• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Network Embedding-Based Anomalous Density Searching for Multi-Group Collaborative Fraudsters Detection in Social Media

    2019-07-18 02:00:00ChengzhangZhuWentaoZhaoQianLiPanLiandQiaoboDa
    Computers Materials&Continua 2019年7期

    Chengzhang Zhu , Wentao Zhao, , Qian Li Pan Li and Qiaobo Da

    Abstract: Detecting collaborative fraudsters who manipulate opinions in social media is becoming extremely important in order to provide reliable information, in which, however, the diversity in different groups of collaborative fraudsters presents a significant challenge to existing collaborative fraudsters detection methods.These methods often detect collaborative fraudsters as the largest group of users who have the strongest relation with each other in the social media, consequently overlooking the other groups of fraudsters that are with strong user relation yet small group size.This paper introduces a novel network embedding-based framework NEST and its instance BEST to address this issue.NEST detects multiple groups of collaborative fraudsters by two steps.In the first step, to disclose user collaboration, it represents users according to their social relations.Then, in the second step, to identify the collaborative fraudsters, it detects the user groups with anomalous large group density in its representation space.BEST instantiates NEST by using a bipartite network embedding method to represent users and adopting a fast density group detection method based on the k-dimensional tree.Our experiments show BEST (i) performs significantly better in detecting fraudsters on four real-word social media data sets, and (ii) effectively detects multiple groups of collaborative fraudsters, compared to three state-of-the-art competitors.

    Keywords: Fraudster detection, network embedding, social media.

    1 Introduction

    The reliability of social media content is becoming increasingly significant because social media heavily affects people every day.Unfortunately, a large proportion of social media content is proposed by fraudsters who collaborate to manipulate social opinions driven by huge profit and incentives of reputation [Mukherjee, Venkataraman, Liu et al.(2013); Xiang, Li, Hao et al.(2018)].As a result, effectively detecting such collaborative fraudsters is critical and with great bossiness values [Akoglu, Chandy and Faloutsos (2013)].

    Recent year has seen significant progress made in fraudsters detection.Current efforts mainly focused on extracting fraudster indicators and/or features from users’ behavior [Mukherjee, Liu and Glance (2012); Ye and Akoglu (2015); Hooi, Shin, Song et al.(2017)] or users’ proposed content [Mukherjee, Venkataraman, Liu et al.(2013); Wang, Liu and Zhao (2017); You, Qian and Liu (2018)].Because of the great distinguishing ability of anomalous behavior and content, these indicators and/or features have shown remarkable performance in detecting individual fraudsters [Rayana and Akoglu (2016)].However, identifying fraudsters with collaborative manipulation is a challenging task.Specifically, the collaborative manipulation poses the two major challenges below: (i) The content of collaborative fraudsters may not be anomalous because the collaborative manipulation may dominate social opinions.(ii) The professional fraudsters will imitate the behavior of honest users to evade inspection [Hooi, Song, Beutel et al.(2016)].These two challenges cause the failure of current behavior and content-based fraudsters detection methods in detecting collaborative fraudsters.

    To detect collaborative fraudsters, the dense subgraph mining methods [Hooi, Song, Beutel et al.(2016); Hooi, Shin, Song et al.(2017); Wu, Hu, Morstatter et al.(2017); Liu, Hooi and Faloutsos (2017); Xiang, Shen, Qin et al.(2018); Xiang, Zhao, Li et al.(2018)] are the major solutions, which detect collaborative fraudsters according to the significant collaboration footprint.Specifically, the dense subgraph mining methods always detect collaborative fraudsters as the largest group of users who have the strongest relation with each other in the social media.However, in this way, they may overlook the other groups of fraudsters that are with strong user relation yet small group size.In reality, social media may contain multiple groups of collaborative fraudsters instead of only the largest group of collaborative fraudsters.

    In this paper, we introduce a novel Network Embedding-based denSiTy subgraph mining (NEST for short) framework for multi-group collaborative fraudsters detection in social media.Specifically, NEST first represents users according to their social relations to dis- close user collaboration.In this process, users who have similar activities will be embed- ded near to each other in the representation space.NEST then detects the user groups with anomalous large group density in its representation space to identify the collaborative fraudsters.Accordingly, any group of collaborative fraudsters with large joint activities can be effectively detected.

    Essentially, this detection procedure simultaneously tackles three challenges brought by collaborative fraudsters: content domination, behavior camouflage, and multiple fraudsters groups, resulting in a robust and comprehensive collaborative fraudsters detecting result.In the first step, NEST solves the content domination and behavior camouflage problems by distilling user social relations which are reflected in users’ joint activities.The rationale is that the cooperation of collaborative fraudsters to manipulate opinions cannot be avoided.In the second step, NEST discovers fraudsters groups by analyzing the outlier of group density in its representation space.The intuition is that the joint activities of collaborative fraudsters must be more frequent than honest users, but the number of fraudsters is much less than honest users.

    We further implement NEST by proposing a Bipartitie networking Embedding-based fast denSiTy subgraph mining method based on the k-dimensional tree structure, termed BEST.Specifically, BEST first models the users and their activities as a bipartite network as demonstrated in Fig.1.In the bipartite network, the nodes on each side are users and activities, and a link refers to a user participates in an activity.Then, to comprehensively capture user collaborations, BEST represents users by embedding both the explicit and implicit relations in the bipartite network.Lastly, to fast detect the collaborative fraudsters, BEST builds a k-dimensional tree for the representation space and searches the anomalous density group based on the k-dimensional tree.

    Accordingly, this paper makes two major contributions:

    ● We introduce a novel network embedding-based framework NEST for identifying collaborative fraudsters in social media.NEST represents users according to their social relations and detects fraudsters by analyzing the outlier of group density in the representation space.It results in a more reliable and comprehensive collaborative fraudsters detection, compared to existing dense subgraph mining-based solutions.

    ● We instantiate NEST to an effective and efficient multi-group collaborative fraudsters detection method, BEST, by introducing bipartite network embedding and k- dimensional tree-based anomalous density group searching.The bipartite network embedding captures both explicit and implicit user relations, and the k-dimensional tree-based method guarantees the efficiency of density groups searching.

    Extensive empirical results show that (i) BEST performs significantly better in detecting fraudsters on four large real-world social media data sets; and (ii) BEST effectively detects multiple groups of collaborative fraudsters, compared to three state-of-the-art competitors.

