等[22]的研究也驗證了這一結(jié)果。有研究顯示,手術(shù)創(chuàng)傷使小膠質(zhì)細胞增殖激活加快和神經(jīng)炎癥活動增強,小膠質(zhì)細胞作為常駐巨噬細胞在整個大腦中起到免疫防御作用[23]。ZHANG等[24]研究發(fā)現(xiàn),在脛骨骨折患者術(shù)后72 h,其腦源性神經(jīng)營養(yǎng)因子以及三種膠質(zhì)細胞標(biāo)志物明顯增加。在心臟手術(shù)中,尤其在有CPB參與的手術(shù)后,小膠質(zhì)細胞的激活參與術(shù)后認(rèn)知損傷的炎癥級聯(lián)反應(yīng)[25]。WANG等[26]也在研究中強調(diào)了炎癥在此種情況下的核心作用,證明了小膠質(zhì)細胞的持續(xù)性增殖與神經(jīng)認(rèn)知障礙密切相關(guān)。手術(shù)創(chuàng)傷導(dǎo)致細胞損傷,被動釋放并激活促炎細胞因子[27]。促炎因子IL-1的轉(zhuǎn)錄促進腫瘤壞死因子α(TNFα)的表達,二者的升高可引起環(huán)氧化酶-2(COX-2)的進一步激活,導(dǎo)致COX-2的上調(diào)[28]。同時,外周促炎細胞因子通過上調(diào)COX-2和破壞血腦屏障的通透性進入中樞神經(jīng)系統(tǒng),引發(fā)中樞神經(jīng)炎癥反應(yīng)[29]。在神經(jīng)炎癥和血腦屏障破壞的雙重機制下,活化的小膠質(zhì)細胞激活和釋放各種促炎因子及TNF,并上調(diào)促炎細胞因子的表達,從而促進PND的發(fā)展[30]。
2.4 血液稀釋機制
血液稀釋可以改善CPB期間的微循環(huán)流量,并抵消術(shù)中低體溫導(dǎo)致的紅細胞黏度增加等不良影響[31]。然而,血液稀釋的同時會降低灌注壓及血液的攜氧能力,使得腦血氧減少,增加CPB術(shù)后神經(jīng)功能障礙的風(fēng)險[32]。CPB期間的血液稀釋是因為泵晶體和膠體原液與患者血液的混合而造成的,兩種液體混合體積加上CPB前的紅細胞壓積決定了CPB期間血液稀釋的程度。SOLIMAN等[33]在一項研究中發(fā)現(xiàn),CPB過程中,輕度血液稀釋組輸注的紅細胞數(shù)量明顯高于中度稀釋組,且其神經(jīng)功能障礙發(fā)生率明顯低于中度稀釋組,同時,輕度血液稀釋組術(shù)后神經(jīng)系統(tǒng)并發(fā)癥的發(fā)生率也明顯低于中度稀釋組。進行性血液稀釋可能與泵晶膠體稀釋血液紅細胞數(shù)量,導(dǎo)致CPB期間血液攜氧能力的下降有關(guān),從而導(dǎo)致腦組織供氧減少和相關(guān)器官功能障礙。這也表明血液稀釋的嚴(yán)重程度與CPB術(shù)后出現(xiàn)神經(jīng)功能障礙的風(fēng)險有直接關(guān)系。
3 體外循環(huán)中PND的防治
3.1 術(shù)中rSO2監(jiān)測在CPB心臟手術(shù)中的應(yīng)用
心臟外科手術(shù)后的腦損傷目前仍是常見的,尤其是合并CPB術(shù)后,33%~80%的心臟外科手術(shù)聯(lián)合CPB的患者術(shù)后會發(fā)生PND,這對患者術(shù)后生活質(zhì)量會產(chǎn)生重大影響。COLAK等[34]在一項隨機前瞻性研究中發(fā)現(xiàn),術(shù)中局部腦氧飽和度(rSO2)去飽和時間延長的患者,認(rèn)知能力下降的風(fēng)險增加。因此,在心臟手術(shù),尤其是復(fù)雜性較高的心臟手術(shù)中開展局部rSO2監(jiān)測,有助于麻醉醫(yī)師及時了解腦灌注情況,優(yōu)化術(shù)中的麻醉管理,減少術(shù)后神經(jīng)功能并發(fā)癥的發(fā)生,為術(shù)后的標(biāo)準(zhǔn)化干預(yù)提供了機會[35]。GOLDMAN等[36]在研究中通過提高研究組CPB期間的泵流量,維持患者術(shù)中rSO2在術(shù)前基線值附近,發(fā)現(xiàn)研究組的腦卒中發(fā)生率低于對照組,術(shù)后帶管維持時間和總住院時間較對照組縮短。TIAN等[37]研究也驗證了這一結(jié)果。