• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Broadband Microstrip Antenna Based on Operation of Multi-Resonant Modes

    2019-07-18 02:00:02TaohuaChenYueyunChenRonglingJianZushenLiuandAlanYang
    Computers Materials&Continua 2019年7期

    Taohua Chen, Yueyun Chen, , Rongling Jian, Zushen Liu and Alan Yang

    Abstract: A novel broadband microstrip antenna under operation of TM1/2,0, TM10 and TM12 modes through a shorting wall and slots is proposed in this paper.Initially, an inverted U-shaped slot is adopted around the feeding point, which achieves a good impedance matching on TM10 mode and separates the patch into two parts.Additionally, a shorting wall is added underneath the edge of smaller patch to excite another onequarter resonant mode, i.e., TM1/2,0 mode of smaller patch close to TM10 mode to expand the impedance bandwidth.Further, the antenna width is enlarged and two symmetrical vertical rectangular slots are cut on the patch to reduce the frequency of TM12 mode to form a broadband.Based on the arrangements above, a wide impedance bandwidth with three minima can finally be achieved.The results show that the impedance bandwidth of proposed antenna for |S11|<-10 dB is extended to 26.5% (23.5-30.67 GHz), which is three times of the conventional antenna at same profile.Moreover, a stable radiation pattern at broadside direction is realized over the operating band.

    Keywords: Broadband, microstrip antenna, shorting wall, slots, three resonant modes.

    1 Introduction

    With the development of modern communication systems, microstrip antenna (MSA) has attracted much attention in wireless communication because of their low profile, small cost, and ease of manufacture [Chen, Jian, Ma et al.(2017)].However, conventional MSA always suffers from a narrow impedance bandwidth, usually less than 3% [Sun, Li, Zhang et al.(2017)].Thus, how to extend the bandwidth of MSA effectively becomes a hot research topic in recent years.

    Several methods have been proposed to improve the impedance bandwidth of MSA.The simplest method to expand bandwidth is enhancing the antenna thickness and decreasing the substrate permittivity [Constantine (2005)].However, using thick substrates will enlarge the surface wave leakage leading to a decrease in radiation efficiency and the lowest substrate dielectric constant is 1, i.e., air.

    Additionally, in Liao et al.[Liao, Xue and Xu (2012)], the feeding scheme was reconfigured to extend the impedance bandwidth to 115% by introducing another non resonant mode around the fundamental mode.In addition, the L-shaped and F-shaped probe feeds in Mak et al.[Mak, Lai and Luk (2018); Jin and Du (2015)] was adopted to enhance the bandwidth to 54% and 45%, respectively.The reason for bandwidth enhancement of these antennas is that the changed probes can eliminate the impedance inductance to make a great impedance matching.Nevertheless, it is difficult to implement the feeding scheme in a thin substrate.

    Moreover, slotting on the patch is another effective method, which was widely used in the past decades to expand the impedance bandwidth because of the simple implementation.The authors in Huynh et al.[Huynh and Lee (1995)] proposed a U-shaped slot on the radiating patch to extend the impedance bandwidth to 47%.When a U-shaped slot was adopted, the frequencies of higher-order modes were reduced to around that of fundamental mode to achieve a broadband [Deshmukh and Ray (2015)].Besides, in Yang et al.[Yang, Zhang, Ye et al.(2001)], a simple E-shaped microstrip patch was proposed.The antenna in Yang et al.[Yang, Zhang, Ye et al.(2001)] could exist two different current paths by two symmetrical vertical rectangular slots cut on the patch, which realized the combination of two resonant modes and enhanced the bandwidth to 30.3%.And in Deshmukh et al.[Deshmukh and Ray (2009)], the antenna bandwidth was extended to 24.6% by adopting a half U-shaped slot on the semi E-shaped antenna.Also, wang-shaped patch in Chung et al.[Chung and Wong (2010)], modified E-shaped patch in Koutinos et al.[Koutinos, Anagnostou, Joshi et al.(2018)] and modified U-slotted antenna in Costanzo et al.[Costanzo and Costanzo (2013)] were proposed for bandwidth enhancement.However, the all antennas with slots loaded on the patch mentioned above are high-profile antennas, which destroys the low-profile property of microstrip antenna.

    Furthermore, in recent years, coupling two odd modes of MSA together becomes a new attractive method.The TM10and TM30modes could be combined together to achieve bandwidth enhancement by shorting pins and slots, and the bandwidth was increased to 13%, 18% and 11.8% in Liu et al.[Liu, Zhu and Choi (2017)], Wang et al.[Wang, Ng, Chan et al.(2015)] and Liu et al.[Liu, Zhu, Choi et al.(2017)], respectively.In Liu et al.[Liu, Zhu, Choi et al.(2018); Liu, Zhu and Choi (2017)], through same method to combine TM10and TM12modes, the impedance bandwidth was increased to 10% and 15.3%, respectively.However, since only two odd modes are combined, the impedance bandwidth of these antennas are only twice as wide as that of traditional microstrip antennas, which may hinder the application of these MSAs in broadband communication systems.

