• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed dynamic event-based finite-time dissipative synchronization control for semi-Markov switched fuzzy cyber-physical systems against random packet losses

    2023-11-02 08:09:22XiruWu伍錫如YuchongZhang張煜翀TiantianZhang張畑畑andBinleiZhang張斌磊
    Chinese Physics B 2023年10期
    關(guān)鍵詞:張煜

    Xiru Wu(伍錫如), Yuchong Zhang(張煜翀), Tiantian Zhang(張畑畑), and Binlei Zhang(張斌磊)

    School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China

    Keywords: cyber-physical systems, finite-time synchronization, distributed dynamic event-triggered mechanism,random packet losses

    1.Introduction

    Cyber-physical systems (CPSs), as the complex systems integrating computation, networks communication and control,[1,2]have been investigated intensively due to their frequent applications in network coordination and physical resources, such as network power schedules, multi-agent control and remote estimation.[3-5]It is worth noting that reliability has become the increasingly critical network-induced issue in the control of real CPSs.In Refs.[6,7], the sliding mode control approach was deployed for CPSs with malicious attacks to guarantee security and reliability.In particular, bandwidth limitation is becoming a serious problem due to the physical properties of network interaction, which generates inevitable information packet losses.Nevertheless,current research rarely refers to the effect of random packet losses in CPSs, aside from the interconnected multi-systems with complex structure.

    The Takagi-Sugeno (T-S) fuzzy model has been used to handle complex nonlinear systems due to its remarkable competence in accurate approximation.[8-10]Reference [11] built the model of partially coupled complex networks via a collection of IF-THEN rules and fuzzy membership functions.To solve the immeasurable state problem, Ref.[12] also developed an adaptive fuzzy observer using IF-THEN fuzzy rules.The T-S fuzzy model was applied in the resilient controller design of CPSs to deal with input saturation and cyberattack in Ref.[13].In reality, abrupt changes in system structure may lead to unexpected mode variation and system instability,such that Markov switched parameters are introduced to organize the T-S fuzzy system model.[14,15]In Ref.[14], a finite-time asynchronous state estimation scheme was raised for Markov jump T-S fuzzy systems.As reported in Ref.[16],the transition probability matrix is considered to be time-varying because the sojourn time obeys arbitrary probability distributions.In view of this, semi-Markov switched T-S fuzzy systems have more relaxed constraint compared with conventional ones.[17,18]For instance,in Ref.[17],Zhanget al.concerned the stabilization issue of uncertain T-S fuzzy systems under a semi-Markov chain.Therefore, it is meaningful to further explore the effective control theory in T-S fuzzy CPSs(TSFCPSs)subject to semi-Markov switched modes.

    In the study of system stability control, most of the existing results focused on Lyapunov stability within an infinite time interval, but some realistic scenes require finitetime control performance.The authors in Ref.[19] applied a power integrator technique combined with a backstepping method to achieve finite-time stability control.Such a theory has been imported to finite-time synchronization (FTS)and, simultaneously, it should also be emphasized that consideration of system properties in the achievement of FTS is necessary.[20,21]As the description of the immanent relationship between storage functions and supply rates,dissipativity performance can reflect the internal stability and has been regarded as a more powerful tool in system control than passivity andH∞theory.[22]With regard to a class of Markovian jump inertial neural networks,Songet al.derived the less conservative criterion of FTS with a dissipative index in Ref.[23].As reported in Ref.[24],the global dissipativity based on the Filippov solution was developed to ensure the FTS of memristorbased neural networks.However, the dissipative problem of FTS control for TSFCPSs has not attracted adequate attention.

    To cope with the limited communication resources, an event-triggered mechanism (ETM) was proposed to reduce frequent data transmission and overmuch consumption.[25-28]By this means, the updated data of the control input are released only when a prespecified trigger condition is satisfied.In Ref.[29], based on adaptive ETM, the authors proposed a quantized method for the distributed estimation of semi-Markov switched sensor networks.With the event-based control technique, the stability problem of linear systems suffering packet losses was solved in Ref.[30].In recent literature,a class of dynamic ETM was designed by setting an internal iterative variable in the triggering condition, which possesses lower triggering frequency than conventional ETM.[31-33]As shown in Ref.[33],the authors proposed aH∞filtering strategy for a T-S fuzzy system based on dynamic ETM, which contributed to reduction of the consumption.Although the dynamic ETM has shown superiority, some redundant data will be transmitted if subsystems share a unified triggering condition, which promotes the motivation for extending related studies under the distributed framework.[34-36]Besides,the process of packet dropout is depicted by a stochastic sequence following the continuous Bernoulli distribution in previous studies like Refs.[37-39],but this method is unsuitable for a non-uniform sampling situation where triggering instants fail to be transmitted.Therefore, there is the need to establish a realistic framework to analyze a distributed dynamic ETM(DDETM)influenced by random packet losses in semi-Markov switched TSFCPSs.

    According to the aforementioned analysis, this paper aims to investigate the strictly dissipative FTS issue of semi-Markov switched TSFCPSs with packet dropouts under a distributed dynamic event-based pinning control scheme.The main contributions are summarized as follows:

    1) To investigate the finite-time synchronization strategy within the framework of CPSs with interconnected multisystems, a T-S fuzzy model-based distributed control construction is developed.In contrast to the network models in Refs.[21,42],the presented system considers parameters subject to a semi-Markov chain and a communication process restrained by packet loss simultaneously.