郜楊等[38]通過對75例進行微創(chuàng)冠脈旁路移植術(shù)患者的隨機對照研究發(fā)現(xiàn),術(shù)中進行rSO2監(jiān)測和干預(yù)能夠增加患者術(shù)后MMSE評分,降低患者術(shù)后神經(jīng)系統(tǒng)并發(fā)癥的發(fā)生率,改善患者術(shù)后認(rèn)知功能。此外,心臟手術(shù)中進行rSO2監(jiān)測還可以指導(dǎo)手術(shù)操作,減少不必要的操作時間,提高手術(shù)治療效果。有研究顯示,心臟手術(shù)中進行rSO2監(jiān)測可以提示動靜脈插管對位是否正確,及時調(diào)整導(dǎo)管位置,避免嚴(yán)重的術(shù)后神經(jīng)并發(fā)癥的發(fā)生[39-41]。
3.2 早期腦損傷標(biāo)志物監(jiān)測
神經(jīng)元烯醇化酶(NSE)常見于神經(jīng)元及神經(jīng)內(nèi)分泌細胞中,是參與糖酵解途徑的烯醇化酶的一種,是生物體內(nèi)糖酵解途徑的關(guān)鍵酶。血清NSE水平是腦損傷程度的診斷和預(yù)后評估指標(biāo)[42]。在心臟手術(shù)尤其是CPB期間,血清NSE水平明顯升高,直至術(shù)后24 h左右恢復(fù)至術(shù)前基線水平[43],因此,NSE可作為CPB術(shù)后PND的神經(jīng)損傷生物標(biāo)志物,可用于提高預(yù)警,及時進行干預(yù)[44]。S-100β蛋白存在于中樞神經(jīng)系統(tǒng)和周圍神經(jīng)系統(tǒng)的神經(jīng)膠質(zhì)細胞中,是一種酸性鈣結(jié)合蛋白,通過參與蛋白的磷酸化、細胞增殖分化和Ca2+穩(wěn)態(tài)等參與細胞內(nèi)信號傳導(dǎo),對認(rèn)知功能有明顯影響[45],也是目前反映腦損傷程度的特異性蛋白之一[46]。WAN等[47]在一項研究中發(fā)現(xiàn),S-100β蛋白水平在CPB后1 h達到峰值,并在CPB結(jié)束后24 h左右恢復(fù)至術(shù)前基線水平,CPB期間及CPB術(shù)后血漿S-100β蛋白和NSE水平升高與早期PND密切相關(guān),研究表明,血清S-100β的峰值水平能夠預(yù)測早期PND的發(fā)生。因此,血清S-100β水平可以作為中樞神經(jīng)系統(tǒng)損傷的特異性、敏感性指標(biāo),對早期PND的發(fā)生進行預(yù)警和防治[48]。但NSE可在中樞神經(jīng)外的其他神經(jīng)內(nèi)分泌細胞中表達,S-100β蛋白也不僅存在于中樞神經(jīng)系統(tǒng),周圍神經(jīng)系統(tǒng)的神經(jīng)膠質(zhì)細胞及心肌細胞中均有表達,當(dāng)這些細胞受損時,也可釋放兩種物質(zhì)入血,引起血清NSE和S-100β蛋白表達水平升高。因此,NSE和S-100β蛋白的血清學(xué)水平受多種神經(jīng)及細胞表達的影響,其能否準(zhǔn)確反映CPB術(shù)后PND的發(fā)生風(fēng)險仍存在爭議。
3.3 抗炎藥物的應(yīng)用
目前大量研究認(rèn)為,神經(jīng)炎癥反應(yīng)是CPB術(shù)后發(fā)生PND的最重要的病理生理機制。因此,在臨床中抗炎藥物的應(yīng)用也越來越廣泛。烏司他丁、米諾環(huán)素等抗炎藥物可顯著降低炎癥因子的水平,可以在一定程度上降低術(shù)后PND的發(fā)生[49-50]。近年來,有多篇文獻報道右美托咪定對大腦有保護作用,可以在一定程度上降低心臟手術(shù)中炎癥因子CK-MB、IL-6以及TNF-α的水平,同時患者ICU停留時間也相應(yīng)減少,但其對IL-10、C-反應(yīng)蛋白和住院總時間等無明顯影響,其可能與右美托咪定可以抑制炎癥因子的釋放有關(guān)[51]。烏司他丁是一種抗炎藥物,它可以抑制全身炎癥反應(yīng),降低神經(jīng)元的凋亡,保護機體主要器官。ZHOU等[52]研究發(fā)現(xiàn),烏司他丁聯(lián)合右美托咪定比單獨使用其中任意一種的效果更佳,提示烏司他丁與右美托咪定兩種藥物在改善CPB術(shù)后PND方面有良好的協(xié)同作用。但該研究僅隨訪術(shù)后7天PND的發(fā)生率,持續(xù)時間較短,對心臟術(shù)后患者的長期隨訪及對CPB心臟手術(shù)患者遠期康復(fù)的促進作用尚不明確,因此,關(guān)于抗炎藥物對CPB心臟手術(shù)患者術(shù)后遠期恢復(fù)和PND的影響還需要進一步的研究。
