• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of ultrashort-pulse reflectometry (USPR) on EAST

    2023-12-18 03:54:52XiaofengYU俞瀟烽RanCHEN陳冉XiaoliangLI李小良YilunZHU朱逸倫CalvinDOMIERXingleiRUAN阮行磊TaihaoHUANG黃泰豪JinGUO郭晉ZiyuLIN林子鈺GuoshengXU徐國(guó)盛ShifengMAO毛世峰NevilleLUHMANNJRandMinyouYE葉民友
    Plasma Science and Technology 2023年12期
    關(guān)鍵詞:徐國(guó)

    Xiaofeng YU (俞瀟烽) ,Ran CHEN (陳冉) ,Xiaoliang LI (李小良),* ,Yilun ZHU (朱逸倫) ,Calvin W DOMIER ,Xinglei RUAN (阮行磊) ,Taihao HUANG (黃泰豪),Jin GUO (郭晉),Ziyu LIN (林子鈺),Guosheng XU (徐國(guó)盛),Shifeng MAO (毛世峰),Neville C LUHMANN JR and Minyou YE (葉民友),*

    1 School of Nuclear Science and Technology,University of Science and Technology of China,Hefei 230026,People’s Republic of China

    2 Institute of Plasma Physics,Chinese Academy of Sciences,Hefei 230031,People’s Republic of China

    3 University of California at Davis,1 Shields Avenue,Davis CA 95616,United States of America

    Abstract The microwave reflectometer is a popular non-intrusive plasma density diagnostic instrument on tokamaks that provides centimeter and millisecond level resolution.The ultrashort-pulse reflectometer (USPR) achieves plasma density measurement by emitting a chirped wave containing a broadband signal and measuring the time of flight from different frequency components.A USPR system is currently being built on EAST (Experimental Advanced Superconducting Tokamak) to meet the needs of diagnostic of the pedestal density evolution,such as high-frequency small edge-localized modes.In order to predict the density reconstruction of the EAST USPR system,this work presents a numerical simulation study of the beam propagation of the chirped wave of extraordinary waves (X-mode) in the plasma based on Python.The electron density profile has been successfully reconstructed by the reflection signal interpretation.The small gap between the right-hand cut-off layer and the electron cyclotron resonance layer,due to the low plasma density on the plasma edge,causes unexpected leakage from the transmitting microwave beam to the pedestal and the core region.This kind of‘tunneling’ effect will cause the reflected signal to have energy loss in the low-frequency band.The study also discusses the influence of the poloidal magnetic field on the reflected signal.The spatial variation of the poloidal magnetic field will lead to the conversion between extraordinary(X) waves and ordinary (O) waves,which leads to energy loss in the reflected signals.The simulation results show that the‘tunneling’effect and the O-X mode conversion effect have little effect on the EAST USPR system.Therefore,the currently designed transmit power meets the working requirements.

    Keywords: reflectometer,pedestal density profile,beam mode conversion

    1.Introduction

    The reflectometer is a well-established diagnostic for measuring electron density profiles and fluctuations in magnetic confinement plasmas [1].In microwave reflectometry,broadband electromagnetic waves propagate into the plasma.The wave propagation will be reflected on the cut-off layer,related to frequency,and received by a microwave detector.The plasma properties along the propagation path can be inferred from the phase delay or flight time of the electromagnetic waves [1-5].

    Compared with swept-frequency reflectometers,the ultrashort-pulse reflectometer (USPR) provides another solution for high temporal resolution density measurement with certain advantages [6].An ultrashort pulse is generated and launched to plasma by the USPR transmitter.The pulse with narrow time width causes a broadband frequency probing beam.The single ultrashort pulse provides the full frequency coverage for a wider range of density measurement [7].Since the broadband microwave frequencies are generated quasisimultaneously,this provides incomparable high temporal resolution for density profile evolution measurement,such as edge-localized modes [8].Therefore,ultrashort-pulse reflectometry can improve the spatiotemporal resolution of plasma diagnosis.References [3] and [4] give a comprehensive introduction to reflectometers.Plasma reflectometers enable diagnosis by detecting the phase delay and time of flight(TOF)of reflected electromagnetic waves.Electromagnetic waves in magnetized plasmas have two fundamental modes,ordinary(O) wave and extraordinary (X) wave.The electric field polarization direction of the ordinary mode is parallel to the external magnetic field,while the electric field polarization direction of the extraordinary mode is perpendicular to the external magnetic field.There are two cut-off frequencies for the extraordinary mode,known as left-hand cut-off frequenciesωL=-ωce/2+,and right-hand cut-off frequenciesωR=ωce/2+,whereωceis the electron Larmor frequency andωpeis the plasma frequency[9,10].Based on the observed relation between frequencies and the corresponding time delays (or phase changes),the plasma density profile or magnetic field profile can be inferred[11,12].

    In this paper,we discuss the numerical simulation of the USPR on EAST.We hope to use the simulation program to predict the results of density reconstruction before experiments,and estimate the possible impact of some physical effects on the results.We introduce the EAST ultrashort-pulse reflectometer system,numerical calculation model and inversion algorithm based on the research in section 2.Section 3 presents the 1D and 2D simulation results based on our test density profiles and their comparison.Section 4 introduces the simulation results of ultrashort-pulse microwave based on the EAST real density profile and magnetic field profile,and interprets and analyzes the influences of tunneling effect and O-X-mode conversion effect on the reflected signal.Section 5 summarizes the main results and briefly discusses our future work plan.