    2 Related work

    2.1 Fraudster detection

    Current efforts on fraudster detection can be roughly classified into two categories:

    individual characteristics-based methods and relational characteristics-based methods.The individual characteristics-based methods use the user proposed content and/or user’s behavior to identify whether a user is a fraudster.The information used by these methods mainly include the statics and linguistic characteristics of a content [Li, Huang, Yang et al.(2011); Mukherjee, Kumar, Liu et al.(2013); Wang, Liu and Zhao (2017); You, Qian and Liu (2018)], and the historical actions of a user [Fei, Mukherjee, Liu et al.(2013); Mukherjee, Venkataraman, Liu et al.(2013)].These individual characteristics are designed as features for fraudster detection [Jindal and Liu (2008); Lim, Nguyen, Jindal et al.(2010); Zhao, Resnick and Mei (2015); Li, Fei, Wang et al.(2017)].However, as evidenced by Hooi et al.[Hooi, Song, Beutel et al.(2016)], the individual characteristics are not robust for collaborative fraudsters who jointly manipulate social opinions and fraudsters may imitate the behavior of honest users.

    The relational characteristics-based methods capture user-activity, user-user, and activity-activity relations, typically via a graph [Pandit, Chau, Wang et al.(2007); Stringhini, Kruegel and Vigna (2010); Akoglu, Chandy and Faloutsos (2013); Junqué de Fortuny, Stankova, Moeyersoms et al.(2014); Akoglu, Tong and Koutra (2015); Shehnepoor, Salehi, Farahbakhsh et al.(2017)].They hold an assumption that fake reviews are manipulated by groups of fraudsters.With this assumption, they assume a group of fraudsters will have dense links to a group of manipulated activities (useractivity relation) [Akoglu, Chandy and Faloutsos (2013); Wang, Xie, Liu et al.(2011)], a group of fraudsters will co-occur in many activities (user-user relation) [Wu, Hu, Morstatter et al.(2017); Sun, Qu, Chakrabarti et al.(2005); Xu, Zhang, Chang et al.(2013)], and different manipulated activities will have overlapped linked fraudsters (activity-activity relation) [Hovy (2016)].

    Although current methods show their strengths to disclose fraudsters, most of them fail to discover multiple groups of collaborative fraudsters in social network.In this paper, we propose a networking-embedding based framework NEST to fill the gaps of multi- group collaborative fraudsters detection.The proposed NEST achieves a more reliable and comprehensive detection by revealing users within density groups in its representation space, which delicately embeds the user’s social relationships.

    2.2.Network embedding

    Our proposed method is based on network embedding, which can be categorized into two types: matrix factorization (MF)-based and neural network-based methods.

    MF-based methods involve linear [Cox and Cox (2000)] and nonlinear [Nedich and Ozdaglar (2008)] procedures in the embedding process.While the linear procedures adopt linear transformations, such as singular value decomposition (SVD) and multiple dimensional scaling (MDS), to generate low-dimensional embedding [Cox and Cox (2000)], the non- linear methods utilize nonlinear transformations, e.g.kernel PCA and manifold learning, to capture complicated data structures.However, both have high computational cost because of their eigen-decomposition operation on data matrix.Accordingly, these methods do not suit for large social network embedding.

    Recently, neural network-based methods have shown the state-of-the-art performance.Followed by DeepWalk [Perozzi, Al-Rfou and Skiena (2014)] and Node2Vec [Grover and Leskovec (2016)], most of neural network-based methods reformulate a network embedding task as a word embedding task via performing truncated random walks in a network to convert the network to sentences.More recently, advanced work embeds both explicit and implicit relations in a network and shows its significance [Tang, Qu, Wang et al.(2015); Wang, Cui and Zhu (2016); Cao, Lu and Xu (2015); Xu, Wei, Cao et al.(2017)].However, the above methods are not designed for social network embedding.They treat the nodes in a network homogeneously, and thus, cannot capture the difference between user and activity in social media.In addition, the truncated random walks used in these methods do not consider the user-activity joint distribution in social network.

    In this paper, we instantiate NEST as an effective and efficient method, BEST, via a bipartite network embedding method.This Bipartitie network embedding method is tailored for social media.Accordingly, it captures user-activity relations better in its user representation space, which provides a solid foundation for collaborative fraudsters detection.

    3 NEST for collaborative fraudster detection

    NEST framework adopts a two-steps procedure to detect collaborative fraudsters in social media.The workflow of NEST framework is shown in Fig.1.For a social media S with a set of usersand a set of activitiesin the first step, NEST extracts a bipartite network G from S aswhere U and A are the nodes on the two sides of G, respectively, and E U V? × defines the inter-set edges.Here, each edge in E carries a non-negative weightijw , reflecting the strength between a useriu and an activityja , and theijw will be zero if the useriu does not join the activityja .Accordingly, the weights in the bipartite network can be represented by a n × m matrix W =[ wij].Then, NEST learns an embedding function f(?):U→ Rd, which maps a useriu to a d dimensional vector representationiu .The embedding function f(?) should capture and embed the social relations of users in the bipartite network into their representation space.In the second step, NEST finds the anomalous density groups in the user representation space and treats the users in the anomalous density groups as collaborative fraudsters.

    Formally, NEST detects a set of collaborative fraudster groupsaccording to

    NEST has a good generalizability since it can be instantiated by specifying any network embedding method and any anomalous density groups searching method.We introduce an instance of NEST in next section and then verify its performance by empirical analyses.

    4 A NEST instance: BEST

    BEST instantiates NEST by a bipartite network embedding method catering for social net- work, and a k-dimensional tree-based anomalous density group searching method for efficient fraudsters detection.

    Figure 1: NEST Framework.In the first step, NEST extracts a bipartite network from social media data, and represents user into a vector space by embedding their social relation in the bipartite network.In the second step, NEST searches the anomalous density group of users in the representation space for collaborative fraudsters detection.The detected collaborative fraudsters are illustrated with a grey background, and their corresponding groups are highlighted by a dotted circle

    4.1 Bipartite network embedding

    The network embedding reveals and embeds social relations of a user into the user’s vector representation, which reflects the cooperation of users in social media.We introduce a bipartite network embedding method to jointly capture the explicit and implicate relations of users in social media.

    4.1.1 Explicit relations embedding

    The explicit relations refer to the direct links between users and activities, which reflect the activities a user jointed.If two users always joint similar activities, their similarity should be large in the representation space.