    In this paper, a novel patch antenna under operation of TM1/2,0, TM10and TM12modes through a shorting wall and slots is proposed to achieve bandwidth expansion.Firstly, an inverted U-shaped slot is loaded around the feeding point on the patch to achieve a good impedance matching and separates the patch into two parts.Secondly, a shorting wall is added underneath the smaller patch produced by the inverted U-shaped slot, which will excite another resonant mode, i.e., TM1/2,0of smaller patch antenna close to TM10mode to expand the impedance bandwidth.Thirdly, to further extend the bandwidth, the antenna width is enlarged and two symmetrical vertical rectangular slots is cut on the patch to reduce the frequency of TM12mode to form a broadband.Finally, a broadband of 26.5% (23.5-30.67 GHz) for |S11| < -10 dB is achieved and the impedance bandwidth is three times that of conventional antenna at same profile.Moreover, a stable radiation pattern at the broadside direction is realized over the operating band.In this paper, fullwave simulation software HFSS 13.0 is used for simulation calculation.

    2 Antenna configuration and design process

    2.1 Antenna configuration

    The configuration of the proposed broadband microstrip antenna is shown in Fig.1.It consists of a rectangular radiating patch with the size of L×W, a ground plane with the size of Ls×Ws, an inverted U-shape slot with the width of W2, two symmetrical vertical rectangular slots with the size of L×W1and a shorting wall with the dimensions of W3×H which is L3distance from the lower edge of patch.Between the patch and the ground, a dielectric substrate RO5880 with a permittivity of εr=2.2 and a thickness of H=0.787 mm is selected in this paper for antenna design.And all parameters for the proposed broadband antenna in Fig.1 are tabulated in Tab.1.

    Firstly, the inverted U-shaped slot is adopted to achieve impedance matching of the traditional antenna and separates the patch into two parts.Secondly, a shorting wall is added to connect the smaller patch and ground to excite a one-quarter wavelength resonant mode, i.e., TM1/2,0of the smaller patch to expand the impedance bandwidth.To further extend the bandwidth, the antenna width is enlarged and two symmetrical vertical rectangular slots are cut on the patch to reduce the frequency of TM12mode.Finally, a wideband antenna can be realized with three minima in operating band.

    Figure 1: Configuration of the proposed broadband antenna loaded with a shorting wall and slots (a) 3D view.(b) Top view.(c) Right view.(d) Front view

    Table 1: Dimensions of the proposed broadband antenna in Fig.1 (mm)

    2.2 Design process

    In order to expand the impedance bandwidth of microstrip antenna, the structure of traditional microstrip antenna is modified.The design process of proposed broadband antenna is shown in Fig.2.

    Initially, the ANT 1 is an inverted U-shaped slot cut around the feeding point on the radiating patch of the conventional antenna to achieve impedance matching.Then, for the ANT 2, another resonant mode near TM10mode is excited through a shorting wall added underneath the edge of smaller patch produced by the inverted U-shaped slot.To further expand the impedance bandwidth, for the ANT 3, i.e., proposed antenna, the antenna width is enlarged and two symmetrical vertical rectangular slots are cut on the patch to reduce the frequency of TM12mode close to that of TM10mode.The radiating patches of ANT 1 and ANT 2 are with the same size (W=1.5 L), and the patch width of ANT 3 is enlarged to twice of the length.The simulated reflection coefficients are shown in Fig.3.The antennas dimensions are optimized to good impedance matching.It can be observed from the Fig.3 that the impedance bandwidth for |S11|<-10 dB of ANT 1 is 9.4% (24.17-26.55 GHz), and is 18.4% (23.45-28.2 GHz) for ANT 2.The reason of enhancement of the impedance bandwidth is that another resonant mode, i.e., TM1/2,0mode which is excited through a shorting wall underneath the smaller patch produced by the inverted Ushaped slot is coupled to the fundamental TM10mode.As for the proposed antenna ANT 3, the impedance bandwidth is further extended to 26.5% (23.5-30.67 GHz).Through two symmetrical vertical rectangular slots and increasing the patch width to twice of the length, for ANT 3, another resonant mode, i.e., TM12mode is added to form a wider bandwidth, which can be easily observed from Fig.3.

    Figure 2: Design process of proposed antenna

    Figure 3: Simulated reflection coefficients of three antennas

    2.3 Operating mechanism

    To understand the operating mechanism of the proposed antenna, Fig.4 plots the electric field distributions of the radiating patch.For the electric field distributions at 24.18 GHz, the electric field is mainly distributed at lower edge of the smaller patch around the feeding point, which is similar to the one-quarter wavelength resonant mode, i.e., TM1/2,0mode of smaller patch.While at the 27.74 GHz, the electric field distributions are similar to the fundamental TM10mode which is mainly distributed at the edge of conventional patch.In addition, for the 30.39 GHz, the electric field is mainly distributed at the patches on left and right sides produced by two symmetrical vertical rectangular slots.Compared with the electric field distributions of TM12mode in the patch without rectangular slots, the rectangular slots destroy the electric field distributions, which will reduce the frequency of TM12mode.Though coupling the three resonant modes together, a broadband microstrip antenna can be realized.

    Figure 4: Simulated electric field distributions of proposed antenna.(a) 24.18 GHz.(b) 27.74 GHz.(c) 30.39 GHz

    2.4 Reducing the resonant frequency of TM12 mode

    In order to better illustrate how to reduce the frequency of TM12mode, the specific analysis is made in this subsection.According to the cavity model [Garg, Bhartia, Bahl et al.(2001)], the resonant frequencies (fmn) of TMmnmodes in microstrip antenna can be expressed as follows:

    where c is the light speed in the free space, εris the dielectric constant of substrate, and m=1, 2, 3 … and n=1, 2, 3 …

    Based on formula (1), the patch width (W) plays an important role in the frequency of TM12mode (f12), yet has no effect on that of TM10mode (f10).Therefore, when W is increased, f12will be reduced while f10keeps constant.In this paper, considering the antenna size, the patch width is enlarged to twice of the length.However, when patch width is twice of length, the distance of f10and f12is still large, which cannot to form a wide bandwidth.Thus, two symmetrical vertical rectangular slots are cut on the patch to further reduce f12.

