• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalised tanh-shaped hyperbolic potential: Klein-Gordon equation’s bound state solution

    2023-09-28 06:21:30BadalovandBadalov
    Communications in Theoretical Physics 2023年7期
    關鍵詞:實際收入年終獎金養(yǎng)老保險費

    V H Badalovand S V Badalov

    1 Institute for Physical Problems,Baku State University,1148 Baku,Azerbaijan

    2 Theoretical Materials Physics,Paderborn University,D-33098 Paderborn,Germany

    3 Theoretical Physics VII,University of Bayreuth,D-95440 Bayreuth,Germany

    Abstract

    The development of potential theory heightens the understanding of fundamental interactions in quantum systems.In this paper,the bound state solution of the modified radial Klein-Gordon equation is presented for generalised tanh-shaped hyperbolic potential from the Nikiforov-Uvarov method.The resulting energy eigenvalues and corresponding radial wave functions are expressed in terms of the Jacobi polynomials for arbitrary l states.It is also demonstrated that energy eigenvalues strongly correlate with potential parameters for quantum states.Considering particular cases,the generalised tanh-shaped hyperbolic potential and its derived energy eigenvalues exhibit good agreement with the reported findings.Furthermore,the rovibrational energies are calculated for three representative diatomic molecules,namely H2,HCl and O2.The lowest excitation energies are in perfect agreement with experimental results.Overall,the potential model is displayed to be a viable candidate for concurrently prescribing numerous quantum systems.

    Supplementary material for this article is available online

    Keywords: Klein-Gordon equation,hyperbolic potential,Nikiforov-Uvarov method,diatomic molecules

    1.Introduction

    Following quantum mechanics’ genesis,the study of precisely solvable problems plays a critical role in comprehending the underlying quantum-mechanical systems [1-3].Analytical solutions of the Schr?dinger,Klein-Gordon(KG),and Dirac equations are of particular importance in quantum mechanics because the wave function contains all the information necessary for a complete description of a particle’s behaviour in a force field [3-8].

    In any n radial and l orbital quantum states,a limited number of physical potentials can be solved exactly for the Schr?dinger,KG,and Dirac equations[2,3].Generally,many quantum systems can only be solved numerically or through approximation techniques [7-9].Therefore,several methods including the supersymmetry method [10],the factorisation method [3],the Laplace transform approach [11],the path integral method [12],the Nikiforov-Uvarov (NU) method[13],asymptotic iteration method [14,15] and the quantisation rule method [16-18] have been developed so far and they have been applied for the solution of the quantum wave equation.The NU method yields more practicality to solve second-order differential equations by transforming them into hypergeometric-type equations.Furthermore,the various exponential and hyperbolic potentials are analytically solved by using different approximation schemes with the NU method.

    In principle,the exponential potential models always draw considerable attention and are widely used in various physical systems,including quantum cosmology,nuclear physics,molecular physics,elementary particle physics,and condensed matter physics [19-29].Up to now,many exponential-type potentials,including the Morse[30,31],Hulthén[32-38],Woods-Saxon [27,39-43],Rosen-Morse [44-48],Eckart-type [49-51],Manning-Rosen [52-54],Deng-Fan[55,56],P?schl-Teller like [57],Mathieu [58],sine-type hyperbolic [59] and Schi?berg [60-63] potentials have been investigated,and some analytical bound state solutions were obtained using an approximation for these models in l ≠0 state.Some known exponential potentials can also be transformed into a hyperbolic potential model,which can help understand quantum systems’ natural dynamics [64-76].For instance,the thermodynamic properties of some molecules have been successfully predicted using the improved Rosen-Morse potential and the Fu-Wang-Jia potential to describe the internal vibrations of molecules [77-82].

    Motivated by the simplicity and applicability of the generalisations of the hyperbolic potentials,the generalised tanh-shaped hyperbolic potential (GTHP) [83] was recently proposed as follows:

    where V1,V2,V3are the depths of potential well and α is the adjustable parameter representing the properties of the interaction potential.For clarity about potential,see also the S2 section4.GTHP is the general case of the significant physical potential such as the standard and generalised Woods-Saxon[39,42],Rosen-Morse [44],Manning-Rosen type,generalised and standard Morse[30],Schi?berg[60],four-parametric exponential-type [67-69],Williams-Poulios potential[84,85],and the sum of the linear and harmonic oscillator potentials,see S2 section in4See supplementary material,which includes[29,56,and 63],for additional details of potential information and theoretical derivations..As it seems,GTHP’s characteristics can be used to explain the interactions of molecular,atomic,and nuclear particles.

    In this study,we extend our study of GTHP by considering it in the KG equation.We apply the NU method to analytically solve KG and obtain the bound state for this potential,and we compare the results with the previously reported ones in particular cases.Then,the potential is modelled for several diatomic molecules,and the obtained results are in good agreement with experimental ones.This study allows us to correctly explain a broad variety of quantum systems’ characteristics and behaviour,including retardation effects,without needing a great deal of complex derivation or massive computing resources.The remainder of this study covers the following sections: the bound-state solution of the radial KG equation is presented in section 2.In section 3,we explore the results for energy levels and the corresponding normalised eigenfunctions in some special cases and diatomic molecules.Finally,some concluding remarks are stated in section 4.