    To preserve the explicit relations, we keep the preference of users in their representation space.Specifically, we measure the preference of a user in both social media and representation space, and make the preference of a user in representation space similar to that in social media.For the preference measurement in social media, we consider the probability of a user join in an activity.Given the bipartite network, this probability can be calculated as follows:

    where wijis the weight of edge eij.The measurement reflects the preference distribution of users.We follow the setting of word2vec to use the sigmoid function to measure the interaction of a user and an activity in their representation space in a probability space:

    where ui∈Rdand aj∈Rdare the embedding vectors of uiand aj, respectively.Then, we adopt KL-divergence to measure the difference between P andand optimize the user and activity representation to minimize the KL-divergence as follows:

    Considering P(i,j) is a constant, minimizing the Eq.(4) equals to follows:

    4.1.2 Implicit relations embedding

    The implicit relations refer to the relations between users and activities that are not directly connected.For two users, if there exist a path between them in the bipartite network, they may have an implicit relation, and the weight of the path reflects the strength of this implicit relation.However, counting the paths between two nodes in a bipartite network has a great high complexity, which is impracticable in social media.

    Inspired by DeepWalk [Perozzi, Al-Rfou and Skiena (2014)], we also perform a truncated random walks on the network to generate nodes corpus as random walk paths, which contain higher order implicit relations between nodes.We move a step further to reconstruct the bipartite network G as two networks where each network only contains users G(u)or activitiesG(a), and conduct random walks on these two transformed networks.It results in a stationary distribution of random walks on social media data [Gao, Chen, He et al.(2018)].InG(u), uiand ujwill have an edgeif exists a tkthat∈ E and∈ E where E is the edge set ofG.InG(a), aiand ajwill have an edgeif exists a ukthat∈ E and∈ E where E is the edge set ofG.

    The random walk paths generation procedure is illustrated in Algorithm 1, which generates a set of random walk paths D(u)ofU, a set of random walk paths D(a)of A.The implicit relations embedding aims to maximize the conditional probability of the context of a node.For user corpus()u

    D , it maximizes the conditional probability as follows:

    where S refers to the sequence in the context,refers the context nodes of node uiin sequence s.Similarly, for activities corpusthe implicit embedding maximizes the conditional probability as:

    ?

    BEST jointly considers the explicit and implicit relations embedding, forming a joint embedding objective function:

    where α , β and γ are the hyper-parameters to trade-off the effects of the three components.This objective function can be effectively solved by stochastic optimization methods.By solving the objective function (8), BEST represents users into a vector space where user’s social relations have been embedded.

    4.2 K-dimensional tree-based anomalous density group searching

    To fast search the anomalous density group, BEST first builds a k-dimensional tree (kdtree for short) for the user representation space, and then estimates the density around each user in that space.Finally, it adopts the criteria Eq.(1) in NEST to identify the anomalous density groups.

    Figure 2: Example of kd-tree.The illustrated kd-tree is built on the user representation space shown in Fig.1.Each level splits one dimension of the space into two parts

    4.2.1 Building kd-tree

    For user representation set u ={u1,u2???, un}, BEST builds a kd-tree, v, by Algorithm 2.As illustrated in Fig.2, the kd-tree v is a binary tree storing the user representation with their structure information, which enables the fast searching of anomalous density groups.

    Algorithm 2: Building kd-tree Procedure name: BUILDKDTREE(u,depth) Input: A set of point u, and the current depth.Output: The root of the kd-tree, v, storing u 1 if u contains only one point then 2 return a leaf storing this point.3 else 4 l ←depth%d+1; 5 Split u into two subsets according to the median value q in the l th-dimension of the points inu.Let (1)u be the set of points which l th-dimension value is smaller or equal to the q, and let (2)u be the set of other points ; 6 leftv← BUILDKDTREE( (1)u , depth+1) ; 7 rightv← BUILDKDTREE( (2)u , depth+1) ; 8 Create a node v storing the q in the l th-dimension, make leftvleftv the left child of v, and make rightv the right child of v ; 9 return v.10 end

    4.2.2 Density estimation

    BEST estimates the density around each user in its representation space based on the kd- tree v according to the Algorithm 3, where the function SEARCHKDTREE(iu ,v,ρ) returns a set of users that around the useriu within the range η based on the kd-tree v.Essentially, BEST estimates the density around a user by the number of users close to the user within a certain distance in the representation space.If a user has a large density, the user should have a lot of collaborations with others.Accordingly, BEST uses the density as an important evidence to identify collaborative fraudsters.

    Algorithm 3: Density estimation based on kd-tree Input : A set of point u, the kd-tree v and η.Output: A set of densities around each user ρ, a set of user sets S.1 {}ρ ← 2 foreach iu in u do 3 iS ←SEARCHKDTREE( iu , v, η) ; 4 iiS ρ ← ; 5 { }i ρρρ← ∪; 6 { }i S SS← ∪; 7 end 8 return ρ,S.

    4.2.3 Collaborative fraudsters detection

    BEST detects collaborative fraudsters after estimating density around users in the user representation space.Specifically, it treats the density larger than a thresholdε , e.g.five times of the averaged density, as anomalous, and assigns the users in the density areas as fraudsters.The procedure is summarized in the Algorithm 4.

    Algorithm 4: Collaborative fraudsters detection Input : A set of densities around each user ρ, a set of user sets S, a threshold ε Output: A set of fraudster users F..1 {}ρ ← 2 foreach iS in S do 3 if iρ ε> then; 4 i FF S← ∪ 5 end 6 return F

    5 Experiments

    5.1 Data sets

    The experiments are carried on two large scale real word social media data sets, including Yelp restaurant and Yelp hotel data sets used in Mukherjee et al.[Mukherjee, Venkataraman, Liu et al.(2013)].All the activities in these data sets have been assigned authenticity labels given by commercial filters.

    5.2 Evaluation metrics

    We evaluate their performance by three metrics - precision, recall, and F-score.While precision evaluates the fraction of true fraudsters among detected fraudsters, recall reflects the fraction of true fraudsters that have been detected over the total amount of true fraudsters.The precision and recall should be jointly considered since fraudsters detection is an imbalance problem [Luca and Zervas (2016)], i.e., fraudsters are much less than honest users.Thus, we use F-score, which balances the precision and recall, as an averaged indicator.Higher F-score indicates a better performance of a fraudsters detection method.We report these three metrics per ground-truth honest user and fraudster classes to illustrate the performance for different categories.We further average them to show overall performance.

    We follow the literature [Wang, Liu and Zhao (2017)] to use the results of the Yelp commercial fraud filter to evaluate the performance.Because the Yelp commercial fraud filter only give the authenticity labels of activities, we transform the authenticity labels to the honest labels of users as the ground-truth.Considering the fraud activities distribution per each user assigned by the commercial filters, we assign the fraudster label to a user if more than 80% of the activities of the user have been labeled as fraud.The rationale is that we need to filter the false positive made by the commercial filters [Li, Chen, Liu et al.(2014)].In other words, we assume that a user with a higher proportion of the assigned fraud activities will be more likely a real fraudster.