    Initially, four symmetrical vertical rectangular slots are loaded on the patch, which can be observed at Fig.5.

    Figure 5: Antenna with four symmetrical vertical rectangular slots

    Figure 6: Current distribution of TM12 mode at different slots length.(a) Without slots, 39.57 GHz.(b) Lslot=0.2L, 36.17 GHz.(c) Lslot=0.4L, 31.27 GHz.(d) Lslot=0.5L, 30.26 GHz

    Because the four vertical rectangular slots are parallel to current flow direction of TM10mode, they have little effect on f10.However, for the TM12mode, the slots enlarge the horizontal current path, which will reduce the f12.To better understand the effects of four symmetrical vertical rectangular slots on TM12mode, the current distribution of TM12mode at different slots length is plotted on Fig.6, and the other antenna parameters are fixed as shown in Tab.1.

    It can be clearly seen from Fig.6 that the slots length has great effect on the TM12current path corresponding to f12.Moreover, Fig.6 also gives the f12at different slots length, we can find that the f12decreases from 39.57 GHz to 30.26 GHz as the slots length increases from 0 to 0.5L.Moreover, to better show the effect of slots length on f10and f12, Fig.7 plots the f10and f12varying with the slots length when other parameters are fixed.As can be observed from Fig.7, the f10keeps stable while f12decreases as the slots length increases, as predicted above.

    Figure 7: f10 and f12 varying with the slots length Lslot

    Finally, considering the all antenna performances, we select Lslot= 0.5L in this paper and for this reason there are only two large symmetrical vertical rectangular slots at last.Note that the TM02mode between TM10and TM12modes is removed when Lslot= 0.5L is adopted, and the radiation peak of TM12mode is changed to boresight because of the slots [Xiao, Wang, Shao et al.(2005)].

    3 Parametric studies

    To deeply understand how the influence of dimensional parameters on the proposed antenna performances and design flow, parametric studies for the proposed wideband antenna is carried out by using HFSS 13.0.In this paper, several key parameters listed in Tab.1 are extensively studied under other parameters to be fixed.

    3.1 Effects of two symmetrical vertical rectangular slots position L1 and width W1

    Fig.8 plots the simulated results of the |S11| as a function of frequency at different symmetrical vertical rectangular slots position L1.As can be observed from the Fig.8, compared with the third resonant mode, i.e., TM12mode, the first resonant mode (TM1/2,0mode) and second resonant mode (TM10mode) are less influenced by the vertical rectangular slots position L1.The reason is that two symmetrical vertical rectangular slots cut off the horizontal current of TM12mode, while have little effect on the vertical current of TM1/2,0and TM10modes.When L1is from 3.1 mm to 3.5 mm, the impedance matching of TM12mode becomes better gradually and the frequency of TM12mode increases.Yet, when L1=3.5 mm, the band between TM10and TM12mode becomes mismatched, and the best bandwidth can be obtained at L1=3.3 mm from Fig.8.

    Figure 8: |S11| as a function of frequency at different L1

    Figure 9: |S11| as a function of frequency at different W1

    In Fig.9, the |S11| as a function of frequency at different vertical rectangular slots width W1is illustrated.Like L1, the W1has little effect on the TM1/2,0mode.However, the W1begins to affect TM10and TM12modes concurrently.The wider the W1, the closer the distance between TM10and TM12modes.And the widest bandwidth can be seen at W1=1.0 mm from Fig.9.

    3.2 Effects of smaller patch length L3 and width W3

    Fig.10 gives the |S11| as a function of frequency at different smaller patch length L3.As expected, the L3has a great impact on the TM1/2,0mode.When L3increases from 1.2 mm to 1.4 mm, the frequency of TM1/2,0corresponding to the L3decreases.Meanwhile, the L3affects the impedance matching of all three modes.And the best value of L3can be found from Fig.10 is L3=1.3 mm.

    Figure 10: |S11| as a function of frequency at different L3

    Figure 11: |S11| as a function of frequency at different W3

    Fig.11 shows the |S11| as a function of frequency at different smaller patch width W3.The W3mainly affects the impedance matching of three resonant modes and has little influence on the resonant frequencies of three modes.Considering the whole |S11| performance in Fig.11, the W3=0.5 mm is selected in this paper.

    3.3 Effects of inverted U-shaped slot width W2 and feeding position P

    Fig.12 and Fig.13 plot the |S11| as a function of frequency at different inverted U-shaped slot width W2and feeding position P, respectively.

    Figure 12: |S11| as a function of frequency at different W2

    Figure 13: |S11| as a function of frequency at different P

    As can be observed from Fig.12, the W2mainly influences the impedance matching of TM1/2,0and TM10modes.And best |S11| performance of TM1/2,0and TM10modes is achieved at W2=0.03 mm.However, the band between TM10and TM12mode is mismatched at W2=0.03 mm.Thus, considering the whole |S11| performance, in this paper, W2=0.04 mm is selected.For the feeding position P, as can be seen from Fig.13, it has great effects on the matching condition.Moreover, the best value of P is realized at P=0.92 mm.

    4 Results and discussion

    The reflection coefficient of proposed broadband microstrip antenna is plotted in Fig.14.