    2.USPR system and numerical model

    2.1.EAST’s USPR system

    The EAST USPR system,as shown in figure 1,is composed of a baseband transmitter,millimeter-wave subsystem,receiver and multiple-channel TOF electronics modules.The baseband transmitter can generate 3-4 ns duration chirp with frequencies spanning 10-17 GHz [13,14].In the millimeter-wave (mmwave) subsystem,the transmitted chirps are generated by frequency multiplying the baseband chirp,and launched into plasma.The reflected signal is then received and downconverted back to microwave (5-18 GHz) frequencies.The receiver is composed of a 16-channel high-resolution receiver and two 8-channel standard resolution receivers.The TOF of reflected signals is simultaneously measured at multiple frequencies by a filter and a TOF module.

    Figure1.System of the EAST USPR containing four modules:baseband transmitter,mm-wave subsystem,receiver and TOF module.

    2.2.Numerical model

    The propagation of ultrashort pulsed microwaves in plasma can be described by the electric field wave equation (derived from Maxwell’s equations [15]) under the cold plasma approximation:

    In some previous studies,in the process of component expansion of the above equations,the third term (divergence term)of the electric field wave equation is directly component expanded.The result of this treatment is that the system of equations will contain the spatial second-order mixed partial derivatives of the electric fieldand[18,19].The test results show that this easily brings about numerical instability,resulting in the divergence of the electric field during the propagation process,as shown in figure 2.To solve the problem,we use the Gauss theorem of the electric field in Maxwell’s equations,express the third term (divergence term) as the density perturbation of the plasma,and introduce the plasma continuity equation in the form of perturbation to describe the time evolution of density perturbation,which is as follows:

    Figure2.Numerical instability caused by a spatial second mixed partial derivative(arbitrary unit).These three figures show the cross-section of a 2D wave packet at different times.(a)Normal Gaussian wave packet when t=0,(b)significant instability occurs when t=145,(c)the field is completely divergent when t=160.

    The system of equations (2)-(4) can also fully describe the propagation of the electric field in the plasma,and the test results in figure 3 show that the instability in figure 2 can be eliminated.

    2.3.Inversion algorithm

    The USPR system performs density reconstruction by interpretation of the TOF of microwaves of different frequencies in the plasma.The density inversion algorithm used in the model is based on the formula for calculating the TOF of microwaves in the plasma:

    wherevgis the group velocity of the microwave,xc(ω) is the position of the cut-off layer of the microwave at each frequency andτ(ω) is the flight time of the microwave at each frequency in the plasma.For the ordinary mode,Its form is relatively simple.Using the Abel transform,the density inversion formula can be obtained:

    Figure4.Initial signal and density profile.(a)Initial O-mode pulse of 1D simulation and electron density profile,(b)initial O-mode pulse of 2D simulation,(c)reflected signal of O-mode,(d)initial X-mode pulse of 1D simulation and electron density profile,(e)initial X-mode pulse of 2D simulation,(f) reflected signal of X-mode.

    For extraordinary waves,the form ofvgis very complicated,so there is no simple inverse transformation in analytical form,and the density inversion formula can only be obtained numerically [17]:

    3.Simulation result and data interpretation

    When testing 1D and 2D simulation programs,we set the plasma density profile to a monotonically increasing distribution.The density profile chosen is,

    wherex0is a reference point,ne0is a reference electron density andLsis a scale length for the profile.In 2D simulations,the density profile is simplified to be uniform in the y direction,i.e.the plasma curvature is not considered.The magnetic profile chosen is,

    whereB0is a reference magnetic field andLbis a scale length for the profile.We set the incident microwave of the O-mode to a simple Gaussian wave packetE(x,t=0)=exp[ -(x-xp)2/](1D simulation) andE(x,t=0)=exp{ -[(x-xp)2+(y-yp)2]/}(2D simulation),wherexpandypcorrespond to the initial position of the wave packet andpτis the spatial broadening of the wave packet [19].The X-mode incident microwave uses the same Gaussian wave packet setting,but uses a numerical filter to filter out components below 52 and above 92 GHz (the USPR system is operated in X-mode with frequency coverage from 52-92 GHz),see figures 4(a) and (b) for the O-mode,and figures 4(d)and(e)for the X-mode.The O-mode and X-mode microwaves are simulated by 1D and 2D programs,and in these programs the perfect absorption boundary is set so that no microwave will be reflected by the boundary.Figures 4(c)and(f)show the reflected signals of the O-mode and X-mode microwaves,respectively.

    Figure5.Comparison of TOF versus frequency between 1D and 2D simulations for (a) O-mode and (b) X-mode waves.

    The reflected signal is filtered by a numerical filter to obtain the TOF of microwaves of different frequencies in the plasma.Figure 5(a) shows a comparison of the frequencydependent TOF for the O-mode microwaves in the plasma between 1D and 2D simulations (The low-frequency microwave is reflected from the exponential density profile,and the high-frequency microwave is reflected from the linear density profile so that there is a turning point in figure 5(a)near 7 GHz).Figure 5(b) is the comparison of the results for the X-mode microwaves.It can be seen that the results of 1D simulation and 2D simulation are identical.Therefore,in the following research,we mainly use a 1D simulation program with less computational complexity.

    4.Simulation based on the EAST density profile

    4.1.Simulation results

    Figure6.Electron density profiles of EAST based on the fitting of data from three diagnostic devices.Black circle: data from sweptfrequency reflectometry.Red square:data from POINT(Polarimeter INTerferometer).Green star: data from probe.Purple solid line:fitted density profile.