    2)The pinning strategy and DDETM are jointly proposed to improve the transmission schedule of desired controller signals.Unlike the approaches in Refs.[25-27],a dynamic variable related to synchronization errors is introduced to design the triggering condition,which results in a lower information update frequency.Additionally,aiming to handle the stochastic data loss sequence that does not satisfy Bernoulli distribution, an equivalent prediction model distinguished from Refs.[37-39]is provided to transform the triggering instant.

    3) Based on augmented terms with respect to delays,a mode-dependent Lyapunov-Krasovskii functional (LKF) is constructed to guarantee the FTS accompanied by the desired dissipative performance.Compared with the sum-term estimation methods in Refs.[11,27,31,43],an extended reciprocally convex matrix inequality(ERCMI)is combined with a delayproduct-type double sum term to derive a tighter result with less conservatism.

    The rest of this paper is arranged as follows: Section 2 describes the preliminaries and builds the problem model.In Section 3,synchronization and dissipativity analysis of closedloop TSFCPSs proceed via strict mathematical derivations.Section 4 provides two examples to verify the theoretical results.Section 5 gives the conclusions.

    Notations Throughout the paper,Rnand Rn×mrepresent then-dimensional Euclidean space and the set of alln×mdimensional real matrices; Z+denotes the set of all positive integers;l2[0,∞) means the space of square-summable infinite vector functions over [0,∞); vecn{·}is the symbol of the column vector, includingnblocks; diag{·}means a block-diagonal matrix;?refers to the Kronecker product;cmax(R) (cmin(R)) represents the maximum eigenvalue (minimum eigenvalue) of the matrixR; Pr{·}andE{·}represent the probability of event occurrence and mathematical expectation,respectively;Sym{P}=PT+P;and?denotes the symmetric term of a symmetric matrix.In addition, the matrixQ >0(Q <0)meansQis a positive-definite matrix(negativedefinite matrix).

    2.Problem formulation and preliminaries

    Consider a class of semi-Markovian switched discretetime complex networks withNcoupled nodes as the CPSs,which can be described by the following T-S fuzzy rules:

    Plant rulem: Ifκ1(k)isGm1,κ2(k)isGm2,...,andκp(k)isGmp,then

    Fig.1.A block diagram of the control procedure in node i.

    Asψst(k)is time-varying with incomplete measuring information,it can be expressed by the following new form:

    forμ? ≥0.Based on Refs.[16,18,22],ψ?stis limited by the following boundary conditions:

    Via the weighted average fuzzy blending method, the global TSFCPSs model with respect to subsystem (1) is described as

    where ?mrepresents the simplification of the normalized membership function ?m(κ(k))satisfying

    The model of the target node in TSFCPSs is given as

    where ?x(k)∈Rn, ?y(k)∈Ryare vectors on behalf of the target state and corresponding control output, respectively.The initial state of ?x(k)is set as ?ν(s)fors ∈{-ˉσ,-ˉσ+1,...,0}.

    We defineei(k)=xi(k)-?x(k)andeyi=yi(k)-?y(k),such that we obtain the synchronization error system of TSFCPSs as below:

    To compensate the lost data caused by packet losses,the estimated error is introduced to the controller design.Combined with the parallel distribution control(PDC)technology,the fuzzy pinning controller can be given by the following rules:

    Controller rulev: Ifκ1(k) isGv1,κ2(k) isGv1,..., andκp(k)isGvp,then

    where ˉei(k) is the estimated control input andis theith control gain matrix under the fuzzy rulev.Besides,φiis the pinning parameter, whereφi=1 means theith node is controlled,otherwiseφi=0.

    The distributed event generator functionQ(·,·) is regulated as follows:

    Here, ?ρiis a given positive parameter,andΓi(k)represents theith internal dynamic variable,which is described as

    withΓi(0)=≥0 and the given constantηi ∈(0,1).

    Remark 1 Compared with the traditional ETMs,shown in Refs.[25-27],restricted by a static-coefficient-related triggering threshold, the adopted DDETM is established under a time-varying constraint condition,where the dynamic variableΓi(k) is influenced by the real-time system errorsei(k) andεi(k).It is obvious from Eq.(8)that the triggering mechanism will reduce to the static ETM in Ref.[27]if parameter ?ρigoes to infinity.Therefore, the DDETM can flexibly regulate the distributed controller performance by changing parametersδiand ?ρi.It easily observes that the value ofδiincreases together with the decrease of the triggering rate, while the triggering rate increases with the growth of ?ρi.

    The controller dynamics can be obtained by computingei(k)in the interval offor the availability ofTherefore, controller (12) can share the same premise variablesκi(k)with system(1).

    Remark 2 Combined with the packet dropout behavior,the controller limited by the event-triggered condition will receive a relatively less feasible data packet from the sensor.It is worth noting that triggering instants are non-uniform sequences,such that the continuous Bernoulli distribution model in Refs.[8,29,38] cannot be directly employed to describe the event-based controller.By constructing a new sequence{χ(k)}k∈Z+in regard to variable, the circumstance of triggered data transmission will be captured adequately.

    Figure 2 demonstrates the operation framework of the closed-loop system, where the DDETM is proposed to manage the signal transmission.Moreover,a compensation mechanism is employed in the control input to guarantee the reliability.

    Before conducting further analysis,some essential definitions,assumptions and lemmas are listed.