    Figure 14: |S11| of proposed broadband antenna

    Figure 15: Gain at broadside direction of proposed antenna

    It can be observed from Fig.14 that the impedance bandwidth for |S11|<-10 dB is extended to 26.5%, ranging from 23.5 to 30.67 GHz.Meanwhile, there are three minima in the operating band, which is consistent with the three resonant modes mentioned above.Compared with the conventional antenna bandwidth of 9.4% at the same profile, the impedance bandwidth of proposed antenna is about three times that of the conventional antenna through coupling three resonant modes together.

    Figure 16: Normalized radiation patterns of proposed antenna at 24.18, 27.74 and 30.39 GHz

    Moreover, the gain as a function of frequency at broadside direction of proposed antenna is illustrated in Fig.15.It can be seen from Fig.15 that the proposed antenna has obtained a stable gain of around 6 dBi at the broadside direction in the operating band, which shows that the proposed wideband antenna has a good gain performance in the operating band.

    Fig.16 gives the normalized radiation patterns of proposed antenna at three minima of 24.18, 27.74 and 30.39 GHz.As for the E-plane, the co-polarization radiation patterns are a little asymmetric because of the asymmetric antenna structure.Yet, it is still stable at the operating band.Meanwhile, the cross-polarization level in E-plane is lower than -30 dB over the operating band, which indicates that the proposed broadband antenna has a good radiation performance in E-plane.While for the H-plane, the co-polarization radiation patterns are symmetric, and the cross-polarization level in the broadside direction is lower than -40 dB over the operating band.

    5 Conclusion

    In this paper, a novel broadband microstrip antenna is proposed and analyzed.A shorting wall is adopted to excite a one-quarter resonant mode (TM1/2,0mode) close to the fundamental mode (TM10mode) to expand the impedance bandwidth.Further, through two symmetrical vertical rectangular slots and enlarging the antenna width to twice of the length, the TM12mode is also adjusted in proximity to the TM10mode.Finally, a broadband microstrip antenna with impedance bandwidth of 26.5% for |S11|<-10 dB is achieved, and its bandwidth is about three times of the conventional antenna at same profile.In addition, a stable radiation pattern at the broadside direction is realized over the operating band.The proposed antenna is compact and wideband, it can be used for 5G wireless communication in the future.

    Acknowledgement:This work was supported by National Science and Technology Major Project No.2017ZX03001021-005.

    References

    Chen, Y.Y.; Jian, R.L.; Ma, S.S.; Mohadeskasaei, S.A.(2017): A research for millimeter wave patch antenna and array synthesis.IEEE Wireless and Optical Communication Conference, pp.1-5.

    Chung, K.L.; Wong, C.H.(2010): Wang-shaped patch antenna for wireless communications.IEEE Antennas & Wireless Propagation Letters, vol.9, no.1, pp.638-640.

    Constantine, A.B.(2005): Antenna Theory: Analysis and Design.John Wiley & Sons, USA.Costanzo, S.; Costanzo, A.(2013): Compact U-slotted antenna for broadband radar applications.Journal of Electrical and Computer Engineering,vol.2013, pp.10.

    Deshmukh, A.A.; Ray, K.P.(2009): Compact broadband slotted rectangular microstrip antenna.IEEE Antennas & Wireless Propagation Letters, vol.8, no.4, pp.1410-1413.

    Deshmukh, A.; Ray, K.P.(2015): Analysis of broadband variations of U-slot cut rectangular microstrip antennas.IEEE Antennas and Propagation Magazine, vol.57, no.2, pp.181-193.

    Garg, R.; Bhartia, P.; Bahl, I.; Ittipiboon, A.(2001): Microstrip Antenna Design Handbook.Artech House, UK.

    Huynh, T.; Lee, K.F.(1995): Single-layer single-patch wideband microstrip antenna.Electronics Letters, vol.31, no.16, pp.1310-1312.

    Jin, Y.; Du, Z.(2015): Broadband dual-polarized F-probe fed stacked patch antenna for base stations.IEEE Antennas & Wireless Propagation Letters, vol.14, pp.1121-1124.

    Koutinos, A.G.; Anagnostou, D.E.; Joshi, R.; Podilchak, S.K.; Kyriacou, G.A.et al.(2018): Modified easy to fabricate E-shaped compact patch antenna with wideband and multiband functionality.IET Microwaves, Antennas & Propagation, vol.12, no.3, pp.326-331.

    Liao, S.W.; Xue, Q.; Xu, J.H.(2012): Parallel-plate transmission line and L-plate feeding differentially driven H-slot patch antenna.IEEE Antennas & Wireless Propagation Letters, vol.11, no.8, pp.640-644.

    Liu, N.W.; Zhu, L.; Choi, W.W.(2017): A differential-fed microstrip patch antenna with bandwidth enhancement under operation of TM10and TM30modes.IEEE Transactions on Antennas and Propagation, vol.65, no.4, pp.1607-1614.

    Liu, N.W.; Zhu, L.; Choi, W.W.(2017): A low-profile wide-bandwidth planar inverted-F antenna under dual resonances: principle and design approach.IEEE Transactions on Antennas and Propagation, vol.65, no.10, pp.5019-5025.

    Liu, N.W.; Zhu, L.; Choi, W.W.; Zhang, X.(2017): Wideband shorted patch antenna under radiation of dual resonant modes.IEEE Transactions on Antennas and Propagation, vol.65, no.6, pp.2789-2796.

    Liu, N.W.; Zhu, L.; Choi, W.W.; Zhang, X.(2018): A low-profile differential-fed patch antenna with bandwidth enhancement and sidelobe reduction under operation of TM10and TM12modes.IEEE Transactions on Antennas and Propagation, vol.66, no.9, pp.4854-4859.