3.4 麻醉藥物的影響
PND的發(fā)生率不僅與手術(shù)創(chuàng)傷密切相關(guān),麻醉也發(fā)揮至關(guān)重要的作用。合理的麻醉誘導(dǎo)和管理方案有助于緩解患者腦部血氧供需平衡,保護中樞神經(jīng)系統(tǒng),降低心臟手術(shù)PND的發(fā)生率。既往有研究表明,吸入麻醉和全憑靜脈麻醉可能會對CPB心臟手術(shù)患者產(chǎn)生不同程度的腦保護作用[6,53]。異丙酚和七氟醚是CPB心臟手術(shù)中常用的麻醉藥物,我們在一項meta分析中發(fā)現(xiàn),吸入麻醉組CPB術(shù)后的血清S-100β水平明顯低于靜脈麻醉組,同時,其MMSE評分也明顯高于靜脈麻醉組,這些結(jié)果表明,在改善CPB心臟手術(shù)患者的術(shù)后PND方面,吸入麻醉方案要優(yōu)于全憑靜脈麻醉[54]。然而,另一項研究顯示,吸入性麻醉藥物可誘導(dǎo)細胞凋亡,增加β淀粉樣蛋白的形成,在吸入麻醉組中,S-100β蛋白水平要高于靜脈麻醉組,反映吸入麻醉組患者血腦屏障功能有所下降,且靜脈麻醉組MMSE評分顯著高于吸入麻醉組[55]。兩種研究在結(jié)論方面大相徑庭,表明目前對于麻醉藥物對CPB心臟手術(shù)后PND發(fā)生率的影響研究還尚無明確結(jié)論,哪種麻醉方案可以提供更好的腦保護作用也尚不清楚。此外,兩種研究樣本量均較小,局限性相對較大,這也許是結(jié)論有所差異的原因之一。
4 小結(jié)和展望
PND作為描述患者認(rèn)知功能改變的新概念和新命名,在評估時間上覆蓋了術(shù)前、術(shù)后7 d、術(shù)后1個月和術(shù)后1年,目前大部分研究主要集中于對術(shù)后早期神經(jīng)認(rèn)知功能障礙的評估和干預(yù),遠期隨訪仍面臨許多困難,臨床研究難度也大大增加。以往的研究更多采用POCD和POD作為定義患者術(shù)后認(rèn)知功能改變,而隨著PND概念的出現(xiàn)與推廣,未來對圍術(shù)期神經(jīng)認(rèn)知功能障礙的研究也許會有新的方向。
體外循環(huán)與PND的相關(guān)性目前正在被越來越多的學(xué)者研究,本文系統(tǒng)綜述了目前研究比較集中的可能影響CPB心臟手術(shù)后PND的相關(guān)病理生理機制研究進展,包括腦血管自身調(diào)節(jié)機制、膽堿能系統(tǒng)功能障礙機制、神經(jīng)炎癥和血腦屏障受損機制以及血液稀釋機制等。CPB術(shù)后PND的發(fā)生目前尚無比較明確的治療方法,因此,早診斷、早預(yù)防是降低術(shù)后PND發(fā)生率的最佳方案,本文匯總了目前比較有效的兩種預(yù)警監(jiān)測指標(biāo)及常用的防治藥物,也是當(dāng)前防治PND發(fā)生發(fā)展的有效途徑,并且在理論與實踐方面均有較為可靠的研究驗證。相信通過不斷研究,將多種監(jiān)測技術(shù)交叉結(jié)合,相互印證,將為PND的發(fā)病機制提供更加詳盡的實驗依據(jù),推進CPB術(shù)后PND的早期診斷與防治。
參 考 文 獻
[1]" WOODING D J, FIELD T S, SCHWARZ S K W, et al. Current recommendations for perioperative brain health:a scoping review[J]. J Neurosurg Anesthesiol,2023,35(1):10-18.
[2]" JIA S L, YANG H, HUANG F, et al. Systemic inflammation,neuroinflammation and perioperative neurocognitive disorders[J]. Inflamm Res,2023,72(9):1895-1907.