    A typical plasma electron density profile covering the core,pedestal and scrape-off layer (SOL) is shown in figure 6(purple curve),which is obtained in EAST shot #98273 based on the joint calibration of the data from three diagnostic devices.The following numerical simulations of the propagation of the ultrashort pulsed microwaves are performed based on this profile.

    Figure 7 shows some initial profile settings for the simulation.Figure 7(a) is the plasma density profile set based on the fitting results of figure 6 and we do not consider the case of density perturbations here,figure 7(b)is the plasma toroidal magnetic field profile,figure 7(c) is the spatial distribution of the cut-off frequency of the ordinary mode and the left-hand and right-hand cut-off frequencies of the extraordinary mode,figure 7(d) is the spatial distribution of the incident X-mode microwave and its corresponding right-hand cut-off frequency.In order to mimic the simulation of the actual USPR system,a numerical filter is used in the program to filter the incident X-mode microwaves so that the frequency components included are in the range of 52-92 GHz.

    Figure 8 shows the obtained simulation results.Figure 8(a)is the reflected signal received by the detector,figure 8(b)is the variation of the TOF of the microwave in the plasma with the frequency obtained after filtering.The reflected signal can be roughly divided into three parts,namely I,II and III in figure 8(a).Among them,part I is the earliest,which corresponds to part B in figure 8(b),and its reflection area is the pedestal area where the plasma density increases rapidly.The reflection of part III is the latest,which corresponds to part A in figure 8(b),and its reflection area is the SOL area with low plasma density.Part II corresponds to part C in figure 8(b),and its reflection area is approximately the core area.Figure 8(c)is the inversion density obtained using the density reconstruction algorithm,which can be well matched with the density profile that we set.

    4.2.Tunneling effect

    The energy spectrum of the initial wave and the reflected wave(see figure 8(a))is compared in figure 9.It is found that for microwaves with a frequency higher than 50 GHz,the energy is almost completely reflected,but for microwaves with a frequency lower than 50 GHz,the energy reflection ratio decreases with the decrease in the microwave frequency until almost no reflection occurs.

    Figure7.Initial setting of simulation.(a) Electron density profile,(b) toroidal magnetic field distribution of EAST at It=11024.1 A,(c) O-mode and X-mode cut-off frequency distributions,(d) initial X-mode pulse and its cut-off frequency profile.

    Figure8.Simulation result.(a) Reflected signal of the USPR,(b) TOF as a function of frequency,(c) electron density profile inversion.

    After testing the evolution process of microwaves of various frequencies in the plasma,it is found that a considerable part of the energy of microwaves with frequencies below 50 GHz passes through the cut-off point and continues to propagate into the core area without reflection as occurs in tunneling.

    Figure9.Tunneling effect phenomenon.(a)Energy spectrum of reflected signal,(b)energy spectrum of transmitted signal,(c)the green part in (b).Black solid line: the energy spectrum of incident signal.Red solid line: the energy spectrum of reflected/transmitted signal.Blue dotted line:50 GHz.Microwave on the left side of the blue dotted line(frequency <50 GHz)will undergo obvious tunneling,while the right side (frequency >50 GHz) will not.

    Figure10.Dispersion relation (phase velocity) of extraordinary mode wave.Wave cannot travel in shaded areas.

    The explanation of this phenomenon should start from the dispersion relationship of extraordinary waves.Figure 10 shows the dispersion relationship of extraordinary waves in plasma [9],whereωRcorresponds to the cut-off point of microwave,andωhcorresponds to the resonance point of microwave.After the X-mode microwave reaches its cut-off point,its wave vector ?kbecomes a pure imaginary number,and after the microwave passes through the resonance point,its wave vector becomes a real number again.Thus,the decay of the microwave occurs in the region between the cut-off point and the resonance point (We call this area the ‘a(chǎn)ctual decay layer’),and the microwave energy will be reflected at the cut-off point,which is exactly the physical principle on which the reflectometer is based.In this study,microwaves with frequencies lower than 50 GHz have their reflection points in a region with very low plasma density so that their cut-off points are very close to the resonance points.In this case,some microwaves have already passed through the resonance points before they decay to zero,and enter the area that can normally propagate forward again so that this part of the energy that has not completely decayed can no longer be reflected.Therefore,the spatial proximity of the resonance point and the cut-off point in the low-density plasma region is the main reason for the tunneling effect.

    Figure11.Resonance point,cut-off point and actual decay layer for 70 GHz wave.

    We also give a theoretical calculation based on this explanation.Figure 11 shows the right-hand cut-off frequency distribution and resonant frequency distribution corresponding to the profile set in our simulation.In this figure,we take 70 GHz microwave as an example to show its cut-off point,resonance point and the so-called actual decay layer.According to the dispersion relation of X-mode wave,

    We can obtain its wave vector:

    When the microwave enters the actual decay layer,the square of the wave vector becomes a negative number,and the wave vector becomes a pure imaginary number:

    Figure12.Theoretical explanation for the tunneling effect.(a)Comparison of theoretical value and simulation results of microwave transmittance,(b)comparison between the actual decay layer and the cut-off depth.

    We consider a beam of plane waves:

    In the actual decay layer,

    Whereαis the decay constant (α=α(x)is an x-dependent function),

    We can calculate the average value ofαin the actual decay layer by integrating,

    Figure13.O-X-mode conversion.(a) Poloidal magnetic fielddistribution,(b) energy spectrum of reflected signal.Green dotted line: 50 GHz.

