• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physics design of 14 MeV neutron generator facility at the Institute for Plasma Research

    2023-12-18 03:54:56SWAMIVALARAJPUTABHANGIRatneshKUMARSAXENAandRajeshKUMAR
    Plasma Science and Technology 2023年12期

    H L SWAMI ,S VALA,2 ,M RAJPUT ,M ABHANGI,2 ,Ratnesh KUMAR ,A SAXENA,2 and Rajesh KUMAR,2

    1 Institute for Plasma Research,Gandhinagar 382428,India

    2 Homi Bhabha National Institute,Training School Complex,Mumbai 400094,India

    Abstract A high energy and high yield neutron source is a prime requirement for technological studies related to fusion reactor development.It provides a high-energy neutron environment for smallscale fusion reactor components research and testing such as tritium breeding,shielding,plasmafacing materials,reaction cross-section data study for fusion materials,etc.Along with ITER participation,the Institute of Plasma Research,India is developing an accelerator-based 14 MeV neutron source with a yield of 1012 n s-1.The design of the source is based on the deuteriumtritium fusion reaction.The deuterium beam is accelerated and delivered to the tritium target to generate 14 MeV neutrons.The deuterium beam energy and tritium availability in the tritium target are the base parameters of the accelerator-based neutron source design.The paper gives the physics design of the neutron generator facility of the Institute for Plasma Research.It covers the requirements,design basis,and physics parameters of the neutron generator.As per the analytical results generator can produce more than 1 × 1012 n s-1 with a 110 keV D+ ion beam of 10 mA and a minimum 5 Ci tritium target.However,the detailed simulation with the more realistic conditions of deuteron ion interaction with the tritium titanium target shows that the desired results cannot be achieved with 110 keV.The safe limit of the ion energy should be 300 keV as per the simulation.At 300 keV ion energy and 20 mA current,it reaches 1.6 × 1012 n s-1.Moreover,it was found that to ensure sufficiently long operation time a tritium target of more than 20 Ci should be used.The scope of the neutron source is not limited to the fusion reactor research studies,it is extended to other areas such as medical radioisotopes research,semiconductor devices irradiations,and many more.

    Keywords: neutron generator,neutronics,accelerator,physics design,nuclear fusion

    1.Introduction

    Nuclear fusion-based power plants could prove to be a part of the clean energy mix of the future.In order to achieve nuclear fusion power plants,various research activities are under progress worldwide.One of them is ITER which aims to demonstrate the feasibility of magnetically confined plasma with parameters approaching those of a nuclear fusion power plant.It will be operated on a maximum fusion power of 500 MW [1,2].Further demonstration reactors for power plants are under design [3-7].Various design and material irradiation experiments are required to perform to support nuclear fusion power plants.People are developing neutron irradiation testing facilities to obtain high damage in structural materials similar to the ones in fusion reactors.The International Fusion Material Irradiation Facility (IFMIF) is among them which is under development [8,9].Various accelerator-based neutron sources are also developed or under development to support the various lab-scale experiments needed for the development of nuclear fusion power plants[10-12].

    Figure1.D-T reaction cross-section (barns).

    India is also developing a high-energy neutron generator based on deuterium and tritium fusion reaction at Institute for Plasma Research.It will fill the gap for testing mock-ups and open the door for small-scale experiments related to the ITER and fusion power plant [13-16].The neutron generator is an accelerator-based system where the deuterium ion is accelerated and focused on the tritium target.The use of such a source is very cost-effective,safe,and environmentally friendly.The generator is designed to produce 14 MeV neutrons with a 1012n s-1yield.It provides a maximum flux around 2×1010cm-2s-1just after the target flange (2 cm away from the tritium target) which opens the opportunity to test small-scale mock-up of the breeding blanket and other fusion components [17,18].

    Moreover,it can be also utilized for other applications such as radioisotope generation for medical usage,semiconductor devices functionality checks in neutron environment,neutron diagnostic development,and various basic nuclear research experiments [17-25].

    2.Design basis

    In order to support the Indian fusion programme,a 14 MeV neutron generator facility with a neutron yield of 1×1012n s-1has been designed.The neutron source is designed using the deuterium beam interaction with a stationary tritium target.The cross-section of the deuterium-tritium (D-T) fusion reaction is shown in figure 1 [26].The cross-section is the highest at 108 keV deuteron energy as shown in figure 1.The initial simple calculation for the reaction rate occurrence has been done using the formula(Nt×σdt×φd)where Ntis the number of tritium atoms available at the target,σdtis the cross-section of D-T reaction and φdis the flux of deuterium beam.As per the calculation,a 5 Ci tritium target and 10 mA deuterium beam of 1.0 inch(2.54 cm)diameter can generate a neutron yield of around 2 × 1012n s-1.Therefore,the design parameter of the accelerator should be near the estimated value and the tritium target activity should be higher than the estimated value to get the effective neutron yield of 1 × 1012n s-1from the neutron generator for longer duration to compensate for the tritium losses.