    Definition 1[20]There is a matrixQ, a given constant ?ωand two positive scalarsε1,ε2withε1<ε2.The error system (13) is said to be mean-square finite-time bounded with respect to(ε1,ε2,X,T, ?ω)if the following condition is insured for?k ∈{1,2,...,T}:

    Definition 2[22]Given a fixed scalarγ >0,the real matricesΥ1=ΥT1≤0,Υ2andΥ3=, system (1) with disturbanceω(k)∈l2[0,∞) can achieve the strictly (Υ1,Υ2,Υ3)-γdissipative FTS with respect to(?1,?2,X,T, ?ω,γ)if error system(13)satisfies the condition of Definition 1 and the following inequation for allT ≥0:

    where the energy supply rateJ(ey(k),ω(k))is denoted as

    Fig.2.The framework of detailed signal transmission in the whole closed-loop CPSs.

    Assumption 1 The initial value of the error system should conform to the following condition:

    Lemma 3[41]For a positive matrixQand positive integerν1<ν2, any discrete-time variableχ(k)∈Rncan satisfy the following inequality:

    3.Main results

    In this section,the finite-time strictly dissipative synchronization conditions are discussed and the desired controller is designed under the DDETM.

    3.1.Finite-time boundness analysis

    The finite-time boundness of synchronization errors will be analyzed firstly in the following theorem.Consider the semi-Markov switched error system (13) affected by random packet losses.

    where

    where

    where

    Define ΔV(k,λ(k)) =V(k+1,λ(k+1))-ξV(k,λ(k)), we can obtainE{ΔV(k,λ(k))}along the trajectories of the error system(13),and it follows that

    Using Lemma 3,we can obtain

    Then,

    To estimate the bound ofE{ΔV5(k,λ(k))},the following zero-value equations are presented for any symmetric matricesM1andM2:

    With the combination of Eqs.(30) and (31), it follows from Jensen’s inequality theory that

    where the delay-dependent termΠ3,[σ(k)]is described as

    Relying on the inequality(17)in Lemma 2,Π3,[σ(k)]can be further bounded as follows:

    Notice that activation functions satisfy the Lipschitz continuity in(A2),and one has the following inequations:

    whereA1,A2,B1andB2are defined in Eq.(20).Moreover,based on the event-triggered constraint condition (8), we can derive that for any positive constant ˉh,

    Repeating the process from inequations (21)-(35), we easily get

    where

    andis stated in Eq.(20).From the convex combination technique and(A1),we have the following inference:

    Then,with the help of the Schur complement theory,the constraint<0 will hold for≤σ(k)≤if inequation(18)is satisfied,such that

    Hence, we can further conduct the following iterative operation with regard to finite timek:

    wherecmax(H)is the maximum eigenvalue of matrixH.The value ofV(0,λ(0))is estimated as

    With the combination of inequations(42)and(43),we have

    Due to the conditionP11,s ≥c11Xin Eq.(19),it exists as

    such that the following inequation holds:

    The finite-time boundness of the error system (13) can be eventually derived.This completes the proof.

    Remark 4 In the finite-time boundness analysis of the closed-loop error system, an augmented mode-dependent LKF, containing vectors?1(k),?2(k) and?3(k), is constructed and inspired by Ref.[23].Differing from the common LKF that is only formed by error or state vectors, the augmented terms observe more information of delays through more sum-terms.Specifically, the improved delay-producttype terms inV1(k,λ(k))andV6(k,λ(k))further consider the change rate ofσ(k)and develop the results in Ref.[41].Moreover, the proposed>0 in Eq.(19) provides a more relaxed range for the stability criterion.

    Remark 5 In Refs.[11,27,31], some inequality techniques, such as Abel lemma, Wirtinger-based inequality and Jensen’s inequality,were introduced to handle the single sumterm or simple double sum-term.However,the delay-producttype double sum term inV6(k,λ(k)) will contribute to more nonlinearities and uncertainty.To obtain more accurate estimation, the ERCMI is raised by not introducing additional decision variables or adding the dimension of LMIs, in order to further reduce the conservatism.

    3.2.Finite-time strict dissipativity analysis

    where

    and other parameters are defined in Eq.(20).Moreover, the controller gain matrix is described as

    Proof Considering the LKF candidate constructed in Theorem 1.For any invertible matrixFsv, one has the following zero-value equation:

    As the controller is greatly impacted by the pinning parameterφi,we can further obtain the following inequation:

    To study the strictly dissipative performance of the synchronization error system,an object function is constructed as follows:

    Similar to Eq.(38),it derives from Eqs.(49)-(51)that

    Recalling Eq.(40)and the application of the Schur complement, we can getE{ΔV(k,λ(k))-G(k)} ≤0, which is equivalent to

    Based on the iterative operation within the time interval[0,k]in Eq.(42),it derives the following inequation under the zeroinitial condition:

    With the premises ofE{V(k,λ(k))}>0,it is easily concluded that

    Obviously, the closed-loop TSFCPSs can satisfy finite-time strictly (Υ1,Υ2,Υ3)-γ-dissipative performance in the right of Definition 2.The proof is accomplished.

    Remark 6 In terms of the dissipativeness definition and results of Theorem 1,a new framework is established to analyze the finite-time dissipative synchronization of the closedloop system,in order to obtain the sufficient condition in Theorem 2.By utilizing the LMI technique, controller gain matrices under various modes can be calculated.Notice that the number of modes and nodes affects complexity; therefore, a tradeoff between computational burden and conservation is necessary in real application.