    Mak, K.M.; Lai, H.W.; Luk, K.M.(2018): A 5G wideband patch antenna with antisymmetric L-shaped probe feeds.IEEE Transactions on Antennas and Propagation, vol.66, no.2, pp.1-1.

    Sun, W.; Li, Y.; Zhang, Z.; Feng, Z.(2017): Broadband and low-profile microstrip antenna using strip-slot hybrid structure.IEEE Antennas and Wireless Propagation Letters, vol.16, no.99, pp.3118-3121.

    Wang, D.; Ng, K.B.; Chan, C.H.; Wong, H.(2015): A novel wideband differentiallyfed higher-order mode millimeter-wave patch antenna.IEEE Transactions on Antennas and Propagation, vol.63, no.2, pp.466-473.

    Xiao, S.Q.; Wang, B.Z.; Shao, W.; Zhang, Y.(2005): Bandwidth-enhancing ultralowprofile compact patch antenna.IEEE Transactions on Antennas and Propagation, vol.53, no.11, pp.3443-3447.

    Yang, F.; Zhang, X.X.; Ye, X.; Rahmat-Samii, Y.(2001): Wide-band E-shaped patch antennas for wireless communications.IEEE Transactions on Antennas and Propagation, vol.49, no.7, pp.1094-1100.