    Moreover,to get more realistic design parameters of a neutron generator,the physics simulation supports along with the component feasibility have to be accommodated in the physics model.

    Figure2.Deuterium ion beam energy attenuation in Ti-T target.

    Figure3.Average penetration length in Ti-T target of D+ion beam.

    Tritium is a low-mass element and is found in gas form.To make the tritium a solid target,it should be attached with an affinity of titanium metal.The vapour of tritium is deposited on the titanium coating [27].It will make the deuterium ion transport and interaction different from the simple analytical calculation due to the introduction of another element and taking into account the slowing down of ions in the target.Therefore,deuterium ion energy attenuation in the Ti-T target is simulated.Deuterium ion energy attenuation in the Ti-T target for various beam energy is shown in figure 2,it has been estimated using the code SRIM [28].

    It is shown that a 300 keV deuterium ion beam energy is reduced to less than 50 keV after 1.2 μm thickness which reduces the effective utilization of the tritium target if the target has a higher thickness.As per the calculation,the target having the~24 Ci activity with 1.9 g cm-2surface density will have a thickness of around 4.2 μm.

    As per the details of the Ti-T target,the effective thickness is around 4.2 μm which is about 3.5 times higher than the effectively utilized thickness for neutron generators.The average penetration length of D+ion energy in the Ti-T target is shown in figure 3 [28,29].It gives the effective utilization of the target tritium for neutron yield generation and the scope of further enhancement of the neutron yield.

    Figure4.Neutron yield estimation using analytical formula.

    Following the yield estimation formula,the number of tritium atoms effectively available at the beam interaction area is~2.2×1020tritium atoms.The tritium content in the target is considered constant throughout the thickness.

    The flux of deuterium ions is around 2.0×1016cm-2s-1and the reaction cross-section at an energy of 108 keV is around 5 barn.The cross-section varies from 1 to 5 barns between 50 keV and 300 keV deuteron beam energy.The generated yield between 50 keV and 300 keV calculated using a simple formula (Nt× σdt× φd) is shown in figure 4.The calculation has been done for considering the mono-energetic beam inside the target,there is no beam energy attenuation considered.For the analytic calculation of yield,the average cross-section is assumed to be 2 barns considering the beam attenuation inside the target.The predicted maximum yield would be around 2.0 × 1012n s-1at the tritium target which gives a safe design limit of neutron generation 1×1012n s-1using the design parameters.

    The analytical calculation has been also extended for various D+beam energies with effective availabilities of tritium target and reaction cross-section.The results are plotted in figure 4.It shows a peak around 130 keV with a yield higher than 3.3 × 1012n s-1.

    The physics design parameter has been also simulated using the simulation tool NeuSDesc [30] to assess the analytical calculation.The same input parameters are given to the simulation tool NeuSDesc for estimating the yield.The yield calculated using the NeuSDesc is shown in figure 5.The code uses the ion energy attenuation and effective energy spectrum of the deuterium ion for calculating the neutron yield which is not considered in the analytical calculation.The simulation shows that the yield peaks at the energy of 800 keV.It can be understood from figure 3 which shows the effective utilization of the source that at energies above 800 keV the beam goes through the target resulting in lower neutron yield.The neutron yield at 110 keV D+ion energy is 4.8×1011n s-1.It differs from analytical calculation due to the attenuation of ion energy in the titanium target.The maximum yield generated using the existing 300 keV and 20 mA beam is around 1.6 × 1012n s-1.It validates the design parameters chosen for the neutron generator.It gets a maximum at 800 keV around 2.5 × 1012n s-1.

    Figure5.Estimation of neutron yield using NeuSDesc software.

    The neutron yield cannot be increased with fixed 300 keV ion energy in the accelerator due to a certain ion penetration limit in the solid target,and the flux of deuterium ions cannot be enhanced using a single beamline.It can be further enhanced by using multiple beamlines and multiple tritium targets.Ion energy acceleration above 300 keV can also enhance the yield as shown in figure 5 but it will increase the overall cost of the system.

    The simulation of neutron yield variation with time has been also performed to assure the design parameter for the neutron generator.The results have been plotted in figure 6(a).It is shown that the D+beam of 300 keV energy can produce a stagnant yield with a longer time than 150 keV.After a period of relatively stable operation,we see a reduction in the neutron yield due to various processes such as outgassing,sputtering,diffusion,etc[31].The degradation of the target is estimated using the SDTrimSp code and the outcome is represented in figure 6(b).More details about the target degradation simulation are given in the [31].The tritium removal process is increased when we enhance the beam energy and beam current as shown in figure 6(b).The energy deposition also increases in the target with energy and current increase which leads to higher temperature.The nominal design parameters can be clearer from figures 6(a)and (b) for the solid tritium target concept-based neutron generator.The removal process is increasing drastically after 20 mA current and 400 keV ion energy.The target limitation towards the energy and current makes the design parameters for the neutron generator stronger.