    In this way,the microwave after passing through the decay area can be estimated by the following formula:

    Thus,the energy transmittance is,

    We can obtain the energy transmittance calculated by equation (18),and compare this result with the energy transmittance we obtain by simulation (calculated using the data in figure 9(b)).This result is shown in figure 12(a),and these two transmittance results fit well.

    Figure14.Results of X-mode reflectivity under poloidal magnetic field scanning.(a) Reflectivity of X-mode wave,(b) average energy reflectivity versus frequency.

    According to the decay constant α,we can define a cut-off depth δ to roughly estimate the decay length of microwaves:

    This means that the microwave needs to travel a distance of δ in the actual decay layer to complete the attenuation.Ifδ?xcut-xresonant,which means that the actual decay layer is thick enough so that the microwave will decay to zero before reaching the resonant point and all energy will be reflected.Ifδ≈ or>xcut-xresonant,the actual decay layer is thin,the microwave cannot fully decay.Thus,some energy will pass through the resonance point,and this is what we called the tunneling effect.The comparison between the actual decay layer and the cut-off depth is shown in figure 12(b).

    For EAST’s USPR system,its operating frequency is 52-92 GHz.For microwaves in this frequency band,energy tunneling hardly occurs,so this effect will not affect the operation of the current USPR system.However,this effect should be taken into account if the USPR system is to be extended to the lower-frequency band in the future,in order to have the ability to diagnose lower-density plasma regions,and the corresponding band may require higher-power microwave sources and a more sensitive microwave detector.

    4.3.O-X-mode conversion

    In the EAST plasma,there is not only the external toroidal magnetic field,but also the poloidal magnetic field generated by the plasma current and poloidal field coils.Both magnetic fields vary with the radius.The USPR system of EAST adopts the working mode of the X-mode.As the emitted microwaves continue to propagate into the plasma,the total magnetic field will rotate to a certain extent so that the components of the X-mode will be partially converted into the O-mode,which results in a certain loss of microwave energy received by the detector[20].Generally speaking,the more severe the spatial variation of the poloidal magnetic field,the more obvious this energy loss will be.This study also uses the developed program to simulate the propagation of microwave signals considering the influence of the EAST poloidal magnetic field,and analyze the influence of the conversion between the O-mode and the X-mode on the energy loss of the reflected signal.Figure 13 shows the poloidal magnetic field distribution of EAST and the simulated spectrum of the reflected signal.Figure 13(a) is the poloidal magnetic field profile of EAST shot#98273 in the equilibrium calculated by the equilibrium fitting code program,and figure 13(b) shows the reflected signal energy spectrum obtained under this poloidal magnetic field setting.It can be seen that most of the energy is still received by the detector in the form of X-mode,indicating that the O-X conversion effect has little effect on the energy loss of the reflected signal.

    We keep the shape of the poloidal magnetic field profile in figure 13(a) unchanged,and scan the maximum value of the poloidal magnetic field.The relationship between X-mode microwave reflectivity and frequency is obtained under different poloidal magnetic field settings,as shown in figure 14(a).We calculated the relationship between the average energy reflectivity of 52-92 GHz X-mode microwaves and the maximum value of the poloidal magnetic field,as shown in figure 14(b).

    5.Summary and future work

    In this study,a numerical simulation program for microwave signal propagation was developed for EAST’s USPR system,and the plasma continuity equation was introduced into its numerical model to avoid the numerical instability that may be caused by spatially mixed partial derivatives.Under a simple test profile,the results of the 1D simulation program and the 2D simulation program are compared,and it is verified that the 1D simulation results are consistent with the 2D simulation results.Based on the plasma density profile,toroidal magnetic field profile,and poloidal magnetic field profile of EAST shot#98273,the 1D simulation of the X-mode microwave in the operating frequency band of the USPR system was carried out.The density profile obtained from the simulated reflected signal using the density reconstruction algorithm reproduces the input profile well.Through the spectrum analysis of the reflected signal,it is found that the energy reflectivity of the microwave below 50 GHz is reduced due to the tunneling effect.We give a theoretical explanation for this phenomenon,and the results of theoretical calculations are in good agreement with the simulation results.At the same time,the concept of cut-off depth δ that we introduced can be a criterion to judge whether the tunneling effect will occur.This effect will not have a great impact on the current operating frequency band of the USPR system,but would affect the low-band extension of the diagnostic if the lower limit of the plasma density needs to be improved.Spectral analysis also shows that the energy loss of the reflected signal due to the O-X-mode conversion effect caused by the poloidal magnetic field is negligible.We also scan the poloidal magnetic field,and give the average reflectivity of X-mode microwaves under different poloidal magnetic fields.

    In this study,the computation model that we used is based on cold plasma approximation.In order to achieve a more realistic simulation of the microwave propagation in the plasma,pressure and temperature effects will be added to the model in our future work.In addition,we found that the largescale density fluctuation will have a great impact on the simulation results.Large-scale density disturbances appear when pellets are injected into the plasma,which can lead to TOF diagram distortion and incorrect density inversion.However,with some processing it is possible to find the location of the greatest density perturbation,as preliminary analysis shows,which would provide a possible way to find the location of the projectile injection deposit.Since these topics are beyond the scope of this paper,we will perform comprehensive research and analysis combined with relevant experimental data in the future.

    Acknowledgments

    This work was supported by the National Magnetic Confinement Fusion Energy R&D Program of China (No.2019YFE03030004) and National Natural Science Foundation of China (No.12005144).