    5.3 Parameters settings

    In the experiments, we set the parameters of BEST as follows.To balance the explicit and implicit social relations, we set the hyper-parameters α , β , and γ is the network embedding objective function Eq.(8) as 0.5, 0.25, and 0.25, respectively.We train the network embedding by Adam [Kingma and Ba (2014)] with embedding dimension 128 and batch size 32.For the density estimation, we set the distance range η as 1.For the anomalous density detection, we set the threshold s as the five times of the averaged density.For the parameters in the compared methods, we take their recommended settings.

    5.4 Evaluation of BEST effectiveness on fraudster detection

    5.4.1 Experimental settings

    BEST is compared with two state-of-the-art competitors: Frauder [Hooi, Song, Beutel et al.(2016)] and HoloScope [Liu, Hooi and Faloutsos (2017)] in detecting collaborative fraudsters.These two competitors are both based on dense subgraph mining, but with different setting on the graph construction.

    ● Fixed weighting dense subgraph mining-based method - FRAUDER [Hooi, Song, Beutel et al.(2016)].FRAUDER is a fraudsters detection method by dense subgraph mining.To detect camouflage and hijacked accounts, it adopts a fixed weighting strategy.

    ● Dynamic weighting dense subgraph mining-based method-HoloScope [Liu, Hooi and Faloutsos (2017)].HoloScope uses information from graph topology and temporal spikes to detect groups of fraudsters, and employs a dynamic weighting approach to allow a more accurately fraud detection.

    5.4.2 Findings-BEST significantly improving fraudsters detection performance, especially recall

    The precision, recall and F-score of BEST, Frauder, and HoloScope are reported in Tab.1.Overall, BEST significantly outperforms the competitors.It improves 21.8% and 10.03% compared with the best-performing method in terms of F-score on two data sets.

    Table 1: Collaborative fraudsters detection performance of different methods

    5.5 Evaluation of BEST-generated user representation quality

    5.5.1 Experimental settings

    We visualize the user representation in a two-dimensional space trough TSNE [Maaten and Hinton (2008)].To evaluate the user representation quality, we plot the ground-truth labels of each user at their positions in the representation space.A high-quality user representation will enable a dense distribution for the collaborative fraudsters.The behavior representation generated by BEST is compared with that generated by JETB [Wang, Liu and Zhao (2017)], which is the state-of-the-art user representation method for fraudsters detection.

    5.5.2 Findings-BEST generated user representation embeds fraudsters into groups with anomalous high density

    The user representations generated by BEST and JETB are visualized in Fig.3.In the JETB generated representation space, the users with large density are not consistent to the ground-truth fraudster label.In contrast, the density of BEST generated representation is consistent with the ground-truth fraudsters distribution.This qualitative illustrates that BEST effectively captures the social relation of users in social media, which is essential for the collaborative fraudsters detection.

    Figure 3: User representation with density of different methods on Yelp-hotel and Yelp- restaurant.The sub-figures (a), (b), (c), (d) contain the user representation information with the ground-truth labels, and the sub-figures (e), (f), (g), (h) show the density in the representation space

    6 Conclusion

    This paper introduces a network-embedding collaborative fraudsters detection framework NEST and its instance BEST.They perform an anomalous density searching procedure on a network embedding space which enables the detecting multiple groups of collaborative fraudsters.Two large real-world data sets demonstrate the performance of BEST is substantially better than the state-of-the-art competitors.

    Acknowledgements:The work is supported by National Natural Science Foundation of China under Grant No.U1811462.

    References

    Akoglu, L.; Chandy, R.; Faloutsos, C.(2013): Opinion fraud detection in online reviews by network effects.Proceedings of the International AAAI Conference on Web and Social Media, vol.13, pp.2-11.

    Akoglu, L.; Tong, H.; Koutra, D.(2015): Graph based anomaly detection and description: a survey.Data Mining and Knowledge Discovery, vol.29, no.3, pp.626-688.

    Cao, S.; Lu, W.; Xu, Q.(2015): GraRep: learning graph representations with global structural information.Proceedings of the ACM International on Conference on Information and Knowledge Management, pp.891-900.

    Cox, T.F.; Cox, M.A.(2000): Multidimensional scaling.Chapman and Hall/CRC.

    Fei, G.; Mukherjee, A.; Liu, B.; Hsu, M.; Castellanos, M.et al.(2013): Exploiting burstiness in reviews for review spammer detection.Proceedings of the International AAAI Conference on Web and Social Media, vol.13, pp.175-184.

    Gao, M.; Chen, L.; He, X.; Zhou, A.(2018): BiNE: bipartite network embedding.Proceedings of the International ACM SIGIR Conference on Research & Development in Information Retrieval, pp.715-724.

    Grover, A.; Leskovec, J.(2016): node2vec: scalable feature learning for networks.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.855-864.

    Hooi, B.; Shin, K.; Song, H.A.; Beutel, A.; Shah, N.et al.(2017): Graph-based fraud detection in the face of camouflage.ACM Transactions on Knowledge Discovery from Data, vol.11, no.4, pp.44:1-44:26.

    Hooi, B.; Song, H.A.; Beutel, A.; Shah, N.; Shin, K.; Faloutsos, C.(2016): FRAUDAR: Bounding graph fraud in the face of camouflage.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.895-904.

    Hovy, D.(2016): The enemy in your own camp: how well can we detect statistically- generated fake reviews-an adversarial study.Proceedings of the Annual Meeting of the Association for Computational Linguistics, vol.2, pp.351-356.

    Jindal, N.; Liu, B.(2008): Opinion spam and analysis.Proceedings of the ACM International WSDM Conference, pp.219-230.

    Junqué de Fortuny, E.; Stankova, M.; Moeyersoms, J.; Minnaert, B.; Provost, F.et al.(2014): Corporate residence fraud detection.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.1650-1659.

    Kingma, D.P.; Ba, J.(2014): Adam: a method for stochastic optimization.arXiv preprint arXiv:1412.6980.

    Li, F.; Huang, M.; Yang, Y.; Zhu, X.(2011): Learning to identify review spam.Proceedings of the International Joint Conference on Artificial Intelligence, pp.2488-2493.

    Li, H.; Chen, Z.; Liu, B.; Wei, X.; Shao, J.(2014): Spotting fake reviews via collective positive-unlabeled learning.Proceedings of the IEEE International Conference on Data Mining, pp.899-904.

    Li, H.; Fei, G.; Wang, S.; Liu, B.; Shao, W.et al.(2017): Bimodal distribution and cobursting in review spam detection.Proceedings of the International Conference on World Wide Web, pp.1063-1072.