    3.Design parameters

    Figure6.(a) Neutron yield variation with accelerator operation time.(b) (i) Tritium removal with ion current variation and (ii) tritium removal and heat deposition with ion energy variation.

    As per the analytical calculations and simulations,to generate the neutron yield of 1×1012n s-1,the beam energy required is around 300 keV and 20 mA,and target activity should be more than 20 Ci.It is also necessary to maintain the optimized parameter with respect to tritium losses from the target and target overheating due to D+ion bombardment.The higher energy of D+ion and current increase the tritium losses and heating of the target which requires enhancement in the safety aspect and overall cost of the system.The tritium losses and heating in the target are represented in figure 6(b).The basic components of the accelerator-based neutron source are deuterium ion source,Low Energy Beam Transport (LEBT)and Medium Energy Beam Transport (MEBT) lines,acceleration column,power supply,tritium target,and diagnostics for beam current and energy measurements.The ion beam will transport in a high vacuum system to avoid radiation losses and hazards.The basic design parameters decided for the neutron generator are given in table 1.A schematic diagram of the accelerator is shown in figure 7.

    4.Neutron flux profile of neutron source

    The neutron generator produces 14 MeV neutrons which will be emitted from the tritium target location all around.The distribution of neutrons around the tritium target is shown infigure 8.The neutron flux near the source is around~2 × 1010cm-2s-1which can be available for lab-scale experiments.The calculation has been done using MCNP and ENDF/B-VII cross-section library [32-34].The calculation has been also performed to analyze the tritium production using the neutron generator for fusion reactor blanket studies and achievable dpa in the structural materials.It is found that the tritium production in the 5 cm thick Li2TiO3is around 7 × 1011tritons/cm3/day.The dpa in the India Specific Reduced Activation Ferritic Martensitic Steel (INRAFMS)can be expected around 0.3×10-3/year,it is estimated using the Norgett-Robinson-Torrens method.

    Table 1.Design parameters of accelerator-based 14 MeV neutron generator.

    Figure7.Schematic diagram of accelerator-based 14 MeV neutron generator.

    Figure8.Neutron flux near the tritium target for the nominal yield of 1 × 1012 n s-1.

    5.Radiation safety and design requirements

    The neutron generator facility needs radiation safety assurance before development.The neutron generator facility should be well shielded to control the radiation exposure to the occupational workers as well as the general public.A systematic study of the shield and radiation exposure has been carried out to ensure radiation safety[32].The wall thickness of the biological shield is 1.8 m with additional local shields to limit the radiation exposures during operation.The maximum annual dose rate outside the lab in the area accessible to the general public is estimated to be around~70 μSv/year.The assessment shows that the dose rate is quite lower than the nuclear regulatory limit of 1.0 mSv/year for general public accessibility.Detailed results have been provided in the [32].

    Moreover,to reduce the radiation exposure after operation a radio-activation analysis has been done for the entire laboratory [35].It is also necessary to prepare the operation and maintenance strategy for the neutron generator.The steel components of the generator are a major source of radioactive hazards and have a high contact dose rate immediately after irradiation.This means that some cooling time is required before they can be safely handled.However,no component shows significant radioactivity for a longer duration.The calculations of shielding and radio activation permit a safe and long-term operation of a neutron generator.

    The deuterium ion hits the tritium target for neutron production.The ion hitting also initiates the sputtering and outgassing of tritium from the target which can come out in the laboratory environment and could pose risk to workers during the maintenance activities.In order to reduce such possibility a tritium handling and recovery system is required.The neutron generator also requires a reliable control system along with all safety interlocks to maintain the safe,and consistent operation of the neutron generator.

