• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Network Embedding-Based Anomalous Density Searching for Multi-Group Collaborative Fraudsters Detection in Social Media

    2019-07-18 02:00:00ChengzhangZhuWentaoZhaoQianLiPanLiandQiaoboDa
    Computers Materials&Continua 2019年7期

    Chengzhang Zhu , Wentao Zhao, , Qian Li Pan Li and Qiaobo Da

    Abstract: Detecting collaborative fraudsters who manipulate opinions in social media is becoming extremely important in order to provide reliable information, in which, however, the diversity in different groups of collaborative fraudsters presents a significant challenge to existing collaborative fraudsters detection methods.These methods often detect collaborative fraudsters as the largest group of users who have the strongest relation with each other in the social media, consequently overlooking the other groups of fraudsters that are with strong user relation yet small group size.This paper introduces a novel network embedding-based framework NEST and its instance BEST to address this issue.NEST detects multiple groups of collaborative fraudsters by two steps.In the first step, to disclose user collaboration, it represents users according to their social relations.Then, in the second step, to identify the collaborative fraudsters, it detects the user groups with anomalous large group density in its representation space.BEST instantiates NEST by using a bipartite network embedding method to represent users and adopting a fast density group detection method based on the k-dimensional tree.Our experiments show BEST (i) performs significantly better in detecting fraudsters on four real-word social media data sets, and (ii) effectively detects multiple groups of collaborative fraudsters, compared to three state-of-the-art competitors.

    Keywords: Fraudster detection, network embedding, social media.

    1 Introduction

    The reliability of social media content is becoming increasingly significant because social media heavily affects people every day.Unfortunately, a large proportion of social media content is proposed by fraudsters who collaborate to manipulate social opinions driven by huge profit and incentives of reputation [Mukherjee, Venkataraman, Liu et al.(2013); Xiang, Li, Hao et al.(2018)].As a result, effectively detecting such collaborative fraudsters is critical and with great bossiness values [Akoglu, Chandy and Faloutsos (2013)].

    Recent year has seen significant progress made in fraudsters detection.Current efforts mainly focused on extracting fraudster indicators and/or features from users’ behavior [Mukherjee, Liu and Glance (2012); Ye and Akoglu (2015); Hooi, Shin, Song et al.(2017)] or users’ proposed content [Mukherjee, Venkataraman, Liu et al.(2013); Wang, Liu and Zhao (2017); You, Qian and Liu (2018)].Because of the great distinguishing ability of anomalous behavior and content, these indicators and/or features have shown remarkable performance in detecting individual fraudsters [Rayana and Akoglu (2016)].However, identifying fraudsters with collaborative manipulation is a challenging task.Specifically, the collaborative manipulation poses the two major challenges below: (i) The content of collaborative fraudsters may not be anomalous because the collaborative manipulation may dominate social opinions.(ii) The professional fraudsters will imitate the behavior of honest users to evade inspection [Hooi, Song, Beutel et al.(2016)].These two challenges cause the failure of current behavior and content-based fraudsters detection methods in detecting collaborative fraudsters.

    To detect collaborative fraudsters, the dense subgraph mining methods [Hooi, Song, Beutel et al.(2016); Hooi, Shin, Song et al.(2017); Wu, Hu, Morstatter et al.(2017); Liu, Hooi and Faloutsos (2017); Xiang, Shen, Qin et al.(2018); Xiang, Zhao, Li et al.(2018)] are the major solutions, which detect collaborative fraudsters according to the significant collaboration footprint.Specifically, the dense subgraph mining methods always detect collaborative fraudsters as the largest group of users who have the strongest relation with each other in the social media.However, in this way, they may overlook the other groups of fraudsters that are with strong user relation yet small group size.In reality, social media may contain multiple groups of collaborative fraudsters instead of only the largest group of collaborative fraudsters.

    In this paper, we introduce a novel Network Embedding-based denSiTy subgraph mining (NEST for short) framework for multi-group collaborative fraudsters detection in social media.Specifically, NEST first represents users according to their social relations to dis- close user collaboration.In this process, users who have similar activities will be embed- ded near to each other in the representation space.NEST then detects the user groups with anomalous large group density in its representation space to identify the collaborative fraudsters.Accordingly, any group of collaborative fraudsters with large joint activities can be effectively detected.