    Lim, E.P.; Nguyen, V.A.; Jindal, N.; Liu, B.; Lauw, H.W.(2010): Detecting product review spammers using rating behaviors.Proceedings of the ACM International Conference on Information and Knowledge Management, pp.939-948.

    Liu, S.; Hooi, B.; Faloutsos, C.(2017): Holoscope: topology-and-spike aware fraud detection.Proceedings of the ACM International Conference on Information and Knowledge Management, pp.1539-1548.

    Luca, M.; Zervas, G.(2016): Fake it till you make it: reputation, competition, and yelp review fraud.Management Science, vol.62, no.12, pp.3412-3427.

    Maaten, L.v.d.; Hinton, G.(2008): Visualizing data using t-SNE.Journal of Machine Learning Research, vol.9, pp.2579-2605.

    Mukherjee, A.; Kumar, A.; Liu, B.; Wang, J.; Hsu, M.et al.(2013): Spotting opinion spammers using behavioral footprints.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.632-640.

    Mukherjee, A.; Liu, B.; Glance, N.(2012): Spotting fake reviewer groups in consumer reviews.Proceedings of the International Conference on World Wide Web, pp.191-200.

    Mukherjee, A.; Venkataraman, V.; Liu, B.; Glance, N.S.(2013): What yelp fake review filter might be doing? Proceedings of the International AAAI Conference on Web and Social Media, pp.409-418.

    Nedich, A.; Ozdaglar, A.(2008): A geometric framework for nonconvex optimization duality using augmented lagrangian functions.Journal of Global Optimization, vol.40, no.4, pp.545-573.

    Pandit, S.; Chau, D.H.; Wang, S.; Faloutsos, C.(2007): Netprobe: a fast and scalable system for fraud detection in online auction networks.Proceedings of the International Conference on World Wide Web, pp.201-210.

    Perozzi, B.; Al-Rfou, R.; Skiena, S.(2014): Deepwalk: Online learning of social representations.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.701-710.

    Rayana, S.; Akoglu, L.(2016): Collective opinion spam detection using active inference.Proceedings of the IEEE International Conference on Data Mining, pp.630-638.

    Shehnepoor, S.; Salehi, M.; Farahbakhsh, R.; Crespi, N.(2017): Netspam: a networkbased spam detection framework for reviews in online social media.IEEE Transactions on Information Forensics and Security, vol.12, no.7, pp.1585-1595.

    Stringhini, G.; Kruegel, C.; Vigna, G.(2010): Detecting spammers on social networks.Proceedings of the Annual Computer Security Applications Conference, pp.1-9.

    Sun, J.; Qu, H.; Chakrabarti, D.; Faloutsos, C.(2005): Neighborhood formation and anomaly detection in bipartite graphs.Proceedings of the IEEE International Conference on Data Mining, pp.1-8.

    Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.et al.(2015): Line: large-scale information network embedding.Proceedings of the International Conference on World Wide Web, pp.1067-1077.

    Wang, D.; Cui, P.; Zhu, W.(2016): Structural deep network embedding.Proceedings of the 22nd ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, pp.1225-1234.

    Wang, G.; Xie, S.; Liu, B.; Philip, S.Y.(2011): Review graph based online store review spammer detection.ICDM, pp.1242-1247.

    Wang, X.; Liu, K.; Zhao, J.(2017): Handling cold-start problem in review spam detection by jointly embedding texts and behaviors.Proceedings of the Annual Meeting of the Association for Computational Linguistics, vol.1, pp.366-376.

    Wu, L.; Hu, X.; Morstatter, F.; Liu, H.(2017): Adaptive spammer detection with sparse group modeling.Proceedings of the International AAAI Conference on Web and Social Media, pp.319-326.

    Xiang, L.; Li, Y.; Hao, W.; Yang, P.; Shen, X.(2018): Reversible natural language watermarking using synonym substitution and arithmetic coding.Computers, Materials & Continua, vol.55, no.3, pp.541-559.

    Xiang, L.; Shen, X.; Qin, J.; Hao, W.(2018): Discrete multi-graph hashing for largescale visual search.Neural Processing Letters.

    Xiang, L.; Zhao, G.; Li, Q.; Hao, W.; Li, F.(2018): TUMK-ELM: A fast unsupervised heterogeneous data learning approach.IEEE Access, vol.6, pp.35305-35315.

    Xu, C.; Zhang, J.; Chang, K.; Long, C.(2013): Uncovering collusive spammers in Chinese review websites.Proceedings of the ACM International on Conference on Information and Knowledge Management, pp.979-988.

    Xu, L.; Wei, X.; Cao, J.; Yu, P.S.(2017): Embedding of embedding (EOE): Joint embedding for coupled heterogeneous networks.Proceedings of the ACM International Conference on Web Search and Data Mining, pp.741-749.

    Ye, J.; Akoglu, L.(2015): Discovering opinion spammer groups by network footprints.Proceedings of the European Conference on Machine Learning, pp.267-282.

    You, Z.; Qian, T.; Liu, B.(2018): An attribute enhanced domain adaptive model for cold- start spam review detection.Proceedings of the International Conference on Computational Linguistics, pp.1884-1895.

    Zhao, Z.; Resnick, P.; Mei, Q.(2015): Enquiring minds: early detection of rumors in social media from enquiry posts.Proceedings of the International Conference on World Wide Web, pp.1395-1405.