    6.Brief engineering details of neutron generator components

    The accelerator-based 14 MeV neutron source mainly consists of Electron Cyclotron Resonance Ion Source (ECRIS),Low Energy Beam Transport (LEBT) system,Electrostatic Acceleration,Medium Energy Beam Transport (MEBT)system,300 kV and 50 mA High Voltage Power Supply(HVPS),Beam diagnostic system (BDS),Switching Magnet(SM)and tritium target.The ECRIS,LEBT,and subsystem of LEBT,are kept on a high voltage deck,which is at 300 kV floating to the ground potential.The input electric power to the entire unit is provided through an isolation transformer.The MEBT,switching magnet,subsystem of MEBT,and target are at ground potential.LEBT system is to transport the 20 mA,40 keV deuterium beam from ECRIS to the entrance of the acceleration column.MEBT system is to transport the 300 keV beam from the acceleration column to the target assembly.Both LEBT and MEBT have a Beam Diagnostic System (BDS)which consists of a Faraday cup,beam profile monitor,and slit-type emittance scanner.The beam is first analyzed with the help of a 90-degree dipole magnet to exclude the unwanted particles from the beam.It avoids the extra heating of the target.The 40 keV beam is then focused on the acceleration column with the help of the Magnetic Quadruple Triplet.The beam is accelerated to 300 keV with the help of the acceleration column.The final 300 keV beam is then focused using another magnetic quadrupole triplet at the target.The target is kept at 1.8 m away from the semicircular magnet.The beam is guided using a switching magnet.Considering the ion beam heating and temperature rise in the titanium target,the target is designed with efficient cooling to avoid heating.The rotating target arrangement is mounted for more effective cooling and longer steady-state emission [13].Detailed design of the target is given by Sudhirsinh Vala et al [13].The engineering sketch of the neutron generator is shown in figure 9.The neutron generator is kept inside a shielded laboratory in order to ensure occupational radiation safety.To handle the tritium outgassing and sputtering during the accelerator operation,a tritium handling and recovery system is attached to the target assembly.This system collects tritium coming out from the target during the accelerator operation and is stored in the depleted uranium getter bed.

    Figure9.Neutron generator and associated systems.

    7.Conclusion

    High energy and a high intense neutron source is a prerequisite for the fusion reactor-based power plant,and it provides the platform for qualification of the power plant components in an intense nuclear environment.The neutronic behaviour understanding of components and materials of the proposed nuclear fusion power plant is necessary for plant safety and lifetime perspective.The 14 MeV neutron generator based on an accelerator provides the intermediate answers for fusion power plant safety.An IFMIF kind of neutron irradiation facility is required to test the fusion power plant materials in the short term.

    India is also developing a 14 MeV neutron generator with intensity 1012n s-1for the primary testing of fusion reactor components.It will be utilized in tritium breeding experiments,neutron shielding experiments,testing of radiation capabilities of vessel materials,neutron-induced reaction cross-section studies,diagnostic developments,etc It can be also utilized to develop neutron-induced medical radioisotopes.

    The physics design and design basis of the neutron generator are assessed and reported here.The design parameters selected for the neutron generator are based on the basic calculation and it can achieve the neutron yield of 1 × 1012n s-1.The associated components are designed as per their technical requirements.Analytical calculations were performed to get some basic insight and were later expanded with more realistic simulations using NeuSDesc.

    The simulation tool NeuSDesc is used to further assess the design calculations.The code uses the ion energy attenuation and effective energy spectrum of the deuterium ion to calculate the neutron yield.The simulation shows that the yield peaks at the energy of 800 keV which covers the effective utilization of the tritium source.The maximum yield generated using the existing 300 keV and 20 mA beam is~1.6 × 1012which validates the design expectations.The yield variation along with time is also assessed to get more confidence in the design parameters of the accelerator.It will also provide the stability of the yield with a Ti-T target.

    It can be further enhanced by using the multiple D+ion beamlines and multiple tritium targets however,it will increase the overall cost of the system.