    The following corollary is formulated for the Markov switched CPSs absent from the T-S fuzzy model:

    where

    and other notations are given by Eq.(48).If LMIs are feasible,the controller gain is calculated asFurthermore, we can also derive the condition of finite-timeH∞synchronization for CPSs when settingΥ1=-1,Υ2=0 andΥ3=γ2+γ.

    4.Numerical simulations

    In this section,numerical examples and simulation results are presented to demonstrate the effectiveness of the proposed theories.

    Example 1 Consider the following dynamic equation of the gearing connected single-link robot arm as the target model of CPSs:[25,38]

    whereq(t)and ˙q(t)denote the arm angle position and angular velocity.Given parameterL=0.5,g=9.81,D=2.Here,Mλ(k)andJλ(k)are mode-dependent withM1= 1,J1= 1,M2=5,J2=5,M3=10 andJ3=10.

    Setxi1(t)=qi(t) andxi2(t)= ˙qi(t) for CPSs containing six nodes,and Eq.(57)can be discretized by the first-order Euler approximation method with the sampling period Δt=0.1 s.Referring to Ref.[38],the CPSs are constructed by a T-S fuzzy model with the following membership functions:

    wherexi1(k)∈(-π,π),β=10-2/π.System parameters subject to two fuzzy rules and three modes are selected as

    Fuzzy rule 1 Ifxi1(k)is 0 rad,then

    The retarded coefficient is set as?=0.9.

    Fig.3.The physical structure of the gearing connected single-link robot arm and coupled topological relation under three switched modes.

    As shown in Fig.3, CPSs can change topology relations among three modes, and the corresponding elements in the transition probability matrix satisfy

    WhenL=2,the values ofare given as

    Assume that nodes 1, 2 and 6 are the controller, some parameters are supposed as ?L=diag{I,I,0,0,0,I},ξ=1.02,?1=10,?2=50,T=50, ?ρ1= ?ρ2= ?ρ6=0.15,η1=η2=0.6,η6=0.5, ?ρ1= ?ρ2= ?ρ6=25,δ1=δ2=δ6=0.4 and ?ω=1.8.The dissipativity-related matrices are set asΥ1=-0.4I,Υ2=IandΥ3=4I.By solving the LMIs proposed in Theorem 2,controller gains and the maximum dissipative levelγare deduced.Table 1 gives the allowable maximum dissipative levelγfor different ˉσandδi, where a larger ˉσresults in the decrease in dissipative levelγand a smallerδiwill improve the dissipative performance.

    Randomly choose the initial values of CPSs within the range of[-π,π], and let ?x(k)=[-3,2]fork ∈[-5.0]Z.Figure 4 reveals the evolution of synchronization errors under random 200 realizations, which proves that the designed control method can ensure error convergence.As shown in Fig.5,the states of CPSs subject to packet losses track the state of the target node in finite timeT.As Remark 3 said,the PDC method is used and the curves of the controller states and their triggering instants are depicted in Figs.6(a)and 6(b).The update frequency of the control signals is reduced efficiently.

    Fig.4.The response of the synchronization errors in closed-loop CPSs under 200 realizations.

    Table 1.The allowable maximum dissipative level γ for various ˉσ and δi.

    Table 2.A comparison of TR under various methods.

    Fig.5.States of the closed-loop CPSs under packet losses and switched system modes.

    To indicate the advantage, Table 2 compares the triggering rate (TR) of three pinned nodes under various triggering mechanisms in Refs.[27,28]and this paper.Clearly,the average TR(ATR)of our used DDETM is significantly lower than techniques in others.Moreover, we observe ATR rises with the growth of ?ρi.

    Fig.6.(a)The curves of controller signals.(b)The triggering instants of controllers 1,2 and 6.

    Example 2 For Corollary 1,consider the Markov doublemode-switched CPSs,including five subsystems where the parameter matrices are provided in Table 3.

    Based on LMIs given in Eq.(55), we can calculate the feasible controller gains as follows:

    and the allowable maximum dissipative levelγ=2.5261.

    Fig.7.The phase diagram of ?x(k)for two switched modes.

    Table 3.System parameter matrices for each mode.

    Assumed initial values of nodes in the interval [-3,3],simulation results of closed-loop errors and states are exhibited in Fig.8, where FTS can be realized for CPSs suffering from random packet losses.Controller signals are shown in Fig.9 and the curves are step-like;this indicates that transmission only occurs at triggering sampling instants.Figure 10(a)gives the variation tendency of three dynamic variablesΓi(k)fori=1,2,5, which vary together with the synchronization errors.The triggering performance of each node is displayed in Fig.10(b).

    In the following, the control performance for the situation of different parameter values will be discussed.As listed in Table 4,we compare the TR when the value ofδiis set from 0 to 0.8.It is obvious that ATR decreases with the decline ofδimonotonically,as described in Remark 1.Although a lower TR saves more computation resources,control ability may be affected because of receiving less available data.

    Fig.10.(a)The evolutions of the dynamic variable Γi(k)for i=1,2,5.(b)The triggering instants of controllers 1,2 and 5.

    Table 4.A comparison of TRs under different values of δi.