[3]" GOVENDER K, JANI V P, CABRALES P. The disconnect between extracorporeal circulation and the microcirculation:a review[J]. ASAIO J,2022,68(7):881-889.
[4]" KAPOOR M C. Neurological dysfunction after cardiac surgery and cardiac intensive care admission:a narrative review part 1:The problem;nomenclature;delirium and postoperative neurocognitive disorder;and the role of cardiac surgery and anesthesia[J]. Ann Card Anaesth,2020,23(4):383-390.
[5]" HOGUE CW J R, PALIN C A, ARROWSMITH J E. Cardiopulmonary bypass management and neurologic outcomes:an evidence-based appraisal of current practices[J]. Anesth Analg,2006,103(1):21-37.
[6] VIDERMAN D, AUBAKIROVA M, NABIDOLLAYEVA F, et al. Effect of ketamine on postoperative neurocognitive disorders:a systematic review and meta-analysis[J]. J Clin Med,2023,12(13):4314.
[7]" LEI L, KATZNELSON R, FEDORKO L, et al. Cerebral oximetry and postoperative delirium after cardiac surgery:a randomised,controlled trial[J]. Anaesthesia,2017,72(12):1456-1466.
[8]" CHRISTIANSEN C B, BERG R M, PLOVSING R, et al. Dynamic cerebral autoregulation after cardiopulmonary bypass[J]. Thorac Cardiovasc Surg,2016,64(7):569-574.
[9]" VU E L, BROWN C H, BRADY K M, et al. Monitoring of cerebral blood flow autoregulation:physiologic basis,measurement,and clinical implications[J]. Br J Anaesth,2024,132(6):1260-1273.
[10]" KUMPAITIENE B, SVAGZDIENE M, SIRVINSKAS E, et al. Cerebrovascular autoregulation impairments during cardiac surgery with cardiopulmonary bypass are related to postoperative cognitive deterioration:prospective observational study[J]. Minerva Anestesiol,2019,85(6):594-603.
[11]" ELSEBAIE A, SHAKEEL A, ZHANG S T, et al. Effect of oxygen delivery during cardiopulmonary bypass on postoperative neurological outcomes in patients undergoing cardiac surgery:a scoping review of the literature[J]. Perfusion,2024:2676591241239279.