    Essentially, this detection procedure simultaneously tackles three challenges brought by collaborative fraudsters: content domination, behavior camouflage, and multiple fraudsters groups, resulting in a robust and comprehensive collaborative fraudsters detecting result.In the first step, NEST solves the content domination and behavior camouflage problems by distilling user social relations which are reflected in users’ joint activities.The rationale is that the cooperation of collaborative fraudsters to manipulate opinions cannot be avoided.In the second step, NEST discovers fraudsters groups by analyzing the outlier of group density in its representation space.The intuition is that the joint activities of collaborative fraudsters must be more frequent than honest users, but the number of fraudsters is much less than honest users.

    We further implement NEST by proposing a Bipartitie networking Embedding-based fast denSiTy subgraph mining method based on the k-dimensional tree structure, termed BEST.Specifically, BEST first models the users and their activities as a bipartite network as demonstrated in Fig.1.In the bipartite network, the nodes on each side are users and activities, and a link refers to a user participates in an activity.Then, to comprehensively capture user collaborations, BEST represents users by embedding both the explicit and implicit relations in the bipartite network.Lastly, to fast detect the collaborative fraudsters, BEST builds a k-dimensional tree for the representation space and searches the anomalous density group based on the k-dimensional tree.

    Accordingly, this paper makes two major contributions:

    ● We introduce a novel network embedding-based framework NEST for identifying collaborative fraudsters in social media.NEST represents users according to their social relations and detects fraudsters by analyzing the outlier of group density in the representation space.It results in a more reliable and comprehensive collaborative fraudsters detection, compared to existing dense subgraph mining-based solutions.

    ● We instantiate NEST to an effective and efficient multi-group collaborative fraudsters detection method, BEST, by introducing bipartite network embedding and k- dimensional tree-based anomalous density group searching.The bipartite network embedding captures both explicit and implicit user relations, and the k-dimensional tree-based method guarantees the efficiency of density groups searching.

    Extensive empirical results show that (i) BEST performs significantly better in detecting fraudsters on four large real-world social media data sets; and (ii) BEST effectively detects multiple groups of collaborative fraudsters, compared to three state-of-the-art competitors.

    2 Related work

    2.1 Fraudster detection

    Current efforts on fraudster detection can be roughly classified into two categories:

    individual characteristics-based methods and relational characteristics-based methods.The individual characteristics-based methods use the user proposed content and/or user’s behavior to identify whether a user is a fraudster.The information used by these methods mainly include the statics and linguistic characteristics of a content [Li, Huang, Yang et al.(2011); Mukherjee, Kumar, Liu et al.(2013); Wang, Liu and Zhao (2017); You, Qian and Liu (2018)], and the historical actions of a user [Fei, Mukherjee, Liu et al.(2013); Mukherjee, Venkataraman, Liu et al.(2013)].These individual characteristics are designed as features for fraudster detection [Jindal and Liu (2008); Lim, Nguyen, Jindal et al.(2010); Zhao, Resnick and Mei (2015); Li, Fei, Wang et al.(2017)].However, as evidenced by Hooi et al.[Hooi, Song, Beutel et al.(2016)], the individual characteristics are not robust for collaborative fraudsters who jointly manipulate social opinions and fraudsters may imitate the behavior of honest users.

    The relational characteristics-based methods capture user-activity, user-user, and activity-activity relations, typically via a graph [Pandit, Chau, Wang et al.(2007); Stringhini, Kruegel and Vigna (2010); Akoglu, Chandy and Faloutsos (2013); Junqué de Fortuny, Stankova, Moeyersoms et al.(2014); Akoglu, Tong and Koutra (2015); Shehnepoor, Salehi, Farahbakhsh et al.(2017)].They hold an assumption that fake reviews are manipulated by groups of fraudsters.With this assumption, they assume a group of fraudsters will have dense links to a group of manipulated activities (useractivity relation) [Akoglu, Chandy and Faloutsos (2013); Wang, Xie, Liu et al.(2011)], a group of fraudsters will co-occur in many activities (user-user relation) [Wu, Hu, Morstatter et al.(2017); Sun, Qu, Chakrabarti et al.(2005); Xu, Zhang, Chang et al.(2013)], and different manipulated activities will have overlapped linked fraudsters (activity-activity relation) [Hovy (2016)].

    Although current methods show their strengths to disclose fraudsters, most of them fail to discover multiple groups of collaborative fraudsters in social network.In this paper, we propose a networking-embedding based framework NEST to fill the gaps of multi- group collaborative fraudsters detection.The proposed NEST achieves a more reliable and comprehensive detection by revealing users within density groups in its representation space, which delicately embeds the user’s social relationships.

    2.2.Network embedding

    Our proposed method is based on network embedding, which can be categorized into two types: matrix factorization (MF)-based and neural network-based methods.