    国内揄拍国产精品人妻在线| 男人和女人高潮做爰伦理| 80岁老熟妇乱子伦牲交| 一二三四中文在线观看免费高清| 日本免费在线观看一区| 亚洲国产欧美日韩在线播放 | 国内精品宾馆在线| 一级a做视频免费观看| 草草在线视频免费看| 免费大片黄手机在线观看| 国产片特级美女逼逼视频| 大片电影免费在线观看免费| 伊人亚洲综合成人网| 亚洲欧美成人精品一区二区| 最近手机中文字幕大全| 精品午夜福利在线看| 纵有疾风起免费观看全集完整版| 麻豆成人av视频| 涩涩av久久男人的天堂| 亚洲精品成人av观看孕妇| 亚洲精品日本国产第一区| 性色avwww在线观看| 成人国产av品久久久| 日本黄色片子视频| 在线 av 中文字幕| 色婷婷久久久亚洲欧美| 国产精品一区二区在线不卡| 日韩三级伦理在线观看| 免费观看av网站的网址| 久久亚洲国产成人精品v| 一级爰片在线观看| 又黄又爽又刺激的免费视频.| 国产深夜福利视频在线观看| 麻豆成人午夜福利视频| 久久久久人妻精品一区果冻| 美女主播在线视频| 国产熟女欧美一区二区| 青春草视频在线免费观看| 久久人人爽人人片av| 一区二区三区四区激情视频| 99热国产这里只有精品6| 国产毛片在线视频| 欧美日韩av久久| 青青草视频在线视频观看| 久久久久精品久久久久真实原创| 肉色欧美久久久久久久蜜桃| 另类亚洲欧美激情| 在线亚洲精品国产二区图片欧美 | 中国国产av一级| av又黄又爽大尺度在线免费看| 国产成人91sexporn| 亚洲综合色惰| 各种免费的搞黄视频| 最近最新中文字幕免费大全7| 日日撸夜夜添| 在线观看三级黄色| 一区在线观看完整版| 免费av不卡在线播放| 国产精品一区二区在线观看99| 人体艺术视频欧美日本| 免费观看在线日韩| 久久精品国产亚洲av涩爱| 一级爰片在线观看| 免费人成在线观看视频色| 亚洲精品中文字幕在线视频 | 亚洲不卡免费看| 99热这里只有精品一区| 狂野欧美激情性bbbbbb| av在线播放精品| 亚洲va在线va天堂va国产| 偷拍熟女少妇极品色| 亚洲av.av天堂| 汤姆久久久久久久影院中文字幕| av天堂中文字幕网| 国产av一区二区精品久久| 内地一区二区视频在线| 国产成人aa在线观看| 久久韩国三级中文字幕| 国产亚洲午夜精品一区二区久久| 免费播放大片免费观看视频在线观看| 你懂的网址亚洲精品在线观看| 午夜福利,免费看| 亚洲av成人精品一区久久| 丝袜在线中文字幕| 成年人午夜在线观看视频| 大香蕉97超碰在线| 最近中文字幕高清免费大全6| 午夜免费鲁丝| 国产在视频线精品| 亚洲va在线va天堂va国产| 在现免费观看毛片| 最近2019中文字幕mv第一页| 麻豆精品久久久久久蜜桃| 蜜桃久久精品国产亚洲av| 99热这里只有是精品在线观看| 国产在视频线精品| 国语对白做爰xxxⅹ性视频网站| 热99国产精品久久久久久7| 水蜜桃什么品种好| 一级毛片我不卡| 高清不卡的av网站| 国产成人a∨麻豆精品| 欧美性感艳星| 丰满迷人的少妇在线观看| 日日摸夜夜添夜夜爱| 王馨瑶露胸无遮挡在线观看| 男男h啪啪无遮挡| √禁漫天堂资源中文www| 国产一区二区在线观看av| 中文欧美无线码| 美女大奶头黄色视频| 欧美最新免费一区二区三区| 熟女av电影| 久久婷婷青草| videos熟女内射| 中文字幕免费在线视频6| 97精品久久久久久久久久精品| 春色校园在线视频观看| 高清不卡的av网站| 丰满迷人的少妇在线观看| 久久久国产一区二区| 国产一区二区在线观看av| 国产 一区精品| 日韩人妻高清精品专区| 精品熟女少妇av免费看| 女人久久www免费人成看片| 亚洲无线观看免费| 欧美变态另类bdsm刘玥| 美女中出高潮动态图| 久久久久久久国产电影| 极品教师在线视频| 新久久久久国产一级毛片| 欧美变态另类bdsm刘玥| 九草在线视频观看| 国产成人精品久久久久久| 这个男人来自地球电影免费观看 | 久久久精品94久久精品| 国产真实伦视频高清在线观看| 中文欧美无线码| 国产精品成人在线| 国产成人精品久久久久久| 91久久精品电影网| 日日啪夜夜撸| 少妇人妻久久综合中文| 精品国产一区二区久久| 在线观看免费日韩欧美大片 | 国产欧美亚洲国产| 99re6热这里在线精品视频| 国产在线男女| 男女无遮挡免费网站观看| av在线老鸭窝| 欧美成人午夜免费资源| 