    一级毛片高清免费大全| 啦啦啦观看免费观看视频高清| 中文在线观看免费www的网站| 久久久久免费精品人妻一区二区| 又粗又爽又猛毛片免费看| 国产私拍福利视频在线观看| 性色avwww在线观看| 国产v大片淫在线免费观看| 99精品在免费线老司机午夜| 成年女人看的毛片在线观看| 色吧在线观看| 欧美乱妇无乱码| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩精品网址| 97人妻精品一区二区三区麻豆| 国产av不卡久久| 夜夜爽天天搞| 精品99又大又爽又粗少妇毛片 | 首页视频小说图片口味搜索| 亚洲国产日韩欧美精品在线观看 | 51国产日韩欧美| 男人的好看免费观看在线视频| 日韩有码中文字幕| 91麻豆av在线| 国产高清三级在线| 欧美最黄视频在线播放免费| 日韩欧美在线乱码| 99久久99久久久精品蜜桃| 免费在线观看成人毛片| av中文乱码字幕在线| 午夜福利高清视频| 男人舔奶头视频| 亚洲成人精品中文字幕电影| 丁香欧美五月| 搡女人真爽免费视频火全软件 | 欧美最新免费一区二区三区 | 久久精品国产亚洲av香蕉五月| 欧美日韩乱码在线| 亚洲人成伊人成综合网2020| 精品国内亚洲2022精品成人| 国语自产精品视频在线第100页| 精品久久久久久,| 综合色av麻豆| 国产真实乱freesex| 国产亚洲精品av在线| 国产精品一区二区三区四区免费观看 | 久久99热这里只有精品18| 少妇裸体淫交视频免费看高清| 18禁黄网站禁片午夜丰满| 看免费av毛片| 午夜福利在线观看免费完整高清在 | 日韩欧美三级三区| 午夜福利在线观看吧| 欧美日韩亚洲国产一区二区在线观看| 国产伦一二天堂av在线观看| 欧美一区二区精品小视频在线| 波多野结衣高清作品| 日本一二三区视频观看| 国产高清videossex| 亚洲av二区三区四区| www日本黄色视频网| 亚洲狠狠婷婷综合久久图片| 午夜精品久久久久久毛片777| 午夜久久久久精精品| 欧美日韩精品网址| 亚洲欧美日韩无卡精品| 亚洲av一区综合| 亚洲一区高清亚洲精品| 亚洲乱码一区二区免费版| 亚洲熟妇中文字幕五十中出| 日韩高清综合在线| 精品人妻一区二区三区麻豆 | 一夜夜www| 国产单亲对白刺激| 香蕉久久夜色| 亚洲精品亚洲一区二区| 精品人妻1区二区| 婷婷六月久久综合丁香| 天堂影院成人在线观看| 黑人欧美特级aaaaaa片| 成人欧美大片| 夜夜躁狠狠躁天天躁| 99精品在免费线老司机午夜| 国产毛片a区久久久久| 1000部很黄的大片| 丁香欧美五月| АⅤ资源中文在线天堂| 亚洲av第一区精品v没综合| 久久午夜亚洲精品久久| 在线看三级毛片| 内地一区二区视频在线| 国产综合懂色| 国产亚洲精品综合一区在线观看| 变态另类成人亚洲欧美熟女| 亚洲成a人片在线一区二区| 白带黄色成豆腐渣| 亚洲第一欧美日韩一区二区三区| 欧美大码av| 国产精品野战在线观看| 国产亚洲精品一区二区www| 女同久久另类99精品国产91| 亚洲精品在线观看二区| 中文字幕人成人乱码亚洲影| АⅤ资源中文在线天堂| 69av精品久久久久久| 热99re8久久精品国产| 国产在视频线在精品| 日韩国内少妇激情av| 悠悠久久av| 午夜a级毛片| 欧美日韩中文字幕国产精品一区二区三区| 欧美zozozo另类| 午夜免费观看网址| 小蜜桃在线观看免费完整版高清| 久久精品亚洲精品国产色婷小说| 亚洲成人免费电影在线观看| 我的老师免费观看完整版| 日韩欧美精品v在线| 高清日韩中文字幕在线| 琪琪午夜伦伦电影理论片6080| 女人十人毛片免费观看3o分钟| 久久精品国产自在天天线| av国产免费在线观看| 19禁男女啪啪无遮挡网站| 老司机深夜福利视频在线观看| 午夜福利18| 最近最新中文字幕大全免费视频| 午夜激情福利司机影院| 色尼玛亚洲综合影院| 九九在线视频观看精品| 日韩欧美三级三区| 久久性视频一级片| 国产单亲对白刺激| 成人国产综合亚洲| 亚洲av成人不卡在线观看播放网| 天堂√8在线中文| 久99久视频精品免费| 99久久99久久久精品蜜桃| 亚洲自拍偷在线| 99国产综合亚洲精品| 国产精品久久久久久久久免 | 精品不卡国产一区二区三区| 深夜精品福利| bbb黄色大片| 国产免费男女视频| 国产主播在线观看一区二区| 嫁个100分男人电影在线观看| 99精品在免费线老司机午夜| 2021天堂中文幕一二区在线观| 亚洲av熟女| 一本精品99久久精品77| 人妻夜夜爽99麻豆av| 女生性感内裤真人,穿戴方法视频| 免费在线观看成人毛片| 欧美激情久久久久久爽电影| 亚洲av免费高清在线观看| 国内精品久久久久精免费| av中文乱码字幕在线| 一个人观看的视频www高清免费观看| 制服人妻中文乱码| 91字幕亚洲| 91在线精品国自产拍蜜月 | 国产一区二区激情短视频| 亚洲一区高清亚洲精品| 一级黄色大片毛片| 一二三四社区在线视频社区8| 国内精品久久久久久久电影| 亚洲av五月六月丁香网| 国产高清视频在线观看网站| 99久久精品国产亚洲精品| 亚洲av五月六月丁香网| 亚洲国产欧洲综合997久久,| 桃色一区二区三区在线观看| 欧美不卡视频在线免费观看| 黄片小视频在线播放| 午夜激情欧美在线| 真人做人爱边吃奶动态| 99国产精品一区二区三区| 免费人成视频x8x8入口观看| www国产在线视频色| 人妻久久中文字幕网| 久久久久久久久中文| 久久精品国产亚洲av涩爱 | 乱人视频在线观看| 欧美丝袜亚洲另类 | 给我免费播放毛片高清在线观看| 最新美女视频免费是黄的| 精品国产超薄肉色丝袜足j| 在线免费观看的www视频| 中亚洲国语对白在线视频| 亚洲天堂国产精品一区在线| 一区二区三区免费毛片| 内地一区二区视频在线| 国产精品一区二区三区四区免费观看 | 亚洲av二区三区四区| av国产免费在线观看| av视频在线观看入口| 亚洲久久久久久中文字幕| 国产探花极品一区二区| 欧美又色又爽又黄视频| 国产精品,欧美在线| 