    5.Conclusions

    In this paper, the problem of finite-time dissipative synchronization control for TSFCPSs subject to semi-Markov switched parameters and packet losses has been addressed by applying the DDETM.Aiming to build the model of signals affected by random packet dropouts transmitting to the controller, combined with a compensation strategy, an equivalent prediction model is introduced to process the Bernoulli distributed time sequence.Based on an augmented modedependent LKF and ERCMI technique, the criterion of FTS with strictly dissipative performance has been deduced in terms of LMIs, which further solves the control gain matrices.The theoretical effectiveness and superiority are proved by two examples.In the future,the event-based control strategy will be extended to CPSs with more realistic problems,such as cyber-attack and sensor faults.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.62263005),Guangxi Natural Science Foundation (Grant No.2020GXNSFDA238029), Laboratory of AI and Information Processing (Hechi University),Education Department of Guangxi Zhuang Autonomous Region (Grant No.2022GXZDSY004), Innovation Project of Guangxi Graduate Education (Grant No.YCSW2023298),and Innovation Project of GUET Graduate Education (Grant Nos.2022YCXS149 and 2022YCXS155).

    猜你喜歡
    張煜
    老家的院子和池塘
    你好,身體(3)
    虎鯨飛天
    鋁合金油箱放油塞可靠性分析
    溫暖陪伴,快樂加倍
    花開的季節(jié)
    Measuring Loschmidt echo via Floquet engineering in superconducting circuits
    江門市新會(huì)區(qū)大鰲鎮(zhèn)特沙小學(xué)作品集
    ViVi美眉(2021年12期)2021-05-30 10:48:04
    腫瘤醫(yī)生自揭治療亂象之后
    黄片播放在线免费| 日韩制服丝袜自拍偷拍| 人人妻人人爽人人添夜夜欢视频| 成人毛片a级毛片在线播放| 亚洲欧洲国产日韩| 啦啦啦视频在线资源免费观看| 免费黄色在线免费观看| 秋霞伦理黄片| 母亲3免费完整高清在线观看 | 精品亚洲乱码少妇综合久久| 亚洲精品国产av蜜桃| 成年av动漫网址| 精品亚洲成a人片在线观看| av视频免费观看在线观看| 性高湖久久久久久久久免费观看| 日韩精品有码人妻一区| 国产免费一区二区三区四区乱码| 十八禁高潮呻吟视频| 国产成人精品福利久久| 亚洲美女视频黄频| 成人影院久久| 久久国产亚洲av麻豆专区| 人妻人人澡人人爽人人| 麻豆乱淫一区二区| 精品一品国产午夜福利视频| 成年美女黄网站色视频大全免费| 国产成人免费观看mmmm| 亚洲婷婷狠狠爱综合网| 久久久久久久国产电影| 99re6热这里在线精品视频| 欧美亚洲 丝袜 人妻 在线| 亚洲欧洲日产国产| 国产老妇伦熟女老妇高清| 一个人免费看片子| 久久国产精品大桥未久av| 日韩精品有码人妻一区| 啦啦啦视频在线资源免费观看| 丝袜在线中文字幕| 亚洲性久久影院| 亚洲精品久久久久久婷婷小说| 少妇的逼好多水| www日本在线高清视频| 在线观看人妻少妇| 99精国产麻豆久久婷婷| 亚洲欧洲国产日韩| 热re99久久国产66热| 亚洲精品国产av蜜桃| 人妻一区二区av| 亚洲欧美精品自产自拍| 如日韩欧美国产精品一区二区三区| 国产精品秋霞免费鲁丝片| 国产精品欧美亚洲77777| 啦啦啦中文免费视频观看日本| 99久国产av精品国产电影| 