    2.Bound state solutions

    The time-independent KG equation with scalar and vector potentials S(r)and V(r)a spin-zero particles takes the general form: [2]

    where E is the relativistic energy system an M denotes the rest mass of the particle.To denote the radial and angular components of the wave function ψnlm(r,θ,φ),the concept of variable separation is defined as:

    and substituting it into equation (2),the modified radial KG equation is obtained as follows:

    After choosing of equal scalar and vector potentials,that is,S(r)=V(r),equation (4) becomes in the following form:

    Considering the expression of 2V(r) equal as equation (1),that is

    It should be noted that this choice the potential enables us to reduce the resulting relativistic states to their non-relativistic limit under appropriate transformations.Therefore,we obtain it as:

    This equation cannot be solved analytically for l ≠0 due to the centrifugal term.Therefore,the Pekeris approximation[40-42,83,86]which is the most widely used and convenient for our purposes can be taken to solve this equation.According to the Pekeris approximation scheme to deal with the centrifugal term is used [83]

    where the parameters A0,A1and A2were found as: [83]

    After inserting the equation (8) into equation (7),and further using a new variabletanh(αr)=s,s ?[0,1],we obtain it as:

    where

    with the boundary conditions χ(0)=0 and χ(1)=0.Now for implementing the NU method,equation (10) should be rewritten as the hypergeometric type equation form as:

    After comparing equation (10) and equation (12),we obtain:

    The new function π(s) as given in [13] can be obtained by substituting equation(13)and takingσ′ (s)=-2s.Hence,the function π(s) is defined as:

    The value of the constant parameter k can be calculated by performing the condition that the discriminant of the expression equation (14) under the square root is equal to zero.Hence,we obtain it as:

    where

    with D>P,2DP=|β|,D2+P2=ε+γ.When the individual values of k are given in equation(15)are substituted into equation (14),the eight possible forms of π(s) are written in the following forms:

    Even π(s) have eight different values,but according to NU method,we select only one of them such that the functionτ(s)=(s)+2π(s) has the negative derivative and a root on the interval (0,1),that is,τ′ (s)<0and τ(s)=0,s ?(0,1).Noticing that the other forms have no physical meaning,we will take:

    After using the following relations:λ=k+π′(s) and(n=0,1,2,….)[13],we obtain λ as:

    and

    where n is the radial quantum number (n=0,1,2,….).After comparing equation (19) with equation (20),we obtain the following relation:

    where

    By inserting the expression D into equation(21)we obtain

    After inserting the equations (11) and (22) into equation (23)for energy level equation,we obtain it as:

    根據(jù)我國個人所得稅征收的相關規(guī)定,對員工所得按當月收入(年終獎金單獨計算稅率)扣去免征額、養(yǎng)老保險費、醫(yī)療保險費、失業(yè)保險費和公積金等,以剩下的應稅工資實行九級累進稅率計算個人所得稅。所以,企業(yè)完全可以通過幾種方法來減少員工的個稅繳納,同時又不降低員工的實際收入。

    By applying the NU method,we can obtain the radial eigenfunctions.After substituting π(s) and σ(s) intosolving the order differential equation,one can find the finite function Φ(s)and ρ(s)in the interval (0,1) it is easily obtained:

    According to the relation χ(s)=Φ(s)y(s) [13],we obtain the radial wave functions as:

    where Cnlis the normalisation constant.By using the normalisation condition,we obtain Cnlas:

    where F(a,b;c;z) is the hypergeometric function.

    3.Results and discussion

    3.1.Particular cases

    In this part,we discuss the results by investigating the expression of analytically obtained energy level equation (24) for this potential based on some special cases:

    (i)By choosing the parameters of GTHP aswe obtain the energy spectrum equation of the generalised Woods-Saxon potential:

    (ii) By considering W=0 and xe=0 in equation (29),we obtain the energy spectrum equation for the standard Woods-Saxon potential,as follows:

    Here,C0=A0+A1+A2=[40,41],whereα=

    (iii) By taking the parameters of GTHP as V3=-V1=C and V2=B,the energy spectrum equation of the Rosen-Morse potential is obtained as:

    From the above expression,when l=0,the energy spectrum is in good agreement with the result in [46,47]

    (iv) By taking the parameters of GTHP asand 2α=we obtain the energy spectrum equation of the Manning-Rosen-type potential as follows:

    (v) By choosing the parameters of GTHP asandb=eδre+1,we obtain the following energy spectrum equation for the improved Rosen-Morse potential (the generalised Morse-type potential):

    From the above expression,we obtain the same expression equation (42) of [70] with a0=A0+A1+A2,a1=-2(A1+2A2),a2=4A2andeαre+1=b.