    MF-based methods involve linear [Cox and Cox (2000)] and nonlinear [Nedich and Ozdaglar (2008)] procedures in the embedding process.While the linear procedures adopt linear transformations, such as singular value decomposition (SVD) and multiple dimensional scaling (MDS), to generate low-dimensional embedding [Cox and Cox (2000)], the non- linear methods utilize nonlinear transformations, e.g.kernel PCA and manifold learning, to capture complicated data structures.However, both have high computational cost because of their eigen-decomposition operation on data matrix.Accordingly, these methods do not suit for large social network embedding.

    Recently, neural network-based methods have shown the state-of-the-art performance.Followed by DeepWalk [Perozzi, Al-Rfou and Skiena (2014)] and Node2Vec [Grover and Leskovec (2016)], most of neural network-based methods reformulate a network embedding task as a word embedding task via performing truncated random walks in a network to convert the network to sentences.More recently, advanced work embeds both explicit and implicit relations in a network and shows its significance [Tang, Qu, Wang et al.(2015); Wang, Cui and Zhu (2016); Cao, Lu and Xu (2015); Xu, Wei, Cao et al.(2017)].However, the above methods are not designed for social network embedding.They treat the nodes in a network homogeneously, and thus, cannot capture the difference between user and activity in social media.In addition, the truncated random walks used in these methods do not consider the user-activity joint distribution in social network.

    In this paper, we instantiate NEST as an effective and efficient method, BEST, via a bipartite network embedding method.This Bipartitie network embedding method is tailored for social media.Accordingly, it captures user-activity relations better in its user representation space, which provides a solid foundation for collaborative fraudsters detection.

    3 NEST for collaborative fraudster detection

    NEST framework adopts a two-steps procedure to detect collaborative fraudsters in social media.The workflow of NEST framework is shown in Fig.1.For a social media S with a set of usersand a set of activitiesin the first step, NEST extracts a bipartite network G from S aswhere U and A are the nodes on the two sides of G, respectively, and E U V? × defines the inter-set edges.Here, each edge in E carries a non-negative weightijw , reflecting the strength between a useriu and an activityja , and theijw will be zero if the useriu does not join the activityja .Accordingly, the weights in the bipartite network can be represented by a n × m matrix W =[ wij].Then, NEST learns an embedding function f(?):U→ Rd, which maps a useriu to a d dimensional vector representationiu .The embedding function f(?) should capture and embed the social relations of users in the bipartite network into their representation space.In the second step, NEST finds the anomalous density groups in the user representation space and treats the users in the anomalous density groups as collaborative fraudsters.

    Formally, NEST detects a set of collaborative fraudster groupsaccording to

    NEST has a good generalizability since it can be instantiated by specifying any network embedding method and any anomalous density groups searching method.We introduce an instance of NEST in next section and then verify its performance by empirical analyses.

    4 A NEST instance: BEST

    BEST instantiates NEST by a bipartite network embedding method catering for social net- work, and a k-dimensional tree-based anomalous density group searching method for efficient fraudsters detection.

    Figure 1: NEST Framework.In the first step, NEST extracts a bipartite network from social media data, and represents user into a vector space by embedding their social relation in the bipartite network.In the second step, NEST searches the anomalous density group of users in the representation space for collaborative fraudsters detection.The detected collaborative fraudsters are illustrated with a grey background, and their corresponding groups are highlighted by a dotted circle

    4.1 Bipartite network embedding

    The network embedding reveals and embeds social relations of a user into the user’s vector representation, which reflects the cooperation of users in social media.We introduce a bipartite network embedding method to jointly capture the explicit and implicate relations of users in social media.

    4.1.1 Explicit relations embedding

    The explicit relations refer to the direct links between users and activities, which reflect the activities a user jointed.If two users always joint similar activities, their similarity should be large in the representation space.

    To preserve the explicit relations, we keep the preference of users in their representation space.Specifically, we measure the preference of a user in both social media and representation space, and make the preference of a user in representation space similar to that in social media.For the preference measurement in social media, we consider the probability of a user join in an activity.Given the bipartite network, this probability can be calculated as follows:

    where wijis the weight of edge eij.The measurement reflects the preference distribution of users.We follow the setting of word2vec to use the sigmoid function to measure the interaction of a user and an activity in their representation space in a probability space:

    where ui∈Rdand aj∈Rdare the embedding vectors of uiand aj, respectively.Then, we adopt KL-divergence to measure the difference between P andand optimize the user and activity representation to minimize the KL-divergence as follows:

    Considering P(i,j) is a constant, minimizing the Eq.(4) equals to follows:

    4.1.2 Implicit relations embedding

    The implicit relations refer to the relations between users and activities that are not directly connected.For two users, if there exist a path between them in the bipartite network, they may have an implicit relation, and the weight of the path reflects the strength of this implicit relation.However, counting the paths between two nodes in a bipartite network has a great high complexity, which is impracticable in social media.