    最近最新中文字幕大全电影3| 此物有八面人人有两片| avwww免费| 国产成人福利小说| 国产真实乱freesex| 亚洲天堂国产精品一区在线| 国产毛片a区久久久久| 国产三级中文精品| 亚洲最大成人av| 性色avwww在线观看| 中出人妻视频一区二区| 在线观看舔阴道视频| 国产精品一区二区性色av| 国产91精品成人一区二区三区| 两个人视频免费观看高清| 国产成人av教育| 亚洲av不卡在线观看| 日本撒尿小便嘘嘘汇集6| 狂野欧美白嫩少妇大欣赏| 国产真实乱freesex| 嫁个100分男人电影在线观看| 能在线免费观看的黄片| 亚洲成a人片在线一区二区| 国产精品国产高清国产av| 欧美精品啪啪一区二区三区| 国产白丝娇喘喷水9色精品| 国产一级毛片七仙女欲春2| 午夜福利在线在线| 色噜噜av男人的天堂激情| 亚洲av免费在线观看| 免费大片18禁| 国产成人影院久久av| 蜜桃亚洲精品一区二区三区| 欧美最黄视频在线播放免费| 国产精品国产高清国产av| 99视频精品全部免费 在线| 一区二区三区高清视频在线| 搡老岳熟女国产| 国产黄色小视频在线观看| xxxwww97欧美| 欧美日韩瑟瑟在线播放| 国产真实伦视频高清在线观看 | 久久中文看片网| 久久亚洲真实| 精品人妻一区二区三区麻豆 | av黄色大香蕉| 国产精品久久久久久久电影| 亚洲av成人av| 熟女人妻精品中文字幕| 好看av亚洲va欧美ⅴa在| av中文乱码字幕在线| or卡值多少钱| 亚洲av电影不卡..在线观看| 欧美区成人在线视频| 精品一区二区免费观看| 亚洲最大成人手机在线| 成人美女网站在线观看视频| 91午夜精品亚洲一区二区三区 | 免费在线观看亚洲国产| 真人做人爱边吃奶动态| 深夜a级毛片| 嫩草影院新地址| 久久久国产成人精品二区| 国产精品99久久久久久久久| 午夜a级毛片| 91久久精品国产一区二区成人| 亚洲av不卡在线观看| 伦理电影大哥的女人| 午夜福利欧美成人| 性插视频无遮挡在线免费观看| 免费黄网站久久成人精品 | 亚洲人成电影免费在线| 色5月婷婷丁香| 亚洲自拍偷在线| 制服丝袜大香蕉在线| 一级av片app| 欧美精品啪啪一区二区三区| 美女黄网站色视频| 成人av在线播放网站| 欧美潮喷喷水| 成人特级黄色片久久久久久久| 亚洲av成人不卡在线观看播放网| 亚洲专区中文字幕在线| 禁无遮挡网站| 亚洲人与动物交配视频| 97超级碰碰碰精品色视频在线观看| 级片在线观看| 一本综合久久免费| 此物有八面人人有两片| 男女做爰动态图高潮gif福利片| 少妇的逼好多水| 国产精品久久久久久人妻精品电影| 欧美乱妇无乱码| 狂野欧美白嫩少妇大欣赏| 老司机福利观看| a级一级毛片免费在线观看| h日本视频在线播放| 亚洲av成人不卡在线观看播放网| 亚洲综合色惰| 国产精品自产拍在线观看55亚洲| 在线观看午夜福利视频| 在线观看美女被高潮喷水网站 | 69av精品久久久久久| 久久久色成人| 亚洲精品乱码久久久v下载方式| 色综合婷婷激情| 精品一区二区三区视频在线观看免费| 亚洲精品日韩av片在线观看| 俺也久久电影网| 国内精品久久久久精免费| 日韩人妻高清精品专区| 女人十人毛片免费观看3o分钟| 精品久久久久久成人av| 99久久久亚洲精品蜜臀av| 国产一区二区亚洲精品在线观看| 无人区码免费观看不卡| 91九色精品人成在线观看| 亚洲国产精品999在线| 久久久久久久精品吃奶| 中文字幕久久专区| 人人妻人人澡欧美一区二区| 欧美在线一区亚洲| 亚洲在线自拍视频| 2021天堂中文幕一二区在线观| 欧美日韩乱码在线| 男女那种视频在线观看| 亚洲自拍偷在线| 欧美黑人巨大hd| av在线老鸭窝| 国产精品综合久久久久久久免费| 99国产综合亚洲精品| 婷婷丁香在线五月| 99久久久亚洲精品蜜臀av| 国产精品精品国产色婷婷| 国产v大片淫在线免费观看| 精品福利观看| 亚洲av日韩精品久久久久久密| 国产单亲对白刺激| 麻豆成人av在线观看| 欧美精品国产亚洲| 特大巨黑吊av在线直播| 国内精品美女久久久久久| 色综合站精品国产| 精品99又大又爽又粗少妇毛片 | 一个人观看的视频www高清免费观看| 日本黄色视频三级网站网址| 波野结衣二区三区在线| 日本五十路高清| 五月玫瑰六月丁香| 51午夜福利影视在线观看| 1024手机看黄色片| 黄色丝袜av网址大全| 国产探花极品一区二区| 97碰自拍视频| 欧美黑人欧美精品刺激| 日本 av在线| 极品教师在线免费播放| 1024手机看黄色片| 精品久久久久久久久久久久久| 亚洲最大成人中文| av天堂在线播放| 麻豆国产97在线/欧美| 午夜老司机福利剧场| 亚洲av不卡在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品人妻少妇| АⅤ资源中文在线天堂| 成人av在线播放网站| 看片在线看免费视频| 美女cb高潮喷水在线观看| 少妇人妻精品综合一区二区 | 一级a爱片免费观看的视频| 亚洲激情在线av| 51午夜福利影视在线观看| 老司机午夜十八禁免费视频| 日日夜夜操网爽| 午夜两性在线视频| www.