    And finally,from the expression equation (35),when considering l=0,we get the same expression as in [56]:

    (vi)By choosing the parameters of GTHP V1=δ2D,V2=-2δσD and V3=σ2D,we obtain the energy spectrum equation for the Schi?berg potential,as follows:

    Here

    From the expression equation(37),we obtain the same expression equation(42)of[70]with a0=C0,a1=-C1,a2=C2,De=D(δ-σ)2andeαre+1=

    (vii)By taking the parameters of GTHPV1=for energy spectrum equation of the four-parameter exponential-type potential,we have

    (viii) By choosing the parameters of GTHPwe obtain the energy spectrum equation for the Williams-Poulios-type potential as follows:

    Table 1.Spectroscopic molecular parameters for H2,HCl,O2 diatomic molecules.

    (ix) When α is chosen as much smaller than one,the allowed values of the energy level equation of the equation (24) are defined as follows:

    for small values of n and l.

    Finally,using the following transformations E-Mc2→Enland E+Mc2→2μc2,we obtain the energy level equation of equation(24)for the non-relativistic case,as follows:

    and this result are same as the result obtained in[83].When α is much smaller than unity then the allowed values of the energy spectrum become

    for small values of n and l,whereis the classical frequency of oscillation about the minimum point,r=re.Here,the first termis the minimum value of GTHP; the second term is the energy levels of the harmonic oscillator; the third term is the energy levels of rotational energy corresponding to a fixed distance between atoms and the fourth term is the energy levels of anharmonic correction.

    3.2.The bound state energy eigenvalues and lowest excitation in diatomic molecules

    Spectroscopic parameters of the diatomic molecules H2,HCl and O2are given in table 1,which are taken from[88,89].Based on the experimental values such as the dissociation energy De,the equilibrium bond length re,and the equilibrium vibrational frequency νe,the potential parameters V1,V2,V3and the screening parameter α can be defined by using the expressions (S19),(S20),(S24),and(S28) in4.

    By using these parameters,we present the potential energy curves calculated for H2,HCl,O2diatomic molecules,see figure 1.Further,we can easily calculate the bound state energy eigenvalues for the diatomic molecules H2,HCl,O2at n and l quantum states by using theexpressions of the Schr?dinger molecule andEnbl=EnRl-Mc2expression of the binding energies KG molecule [2],see table 2.The obtained eigenvalues of the HCl diatomic molecule are in good agreement with experimentally reported values in [90].

    While we compare the lowest excitation energies for diatomic molecules,the obtained results are in perfect agreement with the sophisticated high-resolution measurements,see table 3.Although the six parameters Lennard-Jones potential model is a little bit more accurate than GTHP,the fact that GTHP has four parameters is a great advantage for easier modelling of physical systems.Generally,the obtained results allow one to tune and optime the potential concerning its desired properties in atomic,molecular,chemical,condensed matter and high energy physics applications.

    4.Concluding remarks

    In this study,we proposed a new potential model,which holds numerous important physical potentials.Next,the bound state solution of the radial KG equation with this potential is examined analytically within the framework of the NU method.It is also presented that the energy eigenvalues are sensitively associated with potential parameters for quantum states.GTHP and its obtained energy eigenvalues are in remarkable overlap with the reported results in some cases,so this potential model is a desirable candidate for displaying multiple quantum systems concurrently.For more specific cases,GTHP was used to study for modelling several diatomic molecules,and the study showed that the good agreement between the lowest rotational ΔE(l)and vibrational ΔE(n) excitation energies and the experimental of H2,HCland O2diatomic molecules.In view of the simplicity and accuracy,our work provides additional physical insights about the systems and sheds some light on this potential’s representative power.

    Figure 1.Potential energy curves of the diatomic molecules H2,HCl and O2 as a function of the interatomic distance.

    Table 2.The bound state energy eigenvalues of the Schr?dinger molecule and=EnRl-Mc2 of the Klein-Gordon molecule in the GTHP calculated using equation (42) and equation (24) for several n and l,respectively.

    Table 2.The bound state energy eigenvalues of the Schr?dinger molecule and=EnRl-Mc2 of the Klein-Gordon molecule in the GTHP calculated using equation (42) and equation (24) for several n and l,respectively.