[12]" KASPUTYT G, BUKAUSKIEN R, IRVINSKAS E, et al. The effect of relative cerebral hyperperfusion during cardiac surgery with cardiopulmonary bypass to delayed neurocognitive recovery[J]. Perfusion,2023,38(8):1688-1696.
[13]" XU H, CHEN L K, ZHANG X, et al. Central cholinergic neuronal degeneration promotes the development of postoperative cognitive dysfunction[J]. Lab Invest,2019,99(7):1078-1088.
[14]" KIPP B T, SAVAGE L M. Modulation of the p75NTR during adolescent alcohol exposure prevents cholinergic neuronal atrophy and associated acetylcholine activity and behavioral dysfunction[J]. Int J Mol Sci,2024,25(11):5792.
[15]" HEINRICH M, SIEG M, KRUPPA J, et al. Association between genetic variants of the cholinergic system and postoperative delirium and cognitive dysfunction in elderly patients[J]. BMC Med Genomics,2021,14(1):248.
[16]" ZHANG J L, ZHANG X L, YANG Y Y, et al. Effect of different vitamin D levels on cognitive function in aged mice after sevoflurane anesthesia[J]. Front Aging Neurosci,2022,14:940106.
[17]" WANG H, XU Z P, FENG C S, et al. Changes of learning and memory in aged rats after isoflurane inhalational anaesthesia correlated with hippocampal acetylcholine level[J].Ann Fr Anesth Reanim,2012,31(3):e61-6.
[18]" XIONG L, DUAN L J, XU W Q, et al. Nerve growth factor metabolic dysfunction contributes to sevoflurane-induced cholinergic degeneration and cognitive impairments[J]. Brain Res,2019,1707:107-116.
[19]" JUFAR A H, LANKADEVA Y R, MAY C N, et al. Renal and cerebral hypoxia and inflammation during cardiopulmonary bypass[J]. Compr Physiol,2021,12(1):2799-2834.
[20]" HUANG J Y, ZHU Y L, LIU Y X, et al. The cold-inducible RNA-binding protein-Thioredoxin 1 pathway ameliorates mitochondrial dysfunction and mitochondrial dynamin-related protein 1 level in the hippocampus of aged mice with perioperative neurocognitive dysfunction[J]. CNS Neurosci Ther,2024,30(3):e14433.
[21]" LIU T, DENG R, WANG X, et al. Mechanisms of hypoxia in the hippocampal CA3 region in postoperative cognitive dysfunction after cardiopulmonary bypass[J]. J Cardiothorac Surg,2022,17(1):106.
[22]" QIN J, MA Q, MA D. Low-dose sevoflurane attenuates cardiopulmonary bypass (CPB)- induced postoperative cognitive dysfunction (POCD) by regulating hippocampus apoptosis via PI3K/AKT pathway[J]. Curr Neurovasc Res,2020,17(3):232-240.
[23]" FERRARIS V A. Commentary:The brain's response to temperature stress involves shock proteins,RNA-binding proteins and microglia-Should cardiac surgeons care?[J]. J Thorac Cardiovasc Surg,2020,159(6):2447-2448.
[24]" ZHANG M D, BARDE S, YANG T, et al. Orthopedic surgery modulates neuropeptides and BDNF expression at the spinal and hippocampal levels[J]. Proc Natl Acad Sci USA,2016,113(43):E6686-E6695.
[25]" LIN X Y, CHEN Y R, ZHANG P, et al. The potential mechanism of postoperative cognitive dysfunction in older people[J]. Exp Gerontol,2020,130:110791.
[26]" WANG Y, TACHE-LEON C, MACHIZAWA M G, et al. Persistent cognitive deficits and neuroinflammation in a rat model of cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg,2020,160(4):e185-e188.
[27]" WU J, YIN Y, JIN M, et al. The risk factors for postoperative delirium in adult patients after hip fracture surgery:a systematic review and meta-analysis[J]. Int J Geriatr Psychiatry,2021,36(1):3-14.