色视频.com| 中亚洲国语对白在线视频| 中文字幕免费在线视频6| 久久久久久久久久成人| 婷婷精品国产亚洲av在线| 有码 亚洲区| 久9热在线精品视频| 尤物成人国产欧美一区二区三区| 伦理电影大哥的女人| 亚洲精品成人久久久久久| or卡值多少钱| 很黄的视频免费| 国产欧美日韩精品一区二区| 国产免费一级a男人的天堂| 美女高潮喷水抽搐中文字幕| 男人的好看免费观看在线视频| 中文字幕人妻熟人妻熟丝袜美| 国内少妇人妻偷人精品xxx网站| 亚洲七黄色美女视频| 久久人妻av系列| 国产av在哪里看| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品综合一区在线观看| 国产成年人精品一区二区| 日本黄色片子视频| 午夜福利高清视频| 18禁裸乳无遮挡免费网站照片| 在线播放无遮挡| 久久久成人免费电影| 三级毛片av免费| 看十八女毛片水多多多| 制服丝袜大香蕉在线| 精品一区二区三区av网在线观看| 国产主播在线观看一区二区| 国产精品亚洲av一区麻豆| 在线天堂最新版资源| 欧美一区二区亚洲| 国产在线精品亚洲第一网站| 国产精品av视频在线免费观看| 精品人妻熟女av久视频| 成人特级黄色片久久久久久久| 免费大片18禁| 国产色婷婷99| 亚洲美女视频黄频| 亚洲成a人片在线一区二区| 久久香蕉精品热| 欧美一区二区亚洲| 午夜视频国产福利| 美女高潮喷水抽搐中文字幕| 国产精品永久免费网站| 午夜影院日韩av| 日韩欧美精品免费久久 | 久久久久久久精品吃奶| 欧美日韩国产亚洲二区| 波多野结衣高清作品| 成人亚洲精品av一区二区| 成人av一区二区三区在线看| 美女cb高潮喷水在线观看| 特级一级黄色大片| a级毛片免费高清观看在线播放| 久久久久精品国产欧美久久久| 久久欧美精品欧美久久欧美| 真人一进一出gif抽搐免费| 久久久久国产精品人妻aⅴ院| 一二三四社区在线视频社区8| 极品教师在线视频| 国产av在哪里看| 午夜免费激情av| 欧美绝顶高潮抽搐喷水| 亚洲最大成人av| 国产精品一区二区免费欧美| 99久久精品热视频| 国产单亲对白刺激| 2021天堂中文幕一二区在线观| 给我免费播放毛片高清在线观看| 国产精品1区2区在线观看.| 欧美性感艳星| 午夜视频国产福利| 国产一区二区在线av高清观看| 亚洲第一电影网av| 少妇被粗大猛烈的视频| 熟女人妻精品中文字幕| 人妻夜夜爽99麻豆av| 久久亚洲真实| 亚洲国产精品合色在线| 九九热线精品视视频播放| av在线老鸭窝| 91麻豆精品激情在线观看国产| 一级av片app| 中文字幕av成人在线电影| a在线观看视频网站| 中文资源天堂在线| 国产主播在线观看一区二区| 久9热在线精品视频| 亚洲内射少妇av| 久久久精品欧美日韩精品| 亚洲精品久久国产高清桃花| 一级av片app| 黄色配什么色好看| 婷婷色综合大香蕉| 亚洲七黄色美女视频| 蜜桃久久精品国产亚洲av| av天堂中文字幕网| 国产成年人精品一区二区| 国产人妻一区二区三区在| 美女被艹到高潮喷水动态| 我的老师免费观看完整版| 久久中文看片网| 可以在线观看的亚洲视频| 特级一级黄色大片| 琪琪午夜伦伦电影理论片6080| 级片在线观看| 亚洲综合色惰| 精品久久久久久成人av| av国产免费在线观看| 亚洲人与动物交配视频| 老熟妇仑乱视频hdxx| www.www免费av| 黄色一级大片看看| 69人妻影院| 18+在线观看网站| 长腿黑丝高跟| 精品一区二区三区av网在线观看| 亚洲av美国av| 又黄又爽又刺激的免费视频.| 亚洲片人在线观看| 一卡2卡三卡四卡精品乱码亚洲| 精品人妻1区二区| 成人性生交大片免费视频hd| 三级国产精品欧美在线观看| 成年人黄色毛片网站| 婷婷精品国产亚洲av| 一夜夜www| 中文字幕av在线有码专区| 亚洲国产欧洲综合997久久,| 99热这里只有是精品50| 久久久成人免费电影| 亚洲av不卡在线观看| 午夜影院日韩av| 热99re8久久精品国产| 精品一区二区三区视频在线观看免费| 久久性视频一级片| 国产精品亚洲一级av第二区| 18美女黄网站色大片免费观看| 一个人看视频在线观看www免费| 最近视频中文字幕2019在线8| 欧美潮喷喷水| 国产精品日韩av在线免费观看| 久久久久久久亚洲中文字幕 | 欧洲精品卡2卡3卡4卡5卡区| 悠悠久久av| 两个人视频免费观看高清| 亚洲avbb在线观看| 一级黄片播放器| 内射极品少妇av片p| 偷拍熟女少妇极品色| 禁无遮挡网站| 欧美乱色亚洲激情| 十八禁网站免费在线| 亚洲av一区综合| 一个人免费在线观看电影| 热99re8久久精品国产| 亚洲人成网站高清观看| 少妇人妻一区二区三区视频| 性色avwww在线观看| 亚洲无线观看免费| 亚州av有码| 蜜桃久久精品国产亚洲av| 神马国产精品三级电影在线观看| 亚洲精品影视一区二区三区av| 国产亚洲精品av在线| 男女床上黄色一级片免费看| 国产成人欧美在线观看| av在线蜜桃| 夜夜爽天天搞| 麻豆一二三区av精品| 香蕉av资源在线| 亚洲一区高清亚洲精品| 麻豆久久精品国产亚洲av| 乱人视频在线观看| 久久久精品大字幕| 男女下面进入的视频免费午夜| 亚洲成av人片免费观看| 国产免费男女视频| 国产三级黄色录像| 国产精品永久免费网站| 日韩欧美国产一区二区入口| 一本久久中文字幕| 免费人成在线观看视频色| 日本 av在线| 99久久精品国产亚洲精品| h日本视频在线播放| 一个人免费在线观看的高清视频| 在线播放国产精品三级| 亚洲av成人不卡在线观看播放网| 69av精品久久久久久| 中文字幕av在线有码专区| 精品一区二区免费观看| 国产69精品久久久久777片| 欧美三级亚洲精品| 久久久久久久精品吃奶| 波多野结衣巨乳人妻| 精品一区二区免费观看| 老司机午夜十八禁免费视频| 久久精品91蜜桃| 日本a在线网址| 日日摸夜夜添夜夜添小说| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人与动物交配视频| 女同久久另类99精品国产91| 久久久精品欧美日韩精品| 观看免费一级毛片| 一a级毛片在线观看| 午夜激情欧美在线| 国产老妇女一区| 日本免费a在线| 99热精品在线国产| 日韩欧美一区二区三区在线观看| 亚洲成a人片在线一区二区| 三级国产精品欧美在线观看| 国产黄色小视频在线观看| 日日摸夜夜添夜夜添小说| 国产欧美日韩一区二区三| 国产亚洲欧美98| 成人av一区二区三区在线看| 欧美成人一区二区免费高清观看| 亚洲无线观看免费| 天堂√8在线中文| 亚洲不卡免费看| 国产av在哪里看| 一级作爱视频免费观看| 亚洲精品一卡2卡三卡4卡5卡| 国内毛片毛片毛片毛片毛片| 中文字幕久久专区| 男女做爰动态图高潮gif福利片| 国产亚洲欧美98| 