    nlE,Hnlb(2)(cm-1)(cm-1)(cm-1)(cm-1)(cm-1)(cm-1)0 02163.332 4792163.332 4771480.444 7711480.444 675786.437 8165 786.437 6894 1 06327.103 4626327.103 4104359.482 3814359.482 3412338.054 436 2338.054 024 1 16444.845 6866444.845 6344379.847 3474379.847 3372340.894 357 2340.894 427 2 0 10 252.927 23 10 252.927 267125.499 7167125.499 6493860.922 397 3860.922 186 2 1 10 367.885 83 10 367.885 907145.313 3577145.313 2153863.729 451 3863.729 320 2 2 10 596.757 12 10 596.757 287184.927 8967184.927 7143869.343 429 3869.344 512 3 0 13 934.324 20 13 934.324 179777.517 9029777.517 9345354.985 484 5354.985 616 3 1 14 046.229 51 14 046.229 529796.773 8729796.773 8645357.759 581 5357.759 412 3 2 14 269.024 31 14 269.024 479835.273 3369835.273 1665363.306 888 5363.307 911 3 3 14 600.720 22 14 600.720 319892.991 0229892.990 9415371.629 453 5371.630 377 4 0 17 364.449 80 17 364.449 77 12 314.543 22 12 314.543 18 6820.187 243 6820.187 560 4 1 17 473.029 85 17 473.029 83 12 333.235 31 12 333.235 23 6822.927 545 6822.927 953 4 2 17 689.208 23 17 689.208 38 12 370.607 07 12 370.606 85 6828.408 793 6828.409 623 4 3 18 011.064 17 18 011.064 30 12 426.633 34 12 426.633 29 6836.630 730 6836.631 845 4 4 18 435.819 49 18 435.819 57 12 501.277 34 12 501.277 24 6847.592 259 6847.593 247 5 0 20 536.070 41 20 536.070 39 14 735.565 70 14 735.565 70 8256.471 021 8256.471 069 5 1 20 641.051 30 20 641.051 28 14 753.687 76 14 753.687 60 8259.177 484 8259.177 992 5 2 20 850.069 73 20 850.069 82 14 789.919 18 14 789.918 98 8264.591 767 8264.592 703 5 3 21 161.280 64 21 161.280 76 14 844.235 14 14 844.235 24 8272.713 618 8272.714 473 5 4 21 572.017 81 21 572.017 97 14 916.599 24 14 916.599 34 8283.541 215 8283.541 974 5 5 22 078.906 37 22 078.906 53 15 006.962 14 15 006.962 07 8297.076 277 8297.076 196 6 0 23 441.536 12 23 441.536 08 17 039.560 05 17 039.559 91 9663.779 212 9663.779 010 6 1 23 542.642 61 23 542.642 54 17 057.105 39 17 057.105 32 9666.452 501 9666.452 396 6 2 23 743.954 74 23 743.954 88 17 092.184 01 17 092.183 82 9671.798 959 9671.800 000 6 3 24 043.712 12 24 043.712 23 17 144.770 88 17 144.770 97 9679.820 497 9679.821 126 6 4 24 439.372 71 24 439.372 81 17 214.829 91 17 214.829 95 9690.513 889 9690.514 445 6 5 24 927.723 10 24 927.723 19 17 302.311 92 17 302.311 89 9703.880 795 9703.880 933 6 6 25 505.011 24 25 505.011 31 17 407.155 87 17 407.155 76 9719.918 459 9719.919 524 nlNR(2)E,H nlb(2)E,HCl nlNR ()E,HCl nlb ()E,O nlNR(2)E,O

    Table 3.The lowest rotational ΔE(l) and vibrational ΔE(n) excitation energies,all values in cm-1.

    Acknowledgments

    We thank Wolf Gero Schmidt for his valuable intellectual comments and discussion.