国产一级毛片在线| 精品少妇黑人巨大在线播放| 日本av免费视频播放| 亚洲av电影在线观看一区二区三区| 97精品久久久久久久久久精品| 日韩一区二区视频免费看| 美女大奶头黄色视频| 日本vs欧美在线观看视频| 久久影院123| 久久韩国三级中文字幕| 丰满少妇做爰视频| 一二三四在线观看免费中文在 | 宅男免费午夜| 午夜日本视频在线| 国产片内射在线| 少妇人妻精品综合一区二区| 免费看不卡的av| 精品国产一区二区三区久久久樱花| freevideosex欧美| 日韩不卡一区二区三区视频在线| av免费观看日本| 少妇人妻久久综合中文| 亚洲成人手机| 亚洲伊人色综图| 久久国产精品大桥未久av| 99久久中文字幕三级久久日本| 一级毛片我不卡| 国产亚洲av片在线观看秒播厂| 国产高清不卡午夜福利| 亚洲美女黄色视频免费看| 久久人人爽人人爽人人片va| 国产精品嫩草影院av在线观看| 天天影视国产精品| 男的添女的下面高潮视频| 激情五月婷婷亚洲| 麻豆乱淫一区二区| 在线精品无人区一区二区三| 日本午夜av视频| 91精品伊人久久大香线蕉| 高清毛片免费看| 色网站视频免费| 色吧在线观看| 高清欧美精品videossex| 久久狼人影院| 精品人妻偷拍中文字幕| 亚洲精品国产色婷婷电影| 久久精品夜色国产| 免费在线观看完整版高清| 国产精品一国产av| 亚洲 欧美一区二区三区| 久久久久久久国产电影| 老司机影院毛片| 一本—道久久a久久精品蜜桃钙片| 欧美人与性动交α欧美软件 | 黑人欧美特级aaaaaa片| 国产69精品久久久久777片| 十八禁网站网址无遮挡| 少妇被粗大猛烈的视频| 好男人视频免费观看在线| 老女人水多毛片| 亚洲av日韩在线播放| 国产激情久久老熟女| 最近2019中文字幕mv第一页| 国产伦理片在线播放av一区| 男人操女人黄网站| 国产免费视频播放在线视频| 在线亚洲精品国产二区图片欧美| 免费高清在线观看日韩| 在线观看三级黄色| 亚洲精品成人av观看孕妇| 精品人妻熟女毛片av久久网站| 成人国产麻豆网| 亚洲综合精品二区| 精品一区二区三卡| 亚洲精品久久久久久婷婷小说| 黄色怎么调成土黄色| 精品99又大又爽又粗少妇毛片| 99精国产麻豆久久婷婷| 国产精品免费大片| 欧美丝袜亚洲另类| 亚洲中文av在线| 女人精品久久久久毛片| 国产老妇伦熟女老妇高清| 亚洲精华国产精华液的使用体验| 制服诱惑二区| 午夜福利视频精品| 免费黄频网站在线观看国产| 交换朋友夫妻互换小说| 黑人欧美特级aaaaaa片| 99久久人妻综合| 中文字幕人妻丝袜制服| 色哟哟·www| 在线观看www视频免费| 久久精品人人爽人人爽视色| 国产男人的电影天堂91| 侵犯人妻中文字幕一二三四区| 欧美+日韩+精品| 精品一区二区三区四区五区乱码 | 成人亚洲精品一区在线观看| 色吧在线观看| 亚洲精品第二区| 国产在线免费精品| 亚洲一级一片aⅴ在线观看| 狂野欧美激情性bbbbbb| 精品人妻熟女毛片av久久网站| 国产成人91sexporn| 女性被躁到高潮视频| 国产精品人妻久久久久久| 婷婷色综合大香蕉| 午夜福利影视在线免费观看| 久久久欧美国产精品| 26uuu在线亚洲综合色| 亚洲欧美清纯卡通| 国产不卡av网站在线观看| 欧美bdsm另类| 春色校园在线视频观看| 国产淫语在线视频| 最近最新中文字幕大全免费视频 | 欧美变态另类bdsm刘玥| 全区人妻精品视频| 女人精品久久久久毛片| videossex国产| 国产成人aa在线观看| 蜜桃国产av成人99| 日本91视频免费播放| 人妻一区二区av| av.在线天堂| 欧美人与性动交α欧美精品济南到 | 天堂8中文在线网| 国产综合精华液| 国产亚洲精品久久久com| 建设人人有责人人尽责人人享有的| 乱码一卡2卡4卡精品| 免费大片黄手机在线观看| 男女免费视频国产| av福利片在线| 色视频在线一区二区三区| 久久久久网色| av线在线观看网站| 国产毛片在线视频| 亚洲美女视频黄频| 午夜福利视频精品| 在线观看一区二区三区激情| 亚洲av日韩在线播放| 国产男女内射视频| 下体分泌物呈黄色| kizo精华| 午夜av观看不卡| 色视频在线一区二区三区| 另类精品久久| 欧美激情国产日韩精品一区| 男人操女人黄网站| 日日爽夜夜爽网站| 黑人巨大精品欧美一区二区蜜桃 | av国产久精品久网站免费入址| 乱人伦中国视频| 九九在线视频观看精品| 成人国语在线视频| 五月天丁香电影| 两个人免费观看高清视频| 国产精品 国内视频| 搡老乐熟女国产| 亚洲精品456在线播放app| 高清视频免费观看一区二区| 国产一区二区三区av在线| 久久青草综合色| 18禁观看日本| 看免费成人av毛片| 亚洲色图 男人天堂 中文字幕 | 日本91视频免费播放| 你懂的网址亚洲精品在线观看| 少妇的丰满在线观看| 99久久精品国产国产毛片| 国产精品麻豆人妻色哟哟久久| 免费观看av网站的网址| 一本—道久久a久久精品蜜桃钙片| 国产精品嫩草影院av在线观看| 精品亚洲乱码少妇综合久久| 久久久久久久久久人人人人人人| 视频区图区小说| 亚洲成人手机| 日本免费在线观看一区| 亚洲熟女精品中文字幕| 国精品久久久久久国模美| 欧美成人精品欧美一级黄| www.av在线官网国产| 日本wwww免费看| 国产1区2区3区精品| 亚洲美女搞黄在线观看| 香蕉丝袜av| av又黄又爽大尺度在线免费看| 国产精品99久久99久久久不卡 | 精品少妇内射三级| 男人舔女人的私密视频| 久久久久久久久久人人人人人人| 国产成人91sexporn| 99九九在线精品视频| 日本91视频免费播放| 亚洲欧美精品自产自拍| 日韩av免费高清视频| 人妻少妇偷人精品九色| 亚洲三级黄色毛片| 国产精品 国内视频| 久久ye,这里只有精品| 下体分泌物呈黄色| 蜜桃在线观看..