午夜久久久在线观看| 各种免费的搞黄视频| 一级毛片 在线播放| 少妇人妻久久综合中文| 日本wwww免费看| 午夜av观看不卡| 国产男人的电影天堂91| 国产一区二区在线观看日韩| 黄片无遮挡物在线观看| 亚洲av日韩在线播放| 美女大奶头黄色视频| 日韩av不卡免费在线播放| 男的添女的下面高潮视频| 午夜av观看不卡| 大码成人一级视频| 日本av手机在线免费观看| 老司机影院成人| 欧美成人精品欧美一级黄| 亚洲av成人精品一区久久| 欧美人与善性xxx| 色网站视频免费| 亚洲中文av在线| 性高湖久久久久久久久免费观看| 亚洲第一区二区三区不卡| 日产精品乱码卡一卡2卡三| 亚洲国产精品专区欧美| 少妇人妻久久综合中文| 亚洲欧洲日产国产| 丰满少妇做爰视频| 99久国产av精品国产电影| 2021少妇久久久久久久久久久| 亚洲精品日本国产第一区| 国产无遮挡羞羞视频在线观看| 久久久国产欧美日韩av| 久久精品国产亚洲av天美| 丝瓜视频免费看黄片| av黄色大香蕉| 老女人水多毛片| 中文字幕久久专区| 日韩视频在线欧美| 一级毛片aaaaaa免费看小| 日韩精品免费视频一区二区三区 | 国产毛片在线视频| 亚洲在久久综合| 国产精品.久久久| .国产精品久久| 高清午夜精品一区二区三区| 永久网站在线| 天天操日日干夜夜撸| 国产亚洲5aaaaa淫片| 中文天堂在线官网| 2022亚洲国产成人精品| 久久久久久久久大av| 人人妻人人添人人爽欧美一区卜| 老司机影院成人| 亚洲精品乱码久久久v下载方式| 国产精品国产av在线观看| 熟女电影av网| 69精品国产乱码久久久| 亚洲av.av天堂| 99久久中文字幕三级久久日本| 久久综合国产亚洲精品| 亚洲国产色片| av在线app专区| 国产伦精品一区二区三区四那| 亚洲欧美日韩东京热| 91久久精品电影网| 亚洲熟女精品中文字幕| 免费不卡的大黄色大毛片视频在线观看| 丰满迷人的少妇在线观看| 久久久久网色| 伊人久久国产一区二区| 内射极品少妇av片p| 亚洲成人av在线免费| 精品国产一区二区三区久久久樱花| 制服丝袜香蕉在线| 日日啪夜夜撸| 亚洲欧洲国产日韩| 爱豆传媒免费全集在线观看| 欧美国产精品一级二级三级 | 精品亚洲成a人片在线观看| 成人综合一区亚洲| 国产一区二区三区综合在线观看 | 久久综合国产亚洲精品| 男人爽女人下面视频在线观看| 丁香六月天网| 国产精品.久久久| 日本色播在线视频| 久久影院123| 狂野欧美激情性bbbbbb| 日本91视频免费播放| 一级毛片aaaaaa免费看小| 波野结衣二区三区在线| 免费观看av网站的网址| 最新中文字幕久久久久| 一级二级三级毛片免费看| 国产淫片久久久久久久久| 亚洲国产成人一精品久久久| 美女中出高潮动态图| 波野结衣二区三区在线| 免费高清在线观看视频在线观看| 亚洲av成人精品一二三区| 成人影院久久| 男人爽女人下面视频在线观看| 蜜桃在线观看..| 精品视频人人做人人爽| 日韩成人伦理影院| 久久久久久久久久人人人人人人| av网站免费在线观看视频| 日本午夜av视频| 777米奇影视久久| 国产片特级美女逼逼视频| 香蕉精品网在线| 丝袜在线中文字幕| 少妇精品久久久久久久| 国产又色又爽无遮挡免| 成人亚洲精品一区在线观看| 交换朋友夫妻互换小说| 精品久久久久久久久亚洲| 欧美精品国产亚洲| 天堂8中文在线网| 99久久精品国产国产毛片| 欧美丝袜亚洲另类| 亚洲国产毛片av蜜桃av| 中国美白少妇内射xxxbb| 欧美精品人与动牲交sv欧美| 欧美日韩精品成人综合77777| 偷拍熟女少妇极品色| 最近2019中文字幕mv第一页| 两个人免费观看高清视频 | 91久久精品国产一区二区三区| 下体分泌物呈黄色| 亚洲第一av免费看| 人妻夜夜爽99麻豆av| 中文精品一卡2卡3卡4更新| 在现免费观看毛片| 精品亚洲成a人片在线观看| 久久久久国产网址| 婷婷色麻豆天堂久久| 色哟哟·www| 久久久久网色| 中文字幕久久专区| av福利片在线观看| 少妇丰满av| 日本爱情动作片www.