    ORCID iDs

    猜你喜歡
    實際收入年終獎金養(yǎng)老保險費
    個人所得稅專項附加扣除能否促進居民消費*
    大數(shù)據(jù)
    如何解決不同身份的重復參保問題
    長效機制或從根本上鏟除炒房風
    大眾集團員工年終獎金大縮水
    汽車生活(2015年12期)2015-12-22 17:27:47
    2014年事業(yè)單位養(yǎng)老保險費征繳新政策及問題的探討
    貴州省消費結(jié)構(gòu)與擴大內(nèi)需分析
    商(2015年25期)2015-05-30 03:34:05
    年終考核制度是否具有激勵作用
    財會通訊(2015年5期)2015-01-01 05:00:03
    養(yǎng)老保險繳費基數(shù)可以下調(diào)嗎
    人力資源(2014年6期)2014-07-31 01:04:56
    最新中文字幕久久久久| 国产精品99久久久久久久久| 亚洲无线观看免费| 一进一出抽搐gif免费好疼| 国产一区二区在线观看日韩| 男女之事视频高清在线观看| 亚洲精品456在线播放app | 啦啦啦韩国在线观看视频| 国产精品98久久久久久宅男小说| 亚洲美女视频黄频| 久久久久久久精品吃奶| 欧美高清性xxxxhd video| 色综合婷婷激情| 永久网站在线| 亚洲av免费在线观看| 男女视频在线观看网站免费| 成熟少妇高潮喷水视频| 在线观看舔阴道视频| 亚洲成人久久性| 欧美黑人欧美精品刺激| 欧美成人一区二区免费高清观看| 亚洲avbb在线观看| 一个人看的www免费观看视频| 无遮挡黄片免费观看| 嫩草影院精品99| 亚洲成人久久爱视频| 免费在线观看日本一区| 91字幕亚洲| 美女黄网站色视频| 1024手机看黄色片| 中文字幕高清在线视频| 婷婷精品国产亚洲av在线| 麻豆国产97在线/欧美| 欧美成狂野欧美在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 变态另类丝袜制服| av女优亚洲男人天堂| 国产在线精品亚洲第一网站| 悠悠久久av| 精品午夜福利在线看| 一本久久中文字幕| 又爽又黄a免费视频| 伦理电影大哥的女人| 美女大奶头视频| 国产精品爽爽va在线观看网站| 久99久视频精品免费| 国产探花在线观看一区二区| 男人舔奶头视频| 欧美一区二区国产精品久久精品| 成年免费大片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 色在线成人网| 夜夜爽天天搞| 亚洲人成网站高清观看| 久久精品91蜜桃| 久久中文看片网| 俺也久久电影网| 真实男女啪啪啪动态图| 成人国产一区最新在线观看| 午夜福利免费观看在线| 亚洲av第一区精品v没综合| 看免费av毛片| 日本一本二区三区精品| av福利片在线观看| 97超视频在线观看视频| 国产美女午夜福利| 国产伦一二天堂av在线观看| 亚洲成人精品中文字幕电影| 一级毛片久久久久久久久女| 精品日产1卡2卡| 日韩精品中文字幕看吧| 国产精品免费一区二区三区在线| 亚洲av免费高清在线观看| 国产高清三级在线| 午夜福利高清视频| 噜噜噜噜噜久久久久久91| 很黄的视频免费| 91九色精品人成在线观看| 午夜影院日韩av| 一个人免费在线观看电影| 中出人妻视频一区二区| 麻豆成人av在线观看| 免费电影在线观看免费观看| 一进一出抽搐动态| 一个人看视频在线观看www免费| 美女大奶头视频| 91久久精品国产一区二区成人| 蜜桃久久精品国产亚洲av| 欧美精品啪啪一区二区三区| 国产一区二区三区视频了| 好看av亚洲va欧美ⅴa在| 国产精品美女特级片免费视频播放器| 欧美xxxx性猛交bbbb| 天堂av国产一区二区熟女人妻| 好男人电影高清在线观看| 欧美性猛交黑人性爽| x7x7x7水蜜桃| 免费看光身美女| 少妇丰满av| 欧美xxxx黑人xx丫x性爽| 直男gayav资源| 熟女电影av网| 国产三级黄色录像| 日本撒尿小便嘘嘘汇集6| 一本综合久久免费| avwww免费| 18禁裸乳无遮挡免费网站照片| 久久久久久久亚洲中文字幕 | 日韩高清综合在线| 窝窝影院91人妻| 亚洲av成人不卡在线观看播放网| 女人十人毛片免费观看3o分钟| 成人亚洲精品av一区二区| h日本视频在线播放| 久久亚洲精品不卡| 久久久久久大精品| 精品一区二区免费观看| 欧美日韩国产亚洲二区| 国产精品一区二区三区四区免费观看 | 麻豆久久精品国产亚洲av| 热99在线观看视频| 麻豆国产97在线/欧美| 欧美成人一区二区免费高清观看| 麻豆av噜噜一区二区三区| 成人欧美大片| 