| 制服诱惑二区| 黄色毛片三级朝国网站| 伊人久久国产一区二区| 国产精品久久久久久久电影| 中文精品一卡2卡3卡4更新| 热99国产精品久久久久久7| 国产免费又黄又爽又色| 亚洲精品视频女| 啦啦啦中文免费视频观看日本| 日韩制服丝袜自拍偷拍| 99国产综合亚洲精品| 国产精品人妻久久久影院| 国产精品嫩草影院av在线观看| 成年动漫av网址| 精品人妻偷拍中文字幕| 搡老乐熟女国产| 飞空精品影院首页| 亚洲av电影在线进入| 国产精品国产三级国产av玫瑰| 久久久久网色| 久久毛片免费看一区二区三区| 如日韩欧美国产精品一区二区三区| 在线观看美女被高潮喷水网站| 三上悠亚av全集在线观看| 成人亚洲欧美一区二区av| av免费在线看不卡| 下体分泌物呈黄色| 热99久久久久精品小说推荐| 亚洲精品视频女| 欧美性感艳星| 青春草国产在线视频| 亚洲性久久影院| 国产一区二区在线观看日韩| 亚洲高清免费不卡视频| 男人舔女人的私密视频| 香蕉丝袜av| 色哟哟·www| 亚洲精品456在线播放app| 亚洲经典国产精华液单| 成人国语在线视频| 国产亚洲精品久久久com| 成年动漫av网址| 街头女战士在线观看网站| 免费观看无遮挡的男女| 十八禁高潮呻吟视频| 亚洲精品aⅴ在线观看| 亚洲情色 制服丝袜| 亚洲美女搞黄在线观看| 久久人妻熟女aⅴ| 97在线视频观看| 免费看av在线观看网站| 色94色欧美一区二区| 大码成人一级视频| 国产老妇伦熟女老妇高清| 男人舔女人的私密视频| 成人免费观看视频高清| 超色免费av| 在线观看国产h片| 国产精品蜜桃在线观看| 国产熟女欧美一区二区| 高清av免费在线| 晚上一个人看的免费电影| 国产有黄有色有爽视频| 青春草亚洲视频在线观看| 国产欧美日韩一区二区三区在线| 人体艺术视频欧美日本| av一本久久久久| 人妻系列 视频| 性高湖久久久久久久久免费观看| 777米奇影视久久| 亚洲成人一二三区av| 日韩熟女老妇一区二区性免费视频| 久久久国产一区二区| 蜜桃国产av成人99| 国产精品久久久久久久电影| 丰满乱子伦码专区| 亚洲精品中文字幕在线视频| 在线天堂最新版资源| 久久久精品94久久精品| 亚洲精品国产av蜜桃| 大话2 男鬼变身卡| 欧美性感艳星| 久久精品国产a三级三级三级| 人成视频在线观看免费观看| 色视频在线一区二区三区| 精品亚洲成a人片在线观看| 男女啪啪激烈高潮av片| av在线播放精品| 精品一区二区三卡| av.在线天堂| 黑人高潮一二区| 建设人人有责人人尽责人人享有的| 免费看光身美女| 大码成人一级视频| 亚洲成人一二三区av| 久久人妻熟女aⅴ| 国产日韩一区二区三区精品不卡| 18禁观看日本| 天天操日日干夜夜撸| 久久久久久久精品精品| 天天影视国产精品| 在线观看免费日韩欧美大片| av国产久精品久网站免费入址| 18禁国产床啪视频网站| 久久久久久伊人网av| 青青草视频在线视频观看| 亚洲精品中文字幕在线视频| 国产熟女欧美一区二区| 欧美性感艳星| 欧美日韩国产mv在线观看视频| 老女人水多毛片| 久久99蜜桃精品久久| 一级毛片我不卡| 久久av网站| 亚洲成国产人片在线观看| 超碰97精品在线观看| 国产免费现黄频在线看| 亚洲熟女精品中文字幕| 精品国产国语对白av| 伊人久久国产一区二区| 欧美激情极品国产一区二区三区 | 精品亚洲成国产av| 国产精品无大码| 国内精品宾馆在线| 十八禁网站网址无遮挡| 国产亚洲欧美精品永久| 婷婷色av中文字幕| 99精国产麻豆久久婷婷| 青春草亚洲视频在线观看| 欧美精品高潮呻吟av久久| 制服诱惑二区| 曰老女人黄片| 国产男女超爽视频在线观看| 中文字幕最新亚洲高清| 亚洲少妇的诱惑av| 1024视频免费在线观看| videossex国产| 亚洲精品一二三| 精品久久蜜臀av无| 久久久久久久大尺度免费视频| 欧美精品人与动牲交sv欧美| 卡戴珊不雅视频在线播放| 国产不卡av网站在线观看| www.