    猜你喜歡
    徐國(guó)
    贛粵地區(qū)蕨類植物區(qū)系新資料
    First principles study on geometric and electronic properties of two-dimensional Nb2CTx MXenes
    Fast-sweeping Langmuir probes:what happens to the I-V trace when sweeping frequency is higher than the ion plasma frequency?
    High adsorption and separation performance of CO2 over N2 in azo-based(N=N)pillar[6]arene supramolecular organic frameworks*
    Automated electron temperature fitting of Langmuir probe I-V trace in plasmas with multiple Maxwellian EEDFs
    光影視界
    追本溯源提升素養(yǎng)
    雪后的龍子湖美景
    Study on parameters optimization in resistance spot welding of stainless steel with rectangular electrodes*
    China Welding(2015年3期)2015-10-31 10:57:38
    讀《牡丹亭》
    超碰97精品在线观看| 99热只有精品国产| 精品免费久久久久久久清纯| 欧美日韩瑟瑟在线播放| 亚洲第一av免费看| 国产欧美日韩一区二区精品| 国产精品综合久久久久久久免费 | 中文欧美无线码| 国产亚洲精品综合一区在线观看 | 好男人电影高清在线观看| 国产极品粉嫩免费观看在线| 亚洲午夜精品一区,二区,三区| 欧美激情极品国产一区二区三区| 可以在线观看毛片的网站| 美女大奶头视频| 老司机福利观看| 日韩欧美一区视频在线观看| 黄色片一级片一级黄色片| 热re99久久精品国产66热6| 国产色视频综合| 每晚都被弄得嗷嗷叫到高潮| 国产极品粉嫩免费观看在线| 精品人妻1区二区| 狂野欧美激情性xxxx| 国产不卡一卡二| svipshipincom国产片| 国产成年人精品一区二区 | 亚洲成人精品中文字幕电影 | 在线播放国产精品三级| 国产一卡二卡三卡精品| 淫妇啪啪啪对白视频| 国产亚洲欧美在线一区二区| 中文字幕高清在线视频| 午夜福利欧美成人| 天堂影院成人在线观看| 亚洲久久久国产精品| 99国产精品99久久久久| 欧美日韩亚洲综合一区二区三区_| 午夜福利影视在线免费观看| 欧美成人性av电影在线观看| 又紧又爽又黄一区二区| 成年人黄色毛片网站| 久久久久久人人人人人| 很黄的视频免费| 亚洲第一av免费看| 正在播放国产对白刺激| 久久久水蜜桃国产精品网| 在线观看舔阴道视频| 人成视频在线观看免费观看| 国产亚洲av高清不卡| 一进一出抽搐动态| 成人三级黄色视频| 久久久久精品国产欧美久久久| 99在线人妻在线中文字幕| 国产亚洲精品综合一区在线观看 | 人人妻,人人澡人人爽秒播| 精品午夜福利视频在线观看一区| 午夜福利一区二区在线看| 亚洲精品久久午夜乱码| 嫩草影院精品99| 午夜激情av网站| 99香蕉大伊视频| 天天影视国产精品| 91老司机精品| 精品国产乱子伦一区二区三区| 国产免费现黄频在线看| 一边摸一边抽搐一进一出视频| 91国产中文字幕| 欧美日本亚洲视频在线播放| 在线播放国产精品三级| 久久久久久久午夜电影 | 欧美乱妇无乱码| 精品久久久久久电影网| 欧美日韩视频精品一区| 最近最新中文字幕大全免费视频| 亚洲熟妇中文字幕五十中出 | 无人区码免费观看不卡| 人人妻人人爽人人添夜夜欢视频| 亚洲va日本ⅴa欧美va伊人久久| 男人操女人黄网站| 男女下面进入的视频免费午夜 | 精品卡一卡二卡四卡免费| 久久久久国内视频| 亚洲少妇的诱惑av| 国产日韩一区二区三区精品不卡| 老鸭窝网址在线观看| 狠狠狠狠99中文字幕| 天堂动漫精品| 两个人免费观看高清视频| 99久久人妻综合| 亚洲精品中文字幕在线视频| 亚洲欧美日韩另类电影网站| 亚洲一区高清亚洲精品| 国产亚洲欧美在线一区二区| 亚洲 欧美 日韩 在线 免费| 91麻豆av在线| 久久精品人人爽人人爽视色| 国产亚洲精品久久久久久毛片| 在线av久久热| 国产一区二区激情短视频| 麻豆成人av在线观看| 夜夜夜夜夜久久久久| 十八禁网站免费在线| 一边摸一边抽搐一进一出视频| 国产麻豆69| 88av欧美| 国产精品一区二区精品视频观看| e午夜精品久久久久久久| 国产欧美日韩精品亚洲av| 