一级黄色大片毛片| 97人妻精品一区二区三区麻豆| 床上黄色一级片| 俺也久久电影网| 别揉我奶头 嗯啊视频| 国产精品99久久久久久久久| 亚洲专区中文字幕在线| 国产国拍精品亚洲av在线观看| 亚洲成人久久爱视频| 91狼人影院| 国产一区二区在线观看日韩| av女优亚洲男人天堂| 国产精品不卡视频一区二区 | 男女那种视频在线观看| 村上凉子中文字幕在线| 给我免费播放毛片高清在线观看| 亚洲中文日韩欧美视频| 精品人妻1区二区| 久久婷婷人人爽人人干人人爱| 成人永久免费在线观看视频| 久久久久久久久久成人| 国产精品亚洲一级av第二区| 搡老岳熟女国产| 久久精品综合一区二区三区| a在线观看视频网站| 十八禁国产超污无遮挡网站| 麻豆成人av在线观看| 99热只有精品国产| 一夜夜www| 女人被狂操c到高潮| 国产精品国产高清国产av| 亚洲av成人不卡在线观看播放网| 亚洲最大成人av| 国产中年淑女户外野战色| 精品国内亚洲2022精品成人| 国产精品98久久久久久宅男小说| 三级国产精品欧美在线观看| 午夜福利在线观看免费完整高清在 | 免费看美女性在线毛片视频| 亚洲av成人精品一区久久| 日韩人妻高清精品专区| 嫩草影院新地址| 中文在线观看免费www的网站| 1000部很黄的大片| 一个人观看的视频www高清免费观看| 真实男女啪啪啪动态图| 欧美日本亚洲视频在线播放| 亚洲欧美清纯卡通| 成人精品一区二区免费| 国产精品久久久久久精品电影| av女优亚洲男人天堂| 老司机深夜福利视频在线观看| 一进一出好大好爽视频| 最新在线观看一区二区三区| 小说图片视频综合网站| 少妇裸体淫交视频免费看高清| 又爽又黄a免费视频| 特大巨黑吊av在线直播| 亚洲第一区二区三区不卡| 久久久精品欧美日韩精品| 很黄的视频免费| 91麻豆av在线| 舔av片在线| 免费看光身美女| 亚洲人成电影免费在线| 别揉我奶头 嗯啊视频| 在线观看舔阴道视频| 亚洲第一区二区三区不卡| 香蕉av资源在线| 欧美xxxx黑人xx丫x性爽| 内地一区二区视频在线| 免费无遮挡裸体视频| 五月玫瑰六月丁香| 中出人妻视频一区二区| 亚洲精品亚洲一区二区| 青草久久国产| 亚洲av五月六月丁香网| 欧美性感艳星| 国产探花在线观看一区二区| eeuss影院久久| 亚洲欧美日韩高清专用| av天堂中文字幕网| 淫秽高清视频在线观看| 夜夜躁狠狠躁天天躁| 久久国产乱子免费精品| 美女 人体艺术 gogo| 亚洲经典国产精华液单 | 欧美最黄视频在线播放免费| av欧美777| 青草久久国产| 亚洲在线观看片| 午夜久久久久精精品| 欧美极品一区二区三区四区| 看黄色毛片网站| 一进一出抽搐gif免费好疼| 久久久久久国产a免费观看| 一级作爱视频免费观看| 可以在线观看毛片的网站| 国产高清视频在线播放一区| 亚洲黑人精品在线| 色5月婷婷丁香| 国产精品,欧美在线| 夜夜夜夜夜久久久久| 国产精品久久久久久久电影| 丝袜美腿在线中文| 国产伦一二天堂av在线观看| 色综合站精品国产| 尤物成人国产欧美一区二区三区| 亚洲乱码一区二区免费版| 青草久久国产| 三级男女做爰猛烈吃奶摸视频| 九九热线精品视视频播放| 亚洲国产精品久久男人天堂| 村上凉子中文字幕在线| 午夜激情欧美在线| av在线蜜桃| 亚洲欧美日韩卡通动漫| 国产成+人综合+亚洲专区| 亚洲熟妇中文字幕五十中出| 级片在线观看| 少妇丰满av| 男插女下体视频免费在线播放| 日日夜夜操网爽| 高清在线国产一区| 桃色一区二区三区在线观看| 国产欧美日韩精品一区二区| 1000部很黄的大片| 成年女人永久免费观看视频| 国产视频内射| 国产精品一区二区三区四区免费观看 | www.熟女人妻精品国产| 日韩中字成人| 美女高潮的动态| 国产一区二区三区视频了| 亚洲国产精品成人综合色| 少妇的逼水好多| 免费电影在线观看免费观看| 亚洲精品乱码久久久v下载方式| 国产三级中文精品| 别揉我奶头~嗯~啊~动态视频| 一个人看的www免费观看视频| 乱人视频在线观看| 看免费av毛片| 亚州av有码| 内地一区二区视频在线| 亚洲国产精品999在线| 亚洲国产色片| 亚洲av二区三区四区| 淫秽高清视频在线观看| 天堂网av新在线| 婷婷六月久久综合丁香| 欧美另类亚洲清纯唯美| 午夜免费成人在线视频| 一级作爱视频免费观看| 人妻夜夜爽99麻豆av| 久久天躁狠狠躁夜夜2o2o| 欧美激情国产日韩精品一区| 淫秽高清视频在线观看| 啦啦啦观看免费观看视频高清| 草草在线视频免费看| 亚洲一区高清亚洲精品| 人人妻人人澡欧美一区二区| 非洲黑人性xxxx精品又粗又长| 成年女人看的毛片在线观看| 免费搜索国产男女视频| 久久久久国产精品人妻aⅴ院| 