    Inspired by DeepWalk [Perozzi, Al-Rfou and Skiena (2014)], we also perform a truncated random walks on the network to generate nodes corpus as random walk paths, which contain higher order implicit relations between nodes.We move a step further to reconstruct the bipartite network G as two networks where each network only contains users G(u)or activitiesG(a), and conduct random walks on these two transformed networks.It results in a stationary distribution of random walks on social media data [Gao, Chen, He et al.(2018)].InG(u), uiand ujwill have an edgeif exists a tkthat∈ E and∈ E where E is the edge set ofG.InG(a), aiand ajwill have an edgeif exists a ukthat∈ E and∈ E where E is the edge set ofG.

    The random walk paths generation procedure is illustrated in Algorithm 1, which generates a set of random walk paths D(u)ofU, a set of random walk paths D(a)of A.The implicit relations embedding aims to maximize the conditional probability of the context of a node.For user corpus()u

    D , it maximizes the conditional probability as follows:

    where S refers to the sequence in the context,refers the context nodes of node uiin sequence s.Similarly, for activities corpusthe implicit embedding maximizes the conditional probability as:

    ?

    BEST jointly considers the explicit and implicit relations embedding, forming a joint embedding objective function:

    where α , β and γ are the hyper-parameters to trade-off the effects of the three components.This objective function can be effectively solved by stochastic optimization methods.By solving the objective function (8), BEST represents users into a vector space where user’s social relations have been embedded.

    4.2 K-dimensional tree-based anomalous density group searching

    To fast search the anomalous density group, BEST first builds a k-dimensional tree (kdtree for short) for the user representation space, and then estimates the density around each user in that space.Finally, it adopts the criteria Eq.(1) in NEST to identify the anomalous density groups.

    Figure 2: Example of kd-tree.The illustrated kd-tree is built on the user representation space shown in Fig.1.Each level splits one dimension of the space into two parts

    4.2.1 Building kd-tree

    For user representation set u ={u1,u2???, un}, BEST builds a kd-tree, v, by Algorithm 2.As illustrated in Fig.2, the kd-tree v is a binary tree storing the user representation with their structure information, which enables the fast searching of anomalous density groups.

    Algorithm 2: Building kd-tree Procedure name: BUILDKDTREE(u,depth) Input: A set of point u, and the current depth.Output: The root of the kd-tree, v, storing u 1 if u contains only one point then 2 return a leaf storing this point.3 else 4 l ←depth%d+1; 5 Split u into two subsets according to the median value q in the l th-dimension of the points inu.Let (1)u be the set of points which l th-dimension value is smaller or equal to the q, and let (2)u be the set of other points ; 6 leftv← BUILDKDTREE( (1)u , depth+1) ; 7 rightv← BUILDKDTREE( (2)u , depth+1) ; 8 Create a node v storing the q in the l th-dimension, make leftvleftv the left child of v, and make rightv the right child of v ; 9 return v.10 end

    4.2.2 Density estimation

    BEST estimates the density around each user in its representation space based on the kd- tree v according to the Algorithm 3, where the function SEARCHKDTREE(iu ,v,ρ) returns a set of users that around the useriu within the range η based on the kd-tree v.Essentially, BEST estimates the density around a user by the number of users close to the user within a certain distance in the representation space.If a user has a large density, the user should have a lot of collaborations with others.Accordingly, BEST uses the density as an important evidence to identify collaborative fraudsters.

    Algorithm 3: Density estimation based on kd-tree Input : A set of point u, the kd-tree v and η.Output: A set of densities around each user ρ, a set of user sets S.1 {}ρ ← 2 foreach iu in u do 3 iS ←SEARCHKDTREE( iu , v, η) ; 4 iiS ρ ← ; 5 { }i ρρρ← ∪; 6 { }i S SS← ∪; 7 end 8 return ρ,S.

    4.2.3 Collaborative fraudsters detection

    BEST detects collaborative fraudsters after estimating density around users in the user representation space.Specifically, it treats the density larger than a thresholdε , e.g.five times of the averaged density, as anomalous, and assigns the users in the density areas as fraudsters.The procedure is summarized in the Algorithm 4.