[28]" HOUGHTON J S M, NICKINSON A T O, BRIDGWOOD B, et al. Prevalence of cognitive impairment in individuals with vascular surgical pathology:a systematic review and meta-analysis[J]. Eur J Vasc Endovasc Surg,2021,61(4):664-674.
[29]" WEN J, DING Y, WANG L, et al. Gut microbiome improves postoperative cognitive function by decreasing permeability of the blood-brain barrier in aged mice[J]. Brain Res Bull,2020,164:249-256.
[30]" GAO Z W, LI Z F, DENG R, et al. Dexmedetomidine improves postoperative neurocognitive disorder after cardiopulmonary bypass in rats[J]. Neurol Res,2021,43(2):164-172.
[31]" MONACO F, GUARRACINO F, VENDRAMIN I, et al. Acute normovolemic hemodilution in cardiac surgery: rationale and design of a multicenter randomized trial[J]. Contemp Clin Trials,2024,143:107605.
[32]" BEUKERS A M, BULTE C S E, BOSCH R J, et al. Optimization of cardiopulmonary bypass prime fluid to preserve microcirculatory perfusion during on-pump coronary artery bypass graft surgery:PRIME study protocol for a double-blind randomized trial[J]. Trials,2024,25(1):219.
[33]" SOLIMAN R, SAAD D, ABUKHUDAIR W, et al. The neurocognitive outcomes of hemodilution in adult patients undergoing coronary artery bypass grafting using cardiopulmonary bypass[J]. Ann Card Anaesth,2022,25(2):133-140.
[34]" COLAK Z, BOROJEVIC M, BOGOVIC A, et al. Influence of intraoperative cerebral oximetry monitoring on neurocognitive function after coronary artery bypass surgery:a randomized,prospective study[J]. Eur J Cardio Thorac Surg,2015,47(3):447-454.
[35]" 秦學(xué)偉,陳宣伶,姚蘭.老年心臟手術(shù)患者術(shù)中加強腦氧飽和度監(jiān)測對術(shù)后認(rèn)知功能狀態(tài)的預(yù)測價值[J].中華醫(yī)學(xué)雜志,2021,101(5):345-349.
[36]" GOLDMAN S, SUTTER F, FERDINAND F, et al. Optimizing intraoperative cerebral oxygen delivery using noninvasive cerebral oximetry decreases the incidence of stroke for cardiac surgical patients[J]. Heart Surg Forum,2004,7(5):E376-E381.
[37]" TIAN L J, YUAN S, ZHOU C H, et al. The effect of intraoperative cerebral oximetry monitoring on postoperative cognitive dysfunction and ICU stay in adult patients undergoing cardiac surgery:an updated systematic review and meta-analysis[J]. Front Cardiovasc Med,2021,8:814313.
[38]" 郜揚,張占琴,胡杰,等.局部腦氧飽和度監(jiān)測在微創(chuàng)冠脈旁路移植術(shù)中的應(yīng)用[J].轉(zhuǎn)化醫(yī)學(xué)雜志,2022,11(3):159-163.
[39]" NAKANISHI T, KATO S, TAMURA T, et al. Malposition of a pulmonary artery catheter in the left ventricle:a case report[J]. JA Clin Rep,2023,9(1):29.
[40]" ORIHASHI K, SUEDA T, OKADA K, et al. Malposition of selective cerebral perfusion catheter is not a rare event[J]. Eur J Cardiothorac Surg,2005,27(4):644-648.
[41]" CIOCCARI L, BITKER L, TOH L, et al. Prolonged postoperative cerebral oxygen desaturation after cardiac surgery:a prospective observational study[J].Eur J Anaesthesiol,2021,38(9):966-974.
[42] AMOO M, HENRY J, O’HALLORAN P J, et al. S100B,GFAP,UCH-L1 and NSE as predictors of abnormalities on CT imaging following mild traumatic brain injury:a systematic review and meta-analysis of diagnostic test accuracy[J]. Neurosurg Rev,2022,45(2):1171-1193.