国产精华一区二区三区| 免费观看精品视频网站| 国产免费一级a男人的天堂| 国产av在哪里看| 一个人免费在线观看电影| 1024手机看黄色片| 国产成人a区在线观看| 国产老妇女一区| 国产免费av片在线观看野外av| 亚洲五月天丁香| 精品99又大又爽又粗少妇毛片 | 欧美在线一区亚洲| 欧美黄色淫秽网站| a级一级毛片免费在线观看| 亚洲中文字幕一区二区三区有码在线看| 婷婷六月久久综合丁香| 69av精品久久久久久| 精品午夜福利视频在线观看一区| 99久久精品一区二区三区| 精品国产超薄肉色丝袜足j| 欧美黑人欧美精品刺激| 欧美成人a在线观看| 又爽又黄无遮挡网站| 少妇的逼水好多| 亚洲 国产 在线| 久久久久久国产a免费观看| 一级作爱视频免费观看| 精品久久久久久久久久免费视频| 国产视频一区二区在线看| ponron亚洲| 天堂√8在线中文| 1024手机看黄色片| 日本一本二区三区精品| 成人特级黄色片久久久久久久| www.色视频.com| 天天躁日日操中文字幕| 欧美日韩亚洲国产一区二区在线观看| 国产视频内射| www.熟女人妻精品国产| 国产精品亚洲美女久久久| 久久国产乱子伦精品免费另类| 日韩欧美免费精品| 两人在一起打扑克的视频| 国产亚洲精品一区二区www| 免费看a级黄色片| 国产精品精品国产色婷婷| aaaaa片日本免费| 一本综合久久免费| 亚洲 国产 在线| or卡值多少钱| av片东京热男人的天堂| 搡老熟女国产l中国老女人| 午夜影院日韩av| 香蕉丝袜av| 精品久久久久久成人av| 搞女人的毛片| 亚洲成人精品中文字幕电影| 日韩欧美免费精品| 99久国产av精品| 老司机在亚洲福利影院| 久久婷婷人人爽人人干人人爱| 色精品久久人妻99蜜桃| 国产又黄又爽又无遮挡在线| 搡老熟女国产l中国老女人| 日本与韩国留学比较| 欧美在线一区亚洲| 成年女人毛片免费观看观看9| 中文字幕高清在线视频| 国内精品美女久久久久久| 最新中文字幕久久久久| 舔av片在线| 日本黄色片子视频| 99久久九九国产精品国产免费| 国产精品久久久久久精品电影| 国产精华一区二区三区| 一级毛片高清免费大全| 精华霜和精华液先用哪个| 免费看十八禁软件| 国产又黄又爽又无遮挡在线| 国内精品美女久久久久久| 哪里可以看免费的av片| 免费在线观看成人毛片| 可以在线观看毛片的网站| 亚洲 欧美 日韩 在线 免费| 少妇人妻一区二区三区视频| 在线观看美女被高潮喷水网站 | 99久久无色码亚洲精品果冻| 久久国产精品人妻蜜桃| 黄色日韩在线| 一进一出好大好爽视频| 国产精品 国内视频| 欧美大码av| 亚洲专区国产一区二区| 啦啦啦免费观看视频1| 黄色视频,在线免费观看| 久9热在线精品视频| 国产精品久久久久久久久免 | 51国产日韩欧美| 中文字幕高清在线视频| 免费在线观看影片大全网站| 久久久久久久久久黄片| 亚洲七黄色美女视频| 日韩高清综合在线| 毛片女人毛片| 国产综合懂色| 在线观看66精品国产| 欧美bdsm另类| 嫩草影院入口| 精品乱码久久久久久99久播| 亚洲欧美一区二区三区黑人| 热99re8久久精品国产| 中文字幕久久专区| 成年女人看的毛片在线观看| 热99在线观看视频| 国产精品久久久久久人妻精品电影| 亚洲人成伊人成综合网2020| 高潮久久久久久久久久久不卡| 我的老师免费观看完整版| 天天添夜夜摸| 99热6这里只有精品| 欧美最黄视频在线播放免费| 动漫黄色视频在线观看| 丰满的人妻完整版| 性色avwww在线观看| 丰满人妻熟妇乱又伦精品不卡| 搞女人的毛片| 国产男靠女视频免费网站| 天堂动漫精品| 在线看三级毛片| 又黄又粗又硬又大视频| 亚洲真实伦在线观看| 免费看美女性在线毛片视频| 亚洲欧美精品综合久久99| 激情在线观看视频在线高清| 欧美日本视频| 99国产极品粉嫩在线观看| 欧美黑人巨大hd| 窝窝影院91人妻| 久久精品夜夜夜夜夜久久蜜豆| bbb黄色大片| 久久久久国产精品人妻aⅴ院| 亚洲av美国av| 亚洲一区高清亚洲精品| 亚洲 欧美 日韩 在线 免费| 久久久精品欧美日韩精品| 中文字幕人妻熟人妻熟丝袜美 | 日本一二三区视频观看| 99国产精品一区二区三区| 哪里可以看免费的av片| 欧美极品一区二区三区四区| 又紧又爽又黄一区二区| 舔av片在线| 久久人妻av系列| 亚洲真实伦在线观看| 欧美成人性av电影在线观看| 国产在线精品亚洲第一网站| 国产男靠女视频免费网站| 亚洲精品影视一区二区三区av| 亚洲欧美日韩高清在线视频| 国产精品影院久久| 母亲3免费完整高清在线观看| 99精品在免费线老司机午夜| 美女大奶头视频| 日韩高清综合在线| 韩国av一区二区三区四区| 色精品久久人妻99蜜桃| 人人妻人人看人人澡| 一进一出好大好爽视频| 一夜夜www| 国产探花在线观看一区二区| 丰满的人妻完整版| 国产成人啪精品午夜网站| 国产一区二区在线观看日韩 | 午夜视频国产福利| АⅤ资源中文在线天堂| 黑人欧美特级aaaaaa片| 亚洲精品日韩av片在线观看 | 日韩中文字幕欧美一区二区| 亚洲精品久久国产高清桃花| 久久香蕉精品热| 桃红色精品国产亚洲av| 精品国产亚洲在线| 一本久久中文字幕| 国产午夜福利久久久久久| 男人和女人高潮做爰伦理| 不卡一级毛片| 1024手机看黄色片| 老熟妇仑乱视频hdxx| 国产美女午夜福利| 亚洲精品在线观看二区| 成年免费大片在线观看| 丁香欧美五月| 精品99又大又爽又粗少妇毛片 | 99国产极品粉嫩在线观看| 免费在线观看成人毛片| 午夜影院日韩av| 久久精品国产99精品国产亚洲性色| 亚洲国产精品999在线| 老司机福利观看| 中文字幕人成人乱码亚洲影| 日韩欧美在线二视频| 免费av毛片视频| 久久人妻av系列| 亚洲国产欧洲综合997久久,| 国产av麻豆久久久久久久| 淫秽高清视频在线观看| 欧美日本视频| 亚洲欧美一区二区三区黑人| 老司机在亚洲福利影院| 日韩高清综合在线| 色哟哟哟哟哟哟| 亚洲成人久久爱视频| 