    Algorithm 4: Collaborative fraudsters detection Input : A set of densities around each user ρ, a set of user sets S, a threshold ε Output: A set of fraudster users F..1 {}ρ ← 2 foreach iS in S do 3 if iρ ε> then; 4 i FF S← ∪ 5 end 6 return F

    5 Experiments

    5.1 Data sets

    The experiments are carried on two large scale real word social media data sets, including Yelp restaurant and Yelp hotel data sets used in Mukherjee et al.[Mukherjee, Venkataraman, Liu et al.(2013)].All the activities in these data sets have been assigned authenticity labels given by commercial filters.

    5.2 Evaluation metrics

    We evaluate their performance by three metrics - precision, recall, and F-score.While precision evaluates the fraction of true fraudsters among detected fraudsters, recall reflects the fraction of true fraudsters that have been detected over the total amount of true fraudsters.The precision and recall should be jointly considered since fraudsters detection is an imbalance problem [Luca and Zervas (2016)], i.e., fraudsters are much less than honest users.Thus, we use F-score, which balances the precision and recall, as an averaged indicator.Higher F-score indicates a better performance of a fraudsters detection method.We report these three metrics per ground-truth honest user and fraudster classes to illustrate the performance for different categories.We further average them to show overall performance.

    We follow the literature [Wang, Liu and Zhao (2017)] to use the results of the Yelp commercial fraud filter to evaluate the performance.Because the Yelp commercial fraud filter only give the authenticity labels of activities, we transform the authenticity labels to the honest labels of users as the ground-truth.Considering the fraud activities distribution per each user assigned by the commercial filters, we assign the fraudster label to a user if more than 80% of the activities of the user have been labeled as fraud.The rationale is that we need to filter the false positive made by the commercial filters [Li, Chen, Liu et al.(2014)].In other words, we assume that a user with a higher proportion of the assigned fraud activities will be more likely a real fraudster.

    5.3 Parameters settings

    In the experiments, we set the parameters of BEST as follows.To balance the explicit and implicit social relations, we set the hyper-parameters α , β , and γ is the network embedding objective function Eq.(8) as 0.5, 0.25, and 0.25, respectively.We train the network embedding by Adam [Kingma and Ba (2014)] with embedding dimension 128 and batch size 32.For the density estimation, we set the distance range η as 1.For the anomalous density detection, we set the threshold s as the five times of the averaged density.For the parameters in the compared methods, we take their recommended settings.

    5.4 Evaluation of BEST effectiveness on fraudster detection

    5.4.1 Experimental settings

    BEST is compared with two state-of-the-art competitors: Frauder [Hooi, Song, Beutel et al.(2016)] and HoloScope [Liu, Hooi and Faloutsos (2017)] in detecting collaborative fraudsters.These two competitors are both based on dense subgraph mining, but with different setting on the graph construction.

    ● Fixed weighting dense subgraph mining-based method - FRAUDER [Hooi, Song, Beutel et al.(2016)].FRAUDER is a fraudsters detection method by dense subgraph mining.To detect camouflage and hijacked accounts, it adopts a fixed weighting strategy.

    ● Dynamic weighting dense subgraph mining-based method-HoloScope [Liu, Hooi and Faloutsos (2017)].HoloScope uses information from graph topology and temporal spikes to detect groups of fraudsters, and employs a dynamic weighting approach to allow a more accurately fraud detection.

    5.4.2 Findings-BEST significantly improving fraudsters detection performance, especially recall

    The precision, recall and F-score of BEST, Frauder, and HoloScope are reported in Tab.1.Overall, BEST significantly outperforms the competitors.It improves 21.8% and 10.03% compared with the best-performing method in terms of F-score on two data sets.

    Table 1: Collaborative fraudsters detection performance of different methods

    5.5 Evaluation of BEST-generated user representation quality

    5.5.1 Experimental settings

    We visualize the user representation in a two-dimensional space trough TSNE [Maaten and Hinton (2008)].To evaluate the user representation quality, we plot the ground-truth labels of each user at their positions in the representation space.A high-quality user representation will enable a dense distribution for the collaborative fraudsters.The behavior representation generated by BEST is compared with that generated by JETB [Wang, Liu and Zhao (2017)], which is the state-of-the-art user representation method for fraudsters detection.

    5.5.2 Findings-BEST generated user representation embeds fraudsters into groups with anomalous high density

    The user representations generated by BEST and JETB are visualized in Fig.3.In the JETB generated representation space, the users with large density are not consistent to the ground-truth fraudster label.In contrast, the density of BEST generated representation is consistent with the ground-truth fraudsters distribution.This qualitative illustrates that BEST effectively captures the social relation of users in social media, which is essential for the collaborative fraudsters detection.