国产精品99久久99久久久不卡| 精品久久久久久电影网| 99国产精品免费福利视频| 亚洲一区中文字幕在线| 老司机午夜十八禁免费视频| 十八禁网站免费在线| 侵犯人妻中文字幕一二三四区| 亚洲免费av在线视频| 成年人免费黄色播放视频| 欧美成人午夜精品| 精品久久久久久成人av| 国内毛片毛片毛片毛片毛片| 老司机靠b影院| 搡老乐熟女国产| 亚洲aⅴ乱码一区二区在线播放 | 色播在线永久视频| 后天国语完整版免费观看| 80岁老熟妇乱子伦牲交| 老司机亚洲免费影院| 午夜老司机福利片| 亚洲人成伊人成综合网2020| 欧美中文综合在线视频| 色综合站精品国产| 天堂中文最新版在线下载| 男人操女人黄网站| 国产成人欧美在线观看| 日日爽夜夜爽网站| 999久久久精品免费观看国产| 1024香蕉在线观看| 免费人成视频x8x8入口观看| 一区在线观看完整版| 欧美日韩亚洲国产一区二区在线观看| 亚洲午夜理论影院| 50天的宝宝边吃奶边哭怎么回事| 女人被躁到高潮嗷嗷叫费观| 丰满人妻熟妇乱又伦精品不卡| 一夜夜www| 日本欧美视频一区| 高清欧美精品videossex| 夜夜夜夜夜久久久久| 91成年电影在线观看| 三上悠亚av全集在线观看| 国产精品一区二区免费欧美| 国产精品偷伦视频观看了| 18禁国产床啪视频网站| 亚洲欧美精品综合一区二区三区| 老司机福利观看| 男女下面插进去视频免费观看| 在线视频色国产色| 高清欧美精品videossex| 在线av久久热| 51午夜福利影视在线观看| 无遮挡黄片免费观看| 香蕉久久夜色| 亚洲成国产人片在线观看| 男女之事视频高清在线观看| 久久国产乱子伦精品免费另类| 午夜福利影视在线免费观看| 在线av久久热| 欧美成人性av电影在线观看| 日本欧美视频一区| 9热在线视频观看99| 多毛熟女@视频| 1024视频免费在线观看| 他把我摸到了高潮在线观看| 一边摸一边做爽爽视频免费| xxx96com| 亚洲人成电影免费在线| 一个人免费在线观看的高清视频| 男女午夜视频在线观看| 中文字幕精品免费在线观看视频| 狂野欧美激情性xxxx| 免费搜索国产男女视频| 91麻豆精品激情在线观看国产 | 久久精品aⅴ一区二区三区四区| 亚洲欧美日韩另类电影网站| 久久国产精品人妻蜜桃| 一区在线观看完整版| 成人免费观看视频高清| 在线看a的网站| 操美女的视频在线观看| 国产成人欧美在线观看| 熟女少妇亚洲综合色aaa.| 在线播放国产精品三级| 人人澡人人妻人| 在线国产一区二区在线| 美女扒开内裤让男人捅视频| www.www免费av| 精品一区二区三区视频在线观看免费 | 50天的宝宝边吃奶边哭怎么回事| 窝窝影院91人妻| 曰老女人黄片| 亚洲精品中文字幕在线视频| 女人被躁到高潮嗷嗷叫费观| 神马国产精品三级电影在线观看 | 欧美av亚洲av综合av国产av| 变态另类成人亚洲欧美熟女 | 亚洲第一欧美日韩一区二区三区| 久久久久国内视频| 淫秽高清视频在线观看| 在线观看一区二区三区| 亚洲精品在线美女| 亚洲中文日韩欧美视频| 亚洲欧美精品综合久久99| 91国产中文字幕| 国产有黄有色有爽视频| 一进一出好大好爽视频| 国产精品永久免费网站| 老司机在亚洲福利影院| 在线观看免费高清a一片| 久久久久国产一级毛片高清牌| 丝袜人妻中文字幕| 欧美日韩中文字幕国产精品一区二区三区 | 国产一区二区三区在线臀色熟女 | 国产精品美女特级片免费视频播放器 | 久久精品影院6| 国产成人系列免费观看| 精品国产亚洲在线| 久久精品国产综合久久久| 午夜久久久在线观看| 一进一出抽搐动态| 国产精品 国内视频| 亚洲精品国产精品久久久不卡| 亚洲第一av免费看| 老汉色∧v一级毛片| 久久精品国产亚洲av香蕉五月| 午夜免费成人在线视频| 在线观看免费视频日本深夜| netflix在线观看网站| 国产精品永久免费网站| x7x7x7水蜜桃| 大香蕉久久成人网| 性色av乱码一区二区三区2| 日本wwww免费看| 成人精品一区二区免费| 久热爱精品视频在线9| 国产1区2区3区精品| 国产精品免费视频内射| 国产精品香港三级国产av潘金莲| 日韩三级视频一区二区三区| 国产一区二区三区在线臀色熟女 | 欧美成人午夜精品| 美国免费a级毛片| 黄片播放在线免费| 精品欧美一区二区三区在线| 久久午夜综合久久蜜桃| 免费一级毛片在线播放高清视频 | 国产欧美日韩一区二区精品| 亚洲aⅴ乱码一区二区在线播放 | 亚洲 国产 在线| 在线观看免费视频日本深夜| 久久久国产一区二区| 亚洲五月天丁香| 国产精品香港三级国产av潘金莲| 久久人人97超碰香蕉20202| 麻豆成人av在线观看| 国产精品久久久久成人av| xxxhd国产人妻xxx| 国产片内射在线| 精品久久蜜臀av无| 99热国产这里只有精品6| 九色亚洲精品在线播放| 又黄又粗又硬又大视频| 亚洲精品av麻豆狂野| 