亚洲av电影在线进入| 国产成人a区在线观看| 3wmmmm亚洲av在线观看| 婷婷丁香在线五月| 神马国产精品三级电影在线观看| 好男人在线观看高清免费视频| 欧美日韩瑟瑟在线播放| 一区福利在线观看| 亚洲五月天丁香| 真实男女啪啪啪动态图| 亚洲 国产 在线| 男女之事视频高清在线观看| 又爽又黄a免费视频| 中文字幕av成人在线电影| 老鸭窝网址在线观看| 亚洲一区二区三区色噜噜| 18禁在线播放成人免费| 91九色精品人成在线观看| 有码 亚洲区| 亚洲av成人精品一区久久| 日韩欧美一区二区三区在线观看| 日本三级黄在线观看| 91av网一区二区| aaaaa片日本免费| 91久久精品电影网| 免费观看的影片在线观看| av福利片在线观看| 一区二区三区免费毛片| 亚洲精品一卡2卡三卡4卡5卡| 一个人免费在线观看电影| 9191精品国产免费久久| 嫩草影院精品99| 亚洲av中文字字幕乱码综合| 九色成人免费人妻av| 十八禁国产超污无遮挡网站| 国产成年人精品一区二区| 中文字幕人妻熟人妻熟丝袜美| www日本黄色视频网| 国产69精品久久久久777片| 97碰自拍视频| 99热6这里只有精品| 国产精品综合久久久久久久免费| 一级作爱视频免费观看| 亚洲专区中文字幕在线| 在线免费观看不下载黄p国产 | 国产黄a三级三级三级人| 精品国产亚洲在线| 欧美成狂野欧美在线观看| 国产精品国产高清国产av| 长腿黑丝高跟| 中亚洲国语对白在线视频| 最近中文字幕高清免费大全6 | 90打野战视频偷拍视频| 一级黄片播放器| 伦理电影大哥的女人| 国产国拍精品亚洲av在线观看| 国产精品久久久久久久久免 | 99在线人妻在线中文字幕| 欧美日韩亚洲国产一区二区在线观看| 一a级毛片在线观看| 精品午夜福利视频在线观看一区| eeuss影院久久| 如何舔出高潮| 国产不卡一卡二| 老司机福利观看| 97人妻精品一区二区三区麻豆| 欧美丝袜亚洲另类 | 久久精品综合一区二区三区| 日韩欧美在线乱码| 深爱激情五月婷婷| 午夜精品一区二区三区免费看| 欧美日本亚洲视频在线播放| 嫁个100分男人电影在线观看| 9191精品国产免费久久| 丰满的人妻完整版| 久久久久性生活片| 99视频精品全部免费 在线| 日本免费a在线| 亚洲成av人片在线播放无| 久久久久久大精品| 国产成+人综合+亚洲专区| 九九热线精品视视频播放| 男女那种视频在线观看| 变态另类丝袜制服| 18+在线观看网站| 午夜福利免费观看在线| 亚洲无线观看免费| 日日干狠狠操夜夜爽| 欧美日韩国产亚洲二区| 哪里可以看免费的av片| 国产淫片久久久久久久久 | 亚洲人与动物交配视频| 国产在线男女| 国产蜜桃级精品一区二区三区| x7x7x7水蜜桃| 在线天堂最新版资源| 国产黄色小视频在线观看| 免费在线观看日本一区| 国产精品免费一区二区三区在线| 中文字幕久久专区| 国产精品爽爽va在线观看网站| 国产精品不卡视频一区二区 | 在线观看免费视频日本深夜| 青草久久国产| 中文字幕av成人在线电影| 在线免费观看不下载黄p国产 | 少妇裸体淫交视频免费看高清| 内射极品少妇av片p| 天美传媒精品一区二区| 日韩国内少妇激情av| av视频在线观看入口| 网址你懂的国产日韩在线| 18美女黄网站色大片免费观看| 又紧又爽又黄一区二区| 欧美色视频一区免费| 成人毛片a级毛片在线播放| 青草久久国产| 波野结衣二区三区在线| 国产伦精品一区二区三区视频9| 国产高清视频在线播放一区| 一个人免费在线观看的高清视频| 亚洲精品456在线播放app | 成人特级黄色片久久久久久久| 偷拍熟女少妇极品色| 怎么达到女性高潮| 久久久久久久久大av| 97超级碰碰碰精品色视频在线观看| 2021天堂中文幕一二区在线观| 成年女人毛片免费观看观看9| 男人舔女人下体高潮全视频| 九色国产91popny在线| 天堂动漫精品| 中文字幕高清在线视频| а√天堂www在线а√下载| 亚洲经典国产精华液单 | 此物有八面人人有两片| 国产v大片淫在线免费观看| 男人舔女人下体高潮全视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 中出人妻视频一区二区| 他把我摸到了高潮在线观看| 欧美潮喷喷水| 我要搜黄色片| 麻豆成人av在线观看| www.www免费av| 国产黄片美女视频| 中文字幕熟女人妻在线| 九色国产91popny在线| 亚洲综合色惰| 成人一区二区视频在线观看| 我要看日韩黄色一级片| 亚洲国产精品合色在线| 一级av片app| 亚洲国产精品999在线| 色视频www国产| 欧美bdsm另类| 又黄又爽又刺激的免费视频.