    Figure 3: User representation with density of different methods on Yelp-hotel and Yelp- restaurant.The sub-figures (a), (b), (c), (d) contain the user representation information with the ground-truth labels, and the sub-figures (e), (f), (g), (h) show the density in the representation space

    6 Conclusion

    This paper introduces a network-embedding collaborative fraudsters detection framework NEST and its instance BEST.They perform an anomalous density searching procedure on a network embedding space which enables the detecting multiple groups of collaborative fraudsters.Two large real-world data sets demonstrate the performance of BEST is substantially better than the state-of-the-art competitors.

    Acknowledgements:The work is supported by National Natural Science Foundation of China under Grant No.U1811462.

    References

    Akoglu, L.; Chandy, R.; Faloutsos, C.(2013): Opinion fraud detection in online reviews by network effects.Proceedings of the International AAAI Conference on Web and Social Media, vol.13, pp.2-11.

    Akoglu, L.; Tong, H.; Koutra, D.(2015): Graph based anomaly detection and description: a survey.Data Mining and Knowledge Discovery, vol.29, no.3, pp.626-688.

    Cao, S.; Lu, W.; Xu, Q.(2015): GraRep: learning graph representations with global structural information.Proceedings of the ACM International on Conference on Information and Knowledge Management, pp.891-900.

    Cox, T.F.; Cox, M.A.(2000): Multidimensional scaling.Chapman and Hall/CRC.

    Fei, G.; Mukherjee, A.; Liu, B.; Hsu, M.; Castellanos, M.et al.(2013): Exploiting burstiness in reviews for review spammer detection.Proceedings of the International AAAI Conference on Web and Social Media, vol.13, pp.175-184.

    Gao, M.; Chen, L.; He, X.; Zhou, A.(2018): BiNE: bipartite network embedding.Proceedings of the International ACM SIGIR Conference on Research & Development in Information Retrieval, pp.715-724.

    Grover, A.; Leskovec, J.(2016): node2vec: scalable feature learning for networks.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.855-864.

    Hooi, B.; Shin, K.; Song, H.A.; Beutel, A.; Shah, N.et al.(2017): Graph-based fraud detection in the face of camouflage.ACM Transactions on Knowledge Discovery from Data, vol.11, no.4, pp.44:1-44:26.

    Hooi, B.; Song, H.A.; Beutel, A.; Shah, N.; Shin, K.; Faloutsos, C.(2016): FRAUDAR: Bounding graph fraud in the face of camouflage.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.895-904.

    Hovy, D.(2016): The enemy in your own camp: how well can we detect statistically- generated fake reviews-an adversarial study.Proceedings of the Annual Meeting of the Association for Computational Linguistics, vol.2, pp.351-356.

    Jindal, N.; Liu, B.(2008): Opinion spam and analysis.Proceedings of the ACM International WSDM Conference, pp.219-230.

    Junqué de Fortuny, E.; Stankova, M.; Moeyersoms, J.; Minnaert, B.; Provost, F.et al.(2014): Corporate residence fraud detection.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.1650-1659.

    Kingma, D.P.; Ba, J.(2014): Adam: a method for stochastic optimization.arXiv preprint arXiv:1412.6980.

    Li, F.; Huang, M.; Yang, Y.; Zhu, X.(2011): Learning to identify review spam.Proceedings of the International Joint Conference on Artificial Intelligence, pp.2488-2493.

    Li, H.; Chen, Z.; Liu, B.; Wei, X.; Shao, J.(2014): Spotting fake reviews via collective positive-unlabeled learning.Proceedings of the IEEE International Conference on Data Mining, pp.899-904.

    Li, H.; Fei, G.; Wang, S.; Liu, B.; Shao, W.et al.(2017): Bimodal distribution and cobursting in review spam detection.Proceedings of the International Conference on World Wide Web, pp.1063-1072.

    Lim, E.P.; Nguyen, V.A.; Jindal, N.; Liu, B.; Lauw, H.W.(2010): Detecting product review spammers using rating behaviors.Proceedings of the ACM International Conference on Information and Knowledge Management, pp.939-948.

    Liu, S.; Hooi, B.; Faloutsos, C.(2017): Holoscope: topology-and-spike aware fraud detection.Proceedings of the ACM International Conference on Information and Knowledge Management, pp.1539-1548.

    Luca, M.; Zervas, G.(2016): Fake it till you make it: reputation, competition, and yelp review fraud.Management Science, vol.62, no.12, pp.3412-3427.

    Maaten, L.v.d.; Hinton, G.(2008): Visualizing data using t-SNE.Journal of Machine Learning Research, vol.9, pp.2579-2605.

    Mukherjee, A.; Kumar, A.; Liu, B.; Wang, J.; Hsu, M.et al.(2013): Spotting opinion spammers using behavioral footprints.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.632-640.