亚洲精品国产色婷婷电影| 欧美中文日本在线观看视频| 99精品久久久久人妻精品| 最近最新免费中文字幕在线| 欧美日韩乱码在线| 久久久国产精品麻豆| 十八禁网站免费在线| 国产蜜桃级精品一区二区三区| 国产精品久久久av美女十八| 亚洲七黄色美女视频| 色尼玛亚洲综合影院| 中文亚洲av片在线观看爽| 久久久国产欧美日韩av| 丰满饥渴人妻一区二区三| 色婷婷久久久亚洲欧美| 韩国av一区二区三区四区| 国产成人免费无遮挡视频| 久久人妻av系列| 免费av中文字幕在线| 久久精品国产99精品国产亚洲性色 | 正在播放国产对白刺激| 欧美中文日本在线观看视频| 亚洲欧美激情综合另类| 真人一进一出gif抽搐免费| a在线观看视频网站| 老鸭窝网址在线观看| 亚洲成人国产一区在线观看| 日本 av在线| 欧美在线黄色| 亚洲成人免费av在线播放| 久久久久亚洲av毛片大全| 18禁观看日本| 亚洲成人免费av在线播放| 午夜福利在线免费观看网站| 欧美一级毛片孕妇| 999久久久国产精品视频| 国产精品免费视频内射| 深夜精品福利| 中文字幕人妻熟女乱码| 国产精品久久久久成人av| 国产精品国产av在线观看| 午夜精品在线福利| 看黄色毛片网站| 亚洲专区中文字幕在线| 免费在线观看日本一区| 欧美日韩视频精品一区| 成人影院久久| 大型黄色视频在线免费观看| 婷婷精品国产亚洲av在线| 亚洲国产精品sss在线观看 | 婷婷精品国产亚洲av在线| 最好的美女福利视频网| 无遮挡黄片免费观看| 欧美在线黄色| 巨乳人妻的诱惑在线观看| avwww免费| 亚洲视频免费观看视频| 88av欧美| 琪琪午夜伦伦电影理论片6080| 成人免费观看视频高清| 亚洲狠狠婷婷综合久久图片| 午夜成年电影在线免费观看| 国产精品1区2区在线观看.| 午夜福利一区二区在线看| 99国产精品一区二区蜜桃av| 夜夜夜夜夜久久久久| 中文字幕高清在线视频| 悠悠久久av| www.999成人在线观看| 黄片大片在线免费观看| 中文字幕av电影在线播放| 91九色精品人成在线观看| 国产熟女xx| 老司机在亚洲福利影院| 久久精品91蜜桃| 12—13女人毛片做爰片一| 亚洲伊人色综图| 日本欧美视频一区| 午夜免费观看网址| 亚洲精品粉嫩美女一区| 一个人免费在线观看的高清视频| 俄罗斯特黄特色一大片| 国产成人精品无人区| 在线观看午夜福利视频| 后天国语完整版免费观看| 18禁黄网站禁片午夜丰满| 性欧美人与动物交配| 在线播放国产精品三级| 国产精品电影一区二区三区| 在线观看舔阴道视频| 午夜激情av网站| 亚洲国产欧美日韩在线播放| 国产男靠女视频免费网站| 精品国产一区二区三区四区第35| 欧美午夜高清在线| 成人免费观看视频高清| 满18在线观看网站| 国产色视频综合| av片东京热男人的天堂| 亚洲精品国产一区二区精华液| 国产成人av激情在线播放| 亚洲欧美一区二区三区久久| 在线十欧美十亚洲十日本专区| 曰老女人黄片| 女人被躁到高潮嗷嗷叫费观| 欧美av亚洲av综合av国产av| 久久精品国产清高在天天线| 色综合站精品国产| 精品福利永久在线观看| 午夜精品久久久久久毛片777| 国产亚洲欧美98| av天堂久久9| 在线观看舔阴道视频| 亚洲欧美日韩另类电影网站| 日韩精品青青久久久久久| 国产高清激情床上av| 国产一区二区激情短视频| 亚洲av熟女| 欧美日韩福利视频一区二区| 亚洲欧美精品综合久久99| 夜夜躁狠狠躁天天躁| 热99国产精品久久久久久7| 色哟哟哟哟哟哟| 久久国产精品男人的天堂亚洲| 欧美黑人欧美精品刺激| 一夜夜www| 一级作爱视频免费观看| 精品久久久久久成人av| 日日摸夜夜添夜夜添小说| 午夜激情av网站| av中文乱码字幕在线| 99热只有精品国产| 性色av乱码一区二区三区2| 黄色女人牲交| 久久久国产一区二区| 亚洲自拍偷在线| 97超级碰碰碰精品色视频在线观看| 麻豆久久精品国产亚洲av | 欧美 亚洲 国产 日韩一| 淫秽高清视频在线观看| 可以在线观看毛片的网站| 国产精品一区二区三区四区久久 | 长腿黑丝高跟| 国产精品一区二区免费欧美| 国产精品久久久人人做人人爽| 国产成人欧美在线观看| 亚洲精品在线观看二区| 精品熟女少妇八av免费久了| 亚洲五月色婷婷综合| 免费av毛片视频| 51午夜福利影视在线观看| 一进一出抽搐动态| 两个人看的免费小视频| 曰老女人黄片| 日韩免费av在线播放| 亚洲精品一二三| 久久中文字幕人妻熟女| 国产欧美日韩一区二区精品| 色综合欧美亚洲国产小说| 成人精品一区二区免费| 九色亚洲精品在线播放| 多毛熟女@视频| 伦理电影免费视频| 免费日韩欧美在线观看| 人人妻,人人澡人人爽秒播| 另类亚洲欧美激情| 亚洲七黄色美女视频| 精品一区二区三区四区五区乱码| 制服人妻中文乱码| 日韩精品中文字幕看吧| 亚洲自拍偷在线| 午夜福利在线免费观看网站| 