91九色精品人成在线观看| 久久精品综合一区二区三区| 欧美xxxx性猛交bbbb| 精品不卡国产一区二区三区| 丝袜美腿在线中文| 特级一级黄色大片| 美女xxoo啪啪120秒动态图 | 国产精品亚洲一级av第二区| 欧美一区二区亚洲| 国产激情偷乱视频一区二区| 国产91精品成人一区二区三区| 午夜福利成人在线免费观看| 日韩欧美精品v在线| 久久午夜亚洲精品久久| 国产午夜精品论理片| 国产av不卡久久| 99久国产av精品| 国内少妇人妻偷人精品xxx网站| 国模一区二区三区四区视频| 两性午夜刺激爽爽歪歪视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人成网站高清观看| 久久精品夜夜夜夜夜久久蜜豆| 女人被狂操c到高潮| 精品人妻偷拍中文字幕| 日韩高清综合在线| 婷婷亚洲欧美| or卡值多少钱| 12—13女人毛片做爰片一| 欧美日韩乱码在线| 91在线观看av| 亚洲熟妇中文字幕五十中出| 久久国产精品人妻蜜桃| 一区福利在线观看| 首页视频小说图片口味搜索| 国产乱人视频| 久久久国产成人免费| 亚洲国产高清在线一区二区三| 午夜福利在线观看吧| 在线十欧美十亚洲十日本专区| 听说在线观看完整版免费高清| 日日摸夜夜添夜夜添小说| 国产精品一区二区三区四区久久| 亚洲第一电影网av| 国产精品av视频在线免费观看| 色综合欧美亚洲国产小说| 亚洲乱码一区二区免费版| 午夜激情欧美在线| 悠悠久久av| 久9热在线精品视频| 成年女人看的毛片在线观看| 国产精品久久视频播放| 激情在线观看视频在线高清| 性色av乱码一区二区三区2| 日韩欧美在线乱码| 一二三四社区在线视频社区8| 久久国产精品人妻蜜桃| 亚洲,欧美精品.| 国产成人a区在线观看| 色吧在线观看| 午夜久久久久精精品| 黄色女人牲交| 国产成人啪精品午夜网站| a在线观看视频网站| 国产精品亚洲美女久久久| 我要看日韩黄色一级片| 精品久久久久久久人妻蜜臀av| 欧美黑人欧美精品刺激| 亚洲天堂国产精品一区在线| 国产主播在线观看一区二区| 免费看日本二区| 午夜福利18| 麻豆成人午夜福利视频| 日本黄大片高清| 美女cb高潮喷水在线观看| 亚洲成人免费电影在线观看| 午夜老司机福利剧场| 三级男女做爰猛烈吃奶摸视频| 亚洲国产精品成人综合色| 国产精品一区二区三区四区免费观看 | 日韩av在线大香蕉| 欧美绝顶高潮抽搐喷水| 日韩欧美免费精品| 国产伦在线观看视频一区| 国产精品女同一区二区软件 | 国产精品98久久久久久宅男小说| 99久久无色码亚洲精品果冻| 伦理电影大哥的女人| 天美传媒精品一区二区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av一区综合| 国产精品99久久久久久久久| 俄罗斯特黄特色一大片| 国产成+人综合+亚洲专区| 18禁在线播放成人免费| 久久久久免费精品人妻一区二区| 亚洲av电影在线进入| 国产精品野战在线观看| a级毛片免费高清观看在线播放| 欧美潮喷喷水| 亚洲国产欧美人成| 看片在线看免费视频| 亚洲av日韩精品久久久久久密| 在线播放无遮挡| 欧美性猛交黑人性爽| 国产亚洲精品综合一区在线观看| 嫩草影院精品99| 好看av亚洲va欧美ⅴa在| 免费看美女性在线毛片视频| 国产伦一二天堂av在线观看| 国内毛片毛片毛片毛片毛片| 久久久久久久久久成人| a级毛片a级免费在线| 中文字幕av在线有码专区| 亚洲最大成人av| 欧美激情国产日韩精品一区| 一个人免费在线观看电影| 亚洲欧美日韩东京热| 一区二区三区四区激情视频 | 人人妻,人人澡人人爽秒播| 久99久视频精品免费| 午夜福利高清视频| 午夜激情欧美在线| 亚洲精品一区av在线观看| 久久草成人影院| www日本黄色视频网| 午夜福利成人在线免费观看| 亚洲美女视频黄频| 色尼玛亚洲综合影院| 国产蜜桃级精品一区二区三区| 午夜福利成人在线免费观看| 色综合亚洲欧美另类图片| av在线老鸭窝| 九色成人免费人妻av| 看片在线看免费视频| 国产精品女同一区二区软件 | 国产黄片美女视频| 久久天躁狠狠躁夜夜2o2o| 午夜两性在线视频| 精品欧美国产一区二区三| 国产高清视频在线播放一区| 精品无人区乱码1区二区| 国产三级在线视频| 久久99热6这里只有精品| 好男人电影高清在线观看| 三级毛片av免费| 国产野战对白在线观看| 蜜桃亚洲精品一区二区三区| 中文字幕人成人乱码亚洲影| 欧美极品一区二区三区四区| 日韩欧美一区二区三区在线观看| 国产在线精品亚洲第一网站| 国产av不卡久久| 在线播放无遮挡| 日本免费a在线| 一个人看视频在线观看www免费| 国产高清有码在线观看视频| 国产精品一区二区三区四区免费观看 | 亚洲男人的天堂狠狠| 欧美午夜高清在线| 怎么达到女性高潮| 九色成人免费人妻av| 中文字幕av在线有码专区| 国产国拍精品亚洲av在线观看| 国产欧美日韩精品一区二区| 综合色av麻豆| 99国产精品一区二区三区| 亚洲无线在线观看| 久久久久久久久久成人| 成人午夜高清在线视频| 精品不卡国产一区二区三区| 1024手机看黄色片| 国产av在哪里看| 欧美日韩亚洲国产一区二区在线观看| 亚洲av.av天堂| 九色国产91popny在线| 久久精品综合一区二区三区| 欧美激情国产日韩精品一区| 亚洲精品影视一区二区三区av| 亚洲中文字幕一区二区三区有码在线看| 日韩 亚洲 欧美在线| av天堂在线播放| 人妻久久中文字幕网| 色吧在线观看| 波多野结衣巨乳人妻| 亚洲最大成人av| 成人永久免费在线观看视频| 色播亚洲综合网| 亚洲第一区二区三区不卡| 午夜激情欧美在线| 欧美bdsm另类| 亚洲人成网站高清观看| 淫秽高清视频在线观看| 又黄又爽又免费观看的视频| 桃红色精品国产亚洲av| 亚洲精品亚洲一区二区| 一级av片app| 亚洲,欧美精品.| 人人妻人人看人人澡| 69av精品久久久久久| 欧美三级亚洲精品| 国产69精品久久久久777片|