| 哪里可以看免费的av片| 亚洲,欧美,日韩| 男女视频在线观看网站免费| 亚洲一区二区三区色噜噜| 很黄的视频免费| www日本黄色视频网| 午夜久久久久精精品| 床上黄色一级片| 色5月婷婷丁香| 国产精品久久久久久人妻精品电影| 小说图片视频综合网站| 日韩有码中文字幕| av国产免费在线观看| 国产在视频线在精品| 免费高清视频大片| 一本综合久久免费| 日韩欧美精品免费久久 | 婷婷丁香在线五月| 亚州av有码| 日韩欧美在线乱码| 欧美黑人巨大hd| 国产精品一区二区性色av| 日本撒尿小便嘘嘘汇集6| www日本黄色视频网| 午夜久久久久精精品| 国产三级黄色录像| 黄色配什么色好看| 国产亚洲精品久久久com| 91午夜精品亚洲一区二区三区 | 婷婷亚洲欧美| 久9热在线精品视频| 人人妻人人澡欧美一区二区| 久久久久精品国产欧美久久久| 国产成人福利小说| 在线十欧美十亚洲十日本专区| 高清毛片免费观看视频网站| 99国产极品粉嫩在线观看| 中文字幕免费在线视频6| 男女床上黄色一级片免费看| netflix在线观看网站| 亚洲国产精品成人综合色| 身体一侧抽搐| 久久精品国产99精品国产亚洲性色| 免费av毛片视频| 国产激情偷乱视频一区二区| av视频在线观看入口| 999久久久精品免费观看国产| xxxwww97欧美| 丰满的人妻完整版| 午夜日韩欧美国产| 国产精品久久视频播放| 麻豆久久精品国产亚洲av| 午夜精品久久久久久毛片777| 亚洲中文字幕一区二区三区有码在线看| 欧美乱妇无乱码| 午夜福利高清视频| 三级毛片av免费| 国产精品久久久久久亚洲av鲁大| 在线免费观看不下载黄p国产 | 色综合亚洲欧美另类图片| 中国美女看黄片| 身体一侧抽搐| 99久国产av精品| 日本精品一区二区三区蜜桃| 久久久久久久久久成人| 国产亚洲av嫩草精品影院| 亚洲精品一区av在线观看| 久久久久精品国产欧美久久久| 欧美一区二区国产精品久久精品| 亚洲色图av天堂| 欧美日韩福利视频一区二区| 人人妻人人澡欧美一区二区| 美女高潮的动态| 搡老岳熟女国产| 亚洲精品乱码久久久v下载方式| 免费电影在线观看免费观看| 中文资源天堂在线| 国产成人影院久久av| 波多野结衣高清无吗| 别揉我奶头 嗯啊视频| 久久久久久久午夜电影| 看十八女毛片水多多多| 国产麻豆成人av免费视频| 热99在线观看视频| 小蜜桃在线观看免费完整版高清| 中亚洲国语对白在线视频| 又粗又爽又猛毛片免费看| 日韩欧美在线二视频| 亚洲无线在线观看| av天堂中文字幕网| 97超级碰碰碰精品色视频在线观看| 久久久久久久久大av| 91在线观看av| 亚洲五月婷婷丁香| 美女大奶头视频| 中文字幕久久专区| 久久久久久久精品吃奶| 99久久久亚洲精品蜜臀av| 亚洲avbb在线观看| 亚洲无线在线观看| 99视频精品全部免费 在线| 亚洲成a人片在线一区二区| 久久精品国产清高在天天线| 成人永久免费在线观看视频| 在现免费观看毛片| 在线观看一区二区三区| 中文字幕高清在线视频| 国产成人影院久久av| 色在线成人网| 国产探花在线观看一区二区| 免费人成视频x8x8入口观看| 又粗又爽又猛毛片免费看| 在线播放国产精品三级| 18禁在线播放成人免费| 亚洲精品在线美女| 色av中文字幕| 国产三级黄色录像| 精品不卡国产一区二区三区| 首页视频小说图片口味搜索| 精品午夜福利在线看| 黄色配什么色好看| 热99re8久久精品国产| 日韩欧美一区二区三区在线观看| 国产熟女xx| 久久午夜亚洲精品久久| 最新中文字幕久久久久| 色综合婷婷激情| 嫁个100分男人电影在线观看| 少妇人妻一区二区三区视频| 啦啦啦韩国在线观看视频| 嫩草影院入口| 日本黄大片高清| 99热6这里只有精品| 欧美激情国产日韩精品一区| 国产私拍福利视频在线观看| 精品一区二区三区av网在线观看| 国产一区二区亚洲精品在线观看| 9191精品国产免费久久| 国产黄色小视频在线观看| 亚洲av二区三区四区| 在现免费观看毛片| 99国产极品粉嫩在线观看| 成熟少妇高潮喷水视频| 丰满人妻一区二区三区视频av| 成人一区二区视频在线观看| 免费看美女性在线毛片视频| 白带黄色成豆腐渣| 精品欧美国产一区二区三| 2021天堂中文幕一二区在线观| 校园春色视频在线观看| 亚洲自偷自拍三级| 91在线观看av| 好男人在线观看高清免费视频| 热99在线观看视频| 国产伦在线观看视频一区| 欧美成狂野欧美在线观看| 久久亚洲精品不卡| 国产伦在线观看视频一区| 精品熟女少妇八av免费久了| 香蕉av资源在线| 黄色配什么色好看| 国产日本99.免费观看| 国产欧美日韩精品亚洲av| 在线观看66精品国产| 首页视频小说图片口味搜索| 成年女人永久免费观看视频| 熟女电影av网|