色视频.com| 人妻系列 视频| 高清黄色对白视频在线免费看| 一二三四中文在线观看免费高清| 成年动漫av网址| 亚洲国产av影院在线观看| 99热6这里只有精品| 全区人妻精品视频| 精品少妇久久久久久888优播| 国产色爽女视频免费观看| 制服诱惑二区| 国产精品99久久99久久久不卡 | 日本欧美国产在线视频| 久久精品人人爽人人爽视色| 中国国产av一级| tube8黄色片| 国产精品一国产av| 曰老女人黄片| 色5月婷婷丁香| 精品午夜福利在线看| 男人舔女人的私密视频| 国产精品国产三级专区第一集| 高清欧美精品videossex| 伦理电影大哥的女人| 国产片内射在线| 午夜影院在线不卡| 成人国产麻豆网| 啦啦啦啦在线视频资源| 国产福利在线免费观看视频| 91精品伊人久久大香线蕉| 熟女av电影| 欧美另类一区| 成年女人在线观看亚洲视频| 桃花免费在线播放| 国产欧美日韩一区二区三区在线| av在线观看视频网站免费| 99热6这里只有精品| 天天操日日干夜夜撸| 亚洲av免费高清在线观看| 国产精品一区二区在线观看99| 日韩成人av中文字幕在线观看| 赤兔流量卡办理| 色哟哟·www| 日本欧美视频一区| 亚洲av.av天堂| 欧美日韩亚洲高清精品| 国产黄频视频在线观看| 久久久久国产精品人妻一区二区| 久久99一区二区三区| 午夜福利影视在线免费观看| 岛国毛片在线播放| 国产精品女同一区二区软件| 免费人成在线观看视频色| 中国三级夫妇交换| 熟妇人妻不卡中文字幕| 欧美日韩成人在线一区二区| 下体分泌物呈黄色| 亚洲成人av在线免费| 久久99热这里只频精品6学生| 亚洲精华国产精华液的使用体验| 2018国产大陆天天弄谢| 丝瓜视频免费看黄片| 激情视频va一区二区三区| 精品少妇黑人巨大在线播放| 亚洲欧洲精品一区二区精品久久久 | 久久狼人影院| 少妇的丰满在线观看| 久久久久久人妻| 亚洲天堂av无毛| 久久人人爽人人片av| 交换朋友夫妻互换小说| 亚洲欧美清纯卡通| 成人亚洲精品一区在线观看| 久久青草综合色| 国产成人一区二区在线| 欧美另类一区| 精品视频人人做人人爽| 亚洲av福利一区| 91成人精品电影| 日韩精品有码人妻一区| 欧美亚洲日本最大视频资源| 亚洲av中文av极速乱| 成年人午夜在线观看视频| 成年美女黄网站色视频大全免费| 99九九在线精品视频| 大香蕉久久网| 91在线精品国自产拍蜜月| 国产毛片在线视频| 成人18禁高潮啪啪吃奶动态图| 考比视频在线观看| 一级片'在线观看视频| 国产精品久久久av美女十八| 女人精品久久久久毛片| 男人舔女人的私密视频| 日本与韩国留学比较| 亚洲五月色婷婷综合| 一级片免费观看大全| av电影中文网址| 国产av精品麻豆| 国产免费一区二区三区四区乱码| 精品酒店卫生间| av在线播放精品| 看免费成人av毛片| 午夜免费鲁丝| 99re6热这里在线精品视频| 国产精品一区二区在线不卡| 热99久久久久精品小说推荐| www.熟女人妻精品国产 | 国产成人精品婷婷| 天天影视国产精品| 日韩中文字幕视频在线看片| 国产一区有黄有色的免费视频| 精品一区二区免费观看| 18禁动态无遮挡网站| 看非洲黑人一级黄片| 亚洲国产成人一精品久久久| 日产精品乱码卡一卡2卡三| 丝袜美足系列| 国产成人一区二区在线| 色哟哟·www| 美女视频免费永久观看网站| 午夜福利网站1000一区二区三区| 老司机亚洲免费影院| 日本黄大片高清| 久久人人爽人人片av| 国产精品 国内视频| 亚洲国产精品成人久久小说| 亚洲欧美一区二区三区黑人 | 欧美国产精品va在线观看不卡| 久久国产精品大桥未久av| 王馨瑶露胸无遮挡在线观看| 亚洲经典国产精华液单| 9191精品国产免费久久| 老司机影院毛片| 丰满少妇做爰视频| 插逼视频在线观看| 又黄又粗又硬又大视频| 你懂的网址亚洲精品在线观看| 欧美人与性动交α欧美软件 | 夜夜骑夜夜射夜夜干| 一级毛片黄色毛片免费观看视频| 国产在视频线精品| av.在线天堂| 在现免费观看毛片| 纵有疾风起免费观看全集完整版| av女优亚洲男人天堂| 天天躁夜夜躁狠狠久久av| 欧美xxxx性猛交bbbb| 交换朋友夫妻互换小说| 亚洲欧美一区二区三区国产| 欧美精品人与动牲交sv欧美| 51国产日韩欧美| 蜜臀久久99精品久久宅男| 黄网站色视频无遮挡免费观看| 日本与韩国留学比较| 亚洲精品456在线播放app| 26uuu在线亚洲综合色| 亚洲av在线观看美女高潮| 美女主播在线视频| 久久久久久久大尺度免费视频| 99热国产这里只有精品6| 伊人久久国产一区二区| 国产一区亚洲一区在线观看| 亚洲伊人色综图| 日日撸夜夜添| 欧美97在线视频| 激情五月婷婷亚洲| 人妻一区二区av| 高清不卡的av网站| 国产精品.久久久| 好男人视频免费观看在线| 黑丝袜美女国产一区| 亚洲欧美清纯卡通| av.在线天堂| 欧美日韩av久久| 国产极品天堂在线| 亚洲国产欧美日韩在线播放| 26uuu在线亚洲综合色| 日韩制服丝袜自拍偷拍| 日韩大片免费观看网站| 亚洲三级黄色毛片| av天堂久久9| 黄色配什么色好看| 9191精品国产免费久久| 免费女性裸体啪啪无遮挡网站| 成年人午夜在线观看视频| 91午夜精品亚洲一区二区三区| 久久久精品区二区三区| 久久久久精品久久久久真实原创| 国产在线一区二区三区精| 日韩中文字幕视频在线看片| 久久精品aⅴ一区二区三区四区 | 免费播放大片免费观看视频在线观看| 亚洲少妇的诱惑av| 日韩av免费高清视频| a级片在线免费高清观看视频| 天堂8中文在线网| 亚洲经典国产精华液单| 中文字幕精品免费在线观看视频 | 在线 av 中文字幕| 亚洲精品日韩在线中文字幕| 香蕉精品网在线| 成人国产av品久久久| 国产精品一区二区在线观看99| 婷婷色综合www| 交换朋友夫妻互换小说| 啦啦啦啦在线视频资源| 亚洲综合色惰| 日韩欧美一区视频在线观看| 亚洲情色 制服丝袜| av有码第一页| 国产精品嫩草影院av在线观看|