在线观看| 一级黄片播放器| 欧美一级a爱片免费观看看| 欧美区成人在线视频| 欧美bdsm另类| 久久6这里有精品| 精品99又大又爽又粗少妇毛片| 看十八女毛片水多多多| 久久免费观看电影| 日本vs欧美在线观看视频 | 久久精品国产亚洲av天美| 久久亚洲国产成人精品v| 制服丝袜香蕉在线| 99热国产这里只有精品6| 黄色怎么调成土黄色| 曰老女人黄片| 国产乱人偷精品视频| 人人妻人人澡人人爽人人夜夜| 精华霜和精华液先用哪个| 在线观看美女被高潮喷水网站| 久久99热6这里只有精品| 91精品一卡2卡3卡4卡| 亚洲真实伦在线观看| 日韩成人av中文字幕在线观看| 久热久热在线精品观看| 国产伦在线观看视频一区| 精品熟女少妇av免费看| 视频区图区小说| 久久6这里有精品| 性色av一级| 久久久久国产网址| 深夜a级毛片| 国产日韩一区二区三区精品不卡 | 日韩中字成人| 久久精品久久精品一区二区三区| 女的被弄到高潮叫床怎么办| 国产成人freesex在线| 欧美日韩精品成人综合77777| 啦啦啦中文免费视频观看日本| 国产无遮挡羞羞视频在线观看| 亚洲人成网站在线观看播放| 欧美xxⅹ黑人| 最新中文字幕久久久久| xxx大片免费视频| 久久久精品94久久精品| 亚洲精品日本国产第一区| 中文字幕人妻熟人妻熟丝袜美| 亚洲在久久综合| 国产精品国产三级专区第一集| 国产国拍精品亚洲av在线观看| 一本大道久久a久久精品| 国产爽快片一区二区三区| 大香蕉久久网| 免费观看a级毛片全部| 日本av手机在线免费观看| 丝瓜视频免费看黄片| 亚洲第一区二区三区不卡| 亚洲内射少妇av| 久久99热6这里只有精品| 久久鲁丝午夜福利片| 亚洲欧美成人综合另类久久久| 日韩免费高清中文字幕av| 成年女人在线观看亚洲视频| 国产极品天堂在线| 夫妻午夜视频| 日韩 亚洲 欧美在线| 欧美老熟妇乱子伦牲交| 精华霜和精华液先用哪个| 18禁在线无遮挡免费观看视频| 丁香六月天网| 国产av码专区亚洲av| 午夜激情久久久久久久| 少妇 在线观看| 国产精品.久久久| 视频区图区小说| 国产成人a∨麻豆精品| 亚洲第一av免费看| 国产亚洲5aaaaa淫片| 日日摸夜夜添夜夜爱| 狠狠精品人妻久久久久久综合| 大陆偷拍与自拍| 国产精品秋霞免费鲁丝片| av有码第一页| av网站免费在线观看视频| 国产精品免费大片| 高清毛片免费看| 天天躁夜夜躁狠狠久久av| 亚洲精品国产成人久久av| 狂野欧美白嫩少妇大欣赏| 人人妻人人看人人澡| 男人舔奶头视频| 狂野欧美激情性xxxx在线观看| 99热全是精品| 日韩成人伦理影院| 国产真实伦视频高清在线观看| 偷拍熟女少妇极品色| 99久久人妻综合| .国产精品久久| 视频区图区小说| 日韩熟女老妇一区二区性免费视频| 十分钟在线观看高清视频www | freevideosex欧美| 精品少妇黑人巨大在线播放| 色94色欧美一区二区| 高清黄色对白视频在线免费看 | 国产精品欧美亚洲77777| 高清欧美精品videossex| 韩国av在线不卡| 天美传媒精品一区二区| 亚洲欧美清纯卡通| 高清毛片免费看| 国产精品.久久久| 久久久国产一区二区| 另类精品久久| 中文字幕人妻丝袜制服| 成人特级av手机在线观看| 色婷婷久久久亚洲欧美| 国产爽快片一区二区三区| 大又大粗又爽又黄少妇毛片口| 熟女电影av网| av网站免费在线观看视频| 一级毛片aaaaaa免费看小| 亚洲国产精品999| 久久精品国产亚洲av涩爱| 亚洲精品一二三| 蜜桃在线观看..| 国产淫语在线视频| 精品亚洲乱码少妇综合久久| a级片在线免费高清观看视频| 国产一区二区三区综合在线观看 | 少妇人妻久久综合中文| 色婷婷久久久亚洲欧美| 蜜桃在线观看..| 亚洲真实伦在线观看| 日韩制服骚丝袜av| 亚洲国产欧美在线一区| 偷拍熟女少妇极品色| 国精品久久久久久国模美| 能在线免费看毛片的网站| 久久精品国产亚洲网站| tube8黄色片| 亚洲人成网站在线观看播放| 国产精品一区二区在线观看99| 午夜日本视频在线| 亚州av有码| 国精品久久久久久国模美| 亚洲国产欧美日韩在线播放 | 亚洲精品久久久久久婷婷小说| 日韩三级伦理在线观看| 天美传媒精品一区二区| a级毛色黄片| 国产av一区二区精品久久| 日本黄大片高清| 精品一区二区免费观看| 校园人妻丝袜中文字幕| 日韩一区二区三区影片| 免费看不卡的av| 久久99精品国语久久久| 亚洲欧洲日产国产| 9色porny在线观看| 91在线精品国自产拍蜜月| 国产69精品久久久久777片| 欧美97在线视频| 欧美日韩综合久久久久久| 久久国产乱子免费精品| 久久ye,这里只有精品| 日韩免费高清中文字幕av| 中文字幕制服av| 久热这里只有精品99| 一级毛片黄色毛片免费观看视频| 亚洲av男天堂| 日本爱情动作片www.