[43]" WIBERG S, HOLMGAARD F, ZETTERBERG H, et al. Biomarkers of cerebral injury for prediction of postoperative cognitive dysfunction in patients undergoing cardiac surgery[J]. J Cardiothorac Vasc Anesth,2022,36(1):125-132.
[44]" HUANG H, HAN J J, LI Y, et al. Early serum metabolism profile of post-operative delirium in elderly patients following cardiac surgery with cardiopulmonary bypass[J]. Front Aging Neurosci,2022,14:857902.
[45]" ZHANG H, WANG J, QU Y, et al. Brain injury biomarkers and applications in neurological diseases[J]. Chin Med J,2024: 38915214.
[46]" LAPERGOLA G, GRAZIOSI A, D’ADAMO E, et al. S100B in cardiac surgery brain monitoring:friend or foe?[J]. Clin Chem Lab Med,2022,60(3):317-331.
[47]" WAN Z, LI Y, YE H, et al. Plasma S100β and neuron-specific enolase,but not neuroglobin,are associated with early cognitive dysfunction after total arch replacement surgery:a pilot study[J]. Medicine:Baltimore,2021,100(15):e25446.
[48]" HOLLINGER A, RST C A, RIEGGER H, et al. Ketamine vs.haloperidol for prevention of cognitive dysfunction and postoperative delirium:a phase IV multicentre randomised placebo-controlled double-blind clinical trial[J].J Clin Anesth,2021,68:110099.
[49]" LIANG Z, XU X, QI X, et al. Efficacy and safety of ulinastatin on cognitive dysfunction after general anesthesia in elderly patients:a protocol for systematic review and meta-analysis[J]. Medicine,2021,100(13):e24814.
[50]" TAKAZAWA T, HORIUCHI T, ORIHARA M, et al. Prevention of postoperative cognitive dysfunction by minocycline in elderly patients after total knee arthroplasty:a randomized,double-blind,placebo-controlled clinical trial[J]. Anesthesiology,2023,138(2):172-183.
[51]" CHEN M, LI X, MU G. Myocardial protective and anti-inflammatory effects of dexmedetomidine in patients undergoing cardiovascular surgery with cardiopulmonary bypass:a systematic review and meta-analysis[J]. J Anesth,2022,36(1):5-16.
[52]" ZHOU M Y, LYU Y, ZHU Y Z, et al. Effect of ulinastatin combined with dexmedetomidine on postoperative cognitive dysfunction in patients who underwent cardiac surgery[J].Front Neurol,2019,10:1293.
[53]" ZENG K, LONG J Y, LI Y, et al. Preventing postoperative cognitive dysfunction using anesthetic drugs in elderly patients undergoing noncardiac surgery:a systematic review and meta-analysis[J].Int J Surg,2023,109(1):21-31.
[54]" CHEN F, DUAN G Y, WU Z X, et al. Comparison of the cerebroprotective effect of inhalation anaesthesia and total intravenous anaesthesia in patients undergoing cardiac surgery with cardiopulmonary bypass:a systematic review and meta-analysis[J]. BMJ Open,2017,7(10):e014629.
[55]" TANG S Q, HUANG W, ZHANG K, et al. Comparison of effects of propofol versus sevoflurane for patients undergoing cardiopulmonary bypass cardiac surgery[J]. Pak J Med Sci,2019,35(4):1072-1075.
(收稿日期:2024-09-03 修回日期:2024-10-18)
(編輯:潘明志)
基金項目:徐州醫(yī)科大學(xué)江蘇省重點實驗室開放課題(XZSYSKF2021010)
第一作者簡介:李昀樺,女,在讀碩士研究生,研究方向:圍術(shù)期腦保護。E-mail:acmddb@163.com
通信作者:盧靜。E-mail:lujing_xinlang@sina.com
[本文引用格式]李昀樺,盧靜,陳吉祥.體外循環(huán)手術(shù)PND發(fā)生機制及防治研究新進展[J].右江醫(yī)學(xué),2024,52(12):1120-1125.