    Mukherjee, A.; Liu, B.; Glance, N.(2012): Spotting fake reviewer groups in consumer reviews.Proceedings of the International Conference on World Wide Web, pp.191-200.

    Mukherjee, A.; Venkataraman, V.; Liu, B.; Glance, N.S.(2013): What yelp fake review filter might be doing? Proceedings of the International AAAI Conference on Web and Social Media, pp.409-418.

    Nedich, A.; Ozdaglar, A.(2008): A geometric framework for nonconvex optimization duality using augmented lagrangian functions.Journal of Global Optimization, vol.40, no.4, pp.545-573.

    Pandit, S.; Chau, D.H.; Wang, S.; Faloutsos, C.(2007): Netprobe: a fast and scalable system for fraud detection in online auction networks.Proceedings of the International Conference on World Wide Web, pp.201-210.

    Perozzi, B.; Al-Rfou, R.; Skiena, S.(2014): Deepwalk: Online learning of social representations.Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.701-710.

    Rayana, S.; Akoglu, L.(2016): Collective opinion spam detection using active inference.Proceedings of the IEEE International Conference on Data Mining, pp.630-638.

    Shehnepoor, S.; Salehi, M.; Farahbakhsh, R.; Crespi, N.(2017): Netspam: a networkbased spam detection framework for reviews in online social media.IEEE Transactions on Information Forensics and Security, vol.12, no.7, pp.1585-1595.

    Stringhini, G.; Kruegel, C.; Vigna, G.(2010): Detecting spammers on social networks.Proceedings of the Annual Computer Security Applications Conference, pp.1-9.

    Sun, J.; Qu, H.; Chakrabarti, D.; Faloutsos, C.(2005): Neighborhood formation and anomaly detection in bipartite graphs.Proceedings of the IEEE International Conference on Data Mining, pp.1-8.

    Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.et al.(2015): Line: large-scale information network embedding.Proceedings of the International Conference on World Wide Web, pp.1067-1077.

    Wang, D.; Cui, P.; Zhu, W.(2016): Structural deep network embedding.Proceedings of the 22nd ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, pp.1225-1234.

    Wang, G.; Xie, S.; Liu, B.; Philip, S.Y.(2011): Review graph based online store review spammer detection.ICDM, pp.1242-1247.

    Wang, X.; Liu, K.; Zhao, J.(2017): Handling cold-start problem in review spam detection by jointly embedding texts and behaviors.Proceedings of the Annual Meeting of the Association for Computational Linguistics, vol.1, pp.366-376.

    Wu, L.; Hu, X.; Morstatter, F.; Liu, H.(2017): Adaptive spammer detection with sparse group modeling.Proceedings of the International AAAI Conference on Web and Social Media, pp.319-326.

    Xiang, L.; Li, Y.; Hao, W.; Yang, P.; Shen, X.(2018): Reversible natural language watermarking using synonym substitution and arithmetic coding.Computers, Materials & Continua, vol.55, no.3, pp.541-559.

    Xiang, L.; Shen, X.; Qin, J.; Hao, W.(2018): Discrete multi-graph hashing for largescale visual search.Neural Processing Letters.

    Xiang, L.; Zhao, G.; Li, Q.; Hao, W.; Li, F.(2018): TUMK-ELM: A fast unsupervised heterogeneous data learning approach.IEEE Access, vol.6, pp.35305-35315.

    Xu, C.; Zhang, J.; Chang, K.; Long, C.(2013): Uncovering collusive spammers in Chinese review websites.Proceedings of the ACM International on Conference on Information and Knowledge Management, pp.979-988.

    Xu, L.; Wei, X.; Cao, J.; Yu, P.S.(2017): Embedding of embedding (EOE): Joint embedding for coupled heterogeneous networks.Proceedings of the ACM International Conference on Web Search and Data Mining, pp.741-749.

    Ye, J.; Akoglu, L.(2015): Discovering opinion spammer groups by network footprints.Proceedings of the European Conference on Machine Learning, pp.267-282.

    You, Z.; Qian, T.; Liu, B.(2018): An attribute enhanced domain adaptive model for cold- start spam review detection.Proceedings of the International Conference on Computational Linguistics, pp.1884-1895.

    Zhao, Z.; Resnick, P.; Mei, Q.(2015): Enquiring minds: early detection of rumors in social media from enquiry posts.Proceedings of the International Conference on World Wide Web, pp.1395-1405.