麻豆国产av国片精品| 久久午夜综合久久蜜桃| 97人妻天天添夜夜摸| 亚洲国产毛片av蜜桃av| 久久久精品欧美日韩精品| 99热国产这里只有精品6| 亚洲欧美日韩高清在线视频| 一边摸一边做爽爽视频免费| 精品一品国产午夜福利视频| 性色av乱码一区二区三区2| 老司机午夜十八禁免费视频| 国产成人免费无遮挡视频| 黄色 视频免费看| 国产精品一区二区三区四区久久 | 久久中文看片网| 国产三级黄色录像| 久久亚洲真实| 成熟少妇高潮喷水视频| 99国产精品一区二区三区| 精品久久久久久,| 欧美日韩亚洲综合一区二区三区_| 精品久久久久久电影网| 成人精品一区二区免费| 亚洲视频免费观看视频| 国产成人啪精品午夜网站| 欧美一区二区精品小视频在线| 满18在线观看网站| 99精品在免费线老司机午夜| 国产一区在线观看成人免费| 亚洲色图 男人天堂 中文字幕| 欧美人与性动交α欧美软件| 在线免费观看的www视频| 国产成人啪精品午夜网站| 国产精品1区2区在线观看.| 18禁国产床啪视频网站| 一区二区三区精品91| 淫妇啪啪啪对白视频| ponron亚洲| 午夜福利在线免费观看网站| 99久久精品国产亚洲精品| 午夜福利影视在线免费观看| 亚洲国产精品999在线| 欧美成人性av电影在线观看| 高清av免费在线| 黑人巨大精品欧美一区二区mp4| 1024香蕉在线观看| 香蕉国产在线看| 久久国产亚洲av麻豆专区| 自线自在国产av| 亚洲九九香蕉| 大码成人一级视频| 亚洲 欧美 日韩 在线 免费| 久久精品国产亚洲av高清一级| 亚洲欧美一区二区三区久久| 国产精品一区二区三区四区久久 | 色老头精品视频在线观看| 美女高潮到喷水免费观看| 黑人猛操日本美女一级片| 国产av在哪里看| 中文字幕人妻熟女乱码| 久久精品亚洲熟妇少妇任你| 国产精品久久久人人做人人爽| 午夜精品在线福利| 亚洲午夜理论影院| av在线播放免费不卡| 日韩高清综合在线| 99精品在免费线老司机午夜| 女人高潮潮喷娇喘18禁视频| 在线看a的网站| 制服人妻中文乱码| 午夜精品国产一区二区电影| 丝袜美腿诱惑在线| 涩涩av久久男人的天堂| 亚洲av熟女| 久久久久久久久免费视频了| 亚洲 国产 在线| 最近最新中文字幕大全免费视频| 伦理电影免费视频| 精品电影一区二区在线| 男女之事视频高清在线观看| 高清在线国产一区| 国产欧美日韩一区二区三区在线| 日韩欧美免费精品| 国产片内射在线| 亚洲全国av大片| 亚洲一码二码三码区别大吗| 久久国产精品人妻蜜桃| 韩国精品一区二区三区| 国产成人精品无人区| 久久人人爽av亚洲精品天堂| 国产精品影院久久| 亚洲国产欧美一区二区综合| 看免费av毛片| 国产又爽黄色视频| 欧美日韩视频精品一区| 亚洲专区字幕在线| 欧美老熟妇乱子伦牲交| 国产成人一区二区三区免费视频网站| 欧美 亚洲 国产 日韩一| 午夜福利,免费看| 操美女的视频在线观看| 欧美成人午夜精品| 极品教师在线免费播放| 国产aⅴ精品一区二区三区波| 少妇粗大呻吟视频| 18禁美女被吸乳视频| 黄色怎么调成土黄色| 美女大奶头视频| 日韩高清综合在线| 好看av亚洲va欧美ⅴa在| 亚洲,欧美精品.| 免费不卡黄色视频| 动漫黄色视频在线观看| 黄频高清免费视频| 亚洲色图综合在线观看| 日本 av在线| 亚洲人成伊人成综合网2020| 在线观看免费视频日本深夜| 俄罗斯特黄特色一大片| 两个人看的免费小视频| 天天影视国产精品| 国产极品粉嫩免费观看在线| av免费在线观看网站| 久久久精品欧美日韩精品| 久久国产精品人妻蜜桃| 亚洲第一av免费看| 女警被强在线播放| 欧美成人午夜精品| 一夜夜www| 一级毛片高清免费大全| 国产精品免费一区二区三区在线| 久久精品国产99精品国产亚洲性色 | 久久精品aⅴ一区二区三区四区| 久久久精品国产亚洲av高清涩受| 国产乱人伦免费视频| 极品教师在线免费播放| 亚洲精品久久午夜乱码| 男女做爰动态图高潮gif福利片 | av在线播放免费不卡| x7x7x7水蜜桃| 亚洲成人久久性| 国产黄色免费在线视频| 日韩国内少妇激情av| 免费高清视频大片| 久久伊人香网站| 一级a爱片免费观看的视频| 国产成人一区二区三区免费视频网站| 亚洲成人免费电影在线观看| 亚洲av熟女| 无限看片的www在线观看| 美女高潮到喷水免费观看| 两个人看的免费小视频| 两个人免费观看高清视频| 欧美中文日本在线观看视频| 18禁观看日本| 久久性视频一级片| 亚洲精品一卡2卡三卡4卡5卡| 少妇裸体淫交视频免费看高清 | 亚洲精品国产精品久久久不卡| 久久午夜综合久久蜜桃| 日本 av在线| 成熟少妇高潮喷水视频| 波多野结衣av一区二区av| 日本wwww免费看| 999久久久国产精品视频| 香蕉国产在线看| 中文亚洲av片在线观看爽| 国产精品久久视频播放| 亚洲av五月六月丁香网| 狠狠狠狠99中文字幕|