国产乱人视频| 成年免费大片在线观看| 欧美在线黄色| 久久久久精品国产欧美久久久| 欧美午夜高清在线| 亚洲在线观看片| 哪里可以看免费的av片| 午夜日韩欧美国产| 亚洲av一区综合| 手机成人av网站| 日韩高清综合在线| 我的老师免费观看完整版| 亚洲人与动物交配视频| 久久欧美精品欧美久久欧美| 97超级碰碰碰精品色视频在线观看| 久久人人精品亚洲av| 亚洲一区高清亚洲精品| 国产真人三级小视频在线观看| 午夜福利成人在线免费观看| 男女做爰动态图高潮gif福利片| 高清在线国产一区| 国产高清视频在线观看网站| 少妇的逼水好多| 午夜亚洲福利在线播放| 黄色日韩在线| 小蜜桃在线观看免费完整版高清| 少妇的逼好多水| 色综合婷婷激情| 18禁美女被吸乳视频| 婷婷精品国产亚洲av| 一本久久中文字幕| 精品电影一区二区在线| 国产成人欧美在线观看| 在线观看一区二区三区| 一本精品99久久精品77| 国产一区二区在线av高清观看| 91九色精品人成在线观看| 久久6这里有精品| 亚洲人成网站在线播放欧美日韩| 一个人免费在线观看电影| 夜夜躁狠狠躁天天躁| 国产一区二区激情短视频| 好看av亚洲va欧美ⅴa在| 丝袜美腿在线中文| 精品一区二区三区视频在线观看免费| 在线免费观看不下载黄p国产 | 又粗又爽又猛毛片免费看| 国产精品亚洲av一区麻豆| 欧美bdsm另类| 欧美一级a爱片免费观看看| 淫秽高清视频在线观看| 欧美不卡视频在线免费观看| 国产精品嫩草影院av在线观看 | 久久午夜亚洲精品久久| 黄色成人免费大全| 午夜亚洲福利在线播放| 免费人成在线观看视频色| 2021天堂中文幕一二区在线观| 免费看十八禁软件| 国产精品98久久久久久宅男小说| 亚洲av熟女| 欧美乱码精品一区二区三区| 欧美黄色片欧美黄色片| 国产高清videossex| 变态另类成人亚洲欧美熟女| 免费看美女性在线毛片视频| 一区二区三区国产精品乱码| 国产精品三级大全| 精品久久久久久久久久免费视频| 免费av毛片视频| 99热这里只有精品一区| 97人妻精品一区二区三区麻豆| 国产亚洲欧美98| 一区二区三区高清视频在线| 亚洲五月天丁香| 99国产精品一区二区三区| 久久久久久大精品| 国产欧美日韩精品一区二区| 亚洲熟妇中文字幕五十中出| 国产精品一区二区免费欧美| 久久久久久久久大av| 一本精品99久久精品77| a级毛片a级免费在线| 国产精品国产高清国产av| 嫁个100分男人电影在线观看| 成人国产一区最新在线观看| 色综合欧美亚洲国产小说| 91麻豆精品激情在线观看国产| 国产激情欧美一区二区| 91在线精品国自产拍蜜月 | 99在线视频只有这里精品首页| 亚洲av成人不卡在线观看播放网| 熟女少妇亚洲综合色aaa.| 国内揄拍国产精品人妻在线| 国产av一区在线观看免费| 国产高清视频在线观看网站| 中文字幕久久专区| 哪里可以看免费的av片| 亚洲av成人精品一区久久| 九色成人免费人妻av| 美女被艹到高潮喷水动态| 九色成人免费人妻av| 国产精品电影一区二区三区| 国产精品免费一区二区三区在线| 国产又黄又爽又无遮挡在线| 黄色女人牲交| 国产成人啪精品午夜网站| 男女做爰动态图高潮gif福利片| 精品99又大又爽又粗少妇毛片 | 亚洲久久久久久中文字幕| 一a级毛片在线观看| x7x7x7水蜜桃| 国产av在哪里看| 国产麻豆成人av免费视频| 国产爱豆传媒在线观看| 美女cb高潮喷水在线观看| 国产精品国产高清国产av| 国产精品女同一区二区软件 | 母亲3免费完整高清在线观看| 又黄又爽又免费观看的视频| 性色av乱码一区二区三区2| 两性午夜刺激爽爽歪歪视频在线观看| 午夜免费激情av| av天堂在线播放| 欧美丝袜亚洲另类 | 熟妇人妻久久中文字幕3abv| 国产黄a三级三级三级人| 国产熟女xx| 亚洲七黄色美女视频| 亚洲专区国产一区二区| 欧美xxxx黑人xx丫x性爽| 久久香蕉精品热| 久久久色成人| 成人国产一区最新在线观看| 色视频www国产| 色噜噜av男人的天堂激情| 日韩欧美在线二视频| 在线免费观看的www视频| 国产探花在线观看一区二区| 淫秽高清视频在线观看| 搞女人的毛片| 中亚洲国语对白在线视频| 亚洲精品在线美女| 一进一出抽搐动态| 日韩成人在线观看一区二区三区| 欧美极品一区二区三区四区| 色综合亚洲欧美另类图片| 夜夜躁狠狠躁天天躁| 欧美日韩中文字幕国产精品一区二区三区| 人人妻人人看人人澡| 精品免费久久久久久久清纯| 波野结衣二区三区在线 | 亚洲国产精品久久男人天堂| 在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 国产蜜桃级精品一区二区三区| 观看免费一级毛片| 国产亚洲欧美在线一区二区| 国产伦在线观看视频一区| 欧美激情在线99| 一区二区三区激情视频| 男插女下体视频免费在线播放| 亚洲成人久久性| 久久久色成人| 一区二区三区激情视频| 国产美女午夜福利| 成人三级黄色视频| 丰满人妻熟妇乱又伦精品不卡| 天堂动漫精品| 在线观看舔阴道视频| 国内毛片毛片毛片毛片毛片| 亚洲av五月六月丁香网| 禁无遮挡网站| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看成人毛片| 动漫黄色视频在线观看| 99精品久久久久人妻精品| ponron亚洲| 午夜激情福利司机影院| 国产高潮美女av| 久99久视频精品免费| 麻豆久久精品国产亚洲av| 国产美女午夜福利| 最好的美女福利视频网| 人妻久久中文字幕网| 亚洲国产精品999在线| 精品日产1卡2卡| 日本 av在线| 国产高清三级在线| 长腿黑丝高跟| 国产亚洲精品综合一区在线观看| 亚洲七黄色美女视频| 国产精品久久久久久久电影 | 97碰自拍视频| 首页视频小说图片口味搜索| www日本黄色视频网| 日本一本二区三区精品| 亚洲av美国av| 国产成+人综合+亚洲专区| 久99久视频精品免费| 亚洲,欧美精品.| 成年版毛片免费区|