    成年女人看的毛片在线观看| 国产成人精品久久久久久| 免费av不卡在线播放| 国产精品.久久久| 国产精品1区2区在线观看.| 十八禁网站网址无遮挡 | 小蜜桃在线观看免费完整版高清| 国产大屁股一区二区在线视频| 乱码一卡2卡4卡精品| 久久久精品免费免费高清| 国产熟女欧美一区二区| 国产精品国产三级国产av玫瑰| 国产黄色小视频在线观看| 能在线免费观看的黄片| 久久久精品免费免费高清| 我的老师免费观看完整版| 搡女人真爽免费视频火全软件| 亚洲av电影在线观看一区二区三区 | 听说在线观看完整版免费高清| 日韩亚洲欧美综合| 高清毛片免费看| 国内精品一区二区在线观看| 国产精品无大码| 夫妻午夜视频| 亚洲精品成人av观看孕妇| 成人欧美大片| 两个人的视频大全免费| 天堂√8在线中文| 国内精品宾馆在线| 可以在线观看毛片的网站| 美女脱内裤让男人舔精品视频| 婷婷色综合大香蕉| av卡一久久| 国产精品蜜桃在线观看| 精品少妇黑人巨大在线播放| 国产一区二区在线观看日韩| 大片免费播放器 马上看| 国产69精品久久久久777片| kizo精华| 亚洲精品,欧美精品| 综合色av麻豆| 天堂俺去俺来也www色官网 | 久久久久久伊人网av| 青青草视频在线视频观看| 激情 狠狠 欧美| 久久这里有精品视频免费| 又黄又爽又刺激的免费视频.| 2021少妇久久久久久久久久久| 在线观看美女被高潮喷水网站| 深爱激情五月婷婷| 国产高清有码在线观看视频| 禁无遮挡网站| 国产精品美女特级片免费视频播放器| 久久精品国产亚洲网站| 亚洲av电影不卡..在线观看| 午夜久久久久精精品| 精品一区二区三卡| 国产成人一区二区在线| 欧美日韩一区二区视频在线观看视频在线 | 街头女战士在线观看网站| 久久久久久久久久久免费av| 免费观看av网站的网址| 在线a可以看的网站| 亚洲国产高清在线一区二区三| ponron亚洲| eeuss影院久久| 丰满人妻一区二区三区视频av| 亚洲av成人av| 超碰av人人做人人爽久久| 午夜福利视频精品| 好男人在线观看高清免费视频| 少妇人妻精品综合一区二区| 特大巨黑吊av在线直播| 国产亚洲一区二区精品| 国产精品蜜桃在线观看| 成人亚洲精品av一区二区| 免费黄色在线免费观看| 成人亚洲精品av一区二区| 精品久久久久久久久久久久久| 十八禁国产超污无遮挡网站| 亚洲欧美成人精品一区二区| 伦理电影大哥的女人| 91午夜精品亚洲一区二区三区| 日韩欧美精品v在线| 九九久久精品国产亚洲av麻豆| 国产国拍精品亚洲av在线观看| 亚洲av电影在线观看一区二区三区 | 搞女人的毛片| 久久久久免费精品人妻一区二区| 黄色一级大片看看| 免费观看在线日韩| 国产 一区精品| 高清日韩中文字幕在线| 美女xxoo啪啪120秒动态图| 欧美日韩国产mv在线观看视频 | 3wmmmm亚洲av在线观看| 久久精品综合一区二区三区| 亚洲精品色激情综合| 国产精品一区二区三区四区久久| 亚洲精品久久久久久婷婷小说| 国产精品综合久久久久久久免费| 自拍偷自拍亚洲精品老妇| 亚洲国产精品专区欧美| 久久久精品94久久精品| 男女视频在线观看网站免费| 日韩亚洲欧美综合| 精品99又大又爽又粗少妇毛片| 日本一本二区三区精品| 人人妻人人看人人澡| 久久久久国产网址| av网站免费在线观看视频 | 亚洲乱码一区二区免费版| 婷婷色麻豆天堂久久| 又大又黄又爽视频免费| 国产黄a三级三级三级人| 久久久精品欧美日韩精品| 嫩草影院入口| 亚洲精品成人av观看孕妇| 精品亚洲乱码少妇综合久久| 纵有疾风起免费观看全集完整版 | 亚洲最大成人av| 欧美日韩视频高清一区二区三区二| 久久综合国产亚洲精品| 天天躁日日操中文字幕| 97精品久久久久久久久久精品| 九九爱精品视频在线观看| 日韩欧美一区视频在线观看 | 精品酒店卫生间| 九九在线视频观看精品| 久久99精品国语久久久| 日韩欧美三级三区| 六月丁香七月| 三级国