在线观看| 精品人妻熟女av久视频| 久久99热这里只频精品6学生| 丰满乱子伦码专区| 久久久久国产精品人妻一区二区| 国产伦精品一区二区三区四那| 男女边摸边吃奶| 久久综合国产亚洲精品| 另类精品久久| 黄色日韩在线| 九九久久精品国产亚洲av麻豆| 精品熟女少妇av免费看| xxx大片免费视频| 插阴视频在线观看视频| 久久久a久久爽久久v久久| 亚洲第一区二区三区不卡| 亚洲自偷自拍三级| 曰老女人黄片| 赤兔流量卡办理| 久久99蜜桃精品久久| 91在线精品国自产拍蜜月| 久久精品国产亚洲av天美| 夜夜看夜夜爽夜夜摸| 久久久精品94久久精品| 另类精品久久| 久久鲁丝午夜福利片| 亚洲美女视频黄频| 午夜福利影视在线免费观看| 国产日韩欧美在线精品| 国产永久视频网站| 精品一区在线观看国产| 中文字幕亚洲精品专区| 夜夜看夜夜爽夜夜摸| 欧美国产精品一级二级三级 | 伦理电影大哥的女人| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久久成人av| 男女无遮挡免费网站观看| 亚洲精品自拍成人| 视频中文字幕在线观看| 欧美成人午夜免费资源| 两个人的视频大全免费| 在线观看国产h片| 久热久热在线精品观看| .国产精品久久| 一级a做视频免费观看| 女的被弄到高潮叫床怎么办| 你懂的网址亚洲精品在线观看| 午夜激情久久久久久久| 欧美丝袜亚洲另类| 国产精品.久久久| 成人国产av品久久久| 高清毛片免费看| 一区在线观看完整版| 一级黄片播放器| 国产女主播在线喷水免费视频网站| 热re99久久国产66热| 亚洲国产日韩一区二区| 嫩草影院新地址| 一个人看视频在线观看www免费| 在线观看国产h片| 欧美老熟妇乱子伦牲交| 亚洲内射少妇av| 91成人精品电影| 色吧在线观看| 国产深夜福利视频在线观看| 日本午夜av视频| 欧美丝袜亚洲另类| 亚洲精品久久久久久婷婷小说| 人妻少妇偷人精品九色| 大陆偷拍与自拍| 国产成人免费无遮挡视频| av视频免费观看在线观看| 777米奇影视久久| 高清在线视频一区二区三区| 国产一区二区在线观看日韩| 久久99热6这里只有精品| 男女边摸边吃奶| 丝袜脚勾引网站| 欧美xxⅹ黑人| av不卡在线播放| 成人亚洲欧美一区二区av| 国产av国产精品国产| 麻豆成人av视频| 国产综合精华液| 99国产精品免费福利视频| 狂野欧美激情性xxxx在线观看| 日韩一区二区视频免费看| 777米奇影视久久| 日本91视频免费播放| 日本wwww免费看| 久久久久久人妻| 日韩精品有码人妻一区| 极品教师在线视频| 亚洲天堂av无毛| 中文字幕制服av| av福利片在线| 精品99又大又爽又粗少妇毛片| 中文欧美无线码| 欧美精品亚洲一区二区| 交换朋友夫妻互换小说| 五月天丁香电影| 国产女主播在线喷水免费视频网站| 日韩亚洲欧美综合| 天堂中文最新版在线下载| 日韩亚洲欧美综合| av网站免费在线观看视频| 亚洲精品日本国产第一区| 乱码一卡2卡4卡精品| www.色视频.com| 伊人久久国产一区二区| 女人精品久久久久毛片| 中文在线观看免费www的网站| 国产一区二区在线观看av| 国产亚洲av片在线观看秒播厂| 十分钟在线观看高清视频www | 成年人免费黄色播放视频 | 狂野欧美白嫩少妇大欣赏| 22中文网久久字幕| 水蜜桃什么品种好| 亚洲精品乱码久久久久久按摩| 免费黄色在线免费观看| 国产极品天堂在线| 国产亚洲一区二区精品| 后天国语完整版免费观看| 成人国产一区最新在线观看| 国产麻豆69| 97在线人人人人妻| 爱豆传媒免费全集在线观看| 欧美av亚洲av综合av国产av| 成人三级做爰电影| 在线观看人妻少妇| 婷婷丁香在线五月| 欧美黑人精品巨大| 国产日韩一区二区三区精品不卡| 久久中文看片网| 精品国内亚洲2022精品成人 | 亚洲免费av在线视频| 亚洲欧美色中文字幕在线| av网站在线播放免费| 两个人免费观看高清视频| 久久久精品94久久精品| 亚洲国产精品999| 久久久久久久精品精品| 国产精品.久久久| 亚洲av成人一区二区三| 狠狠狠狠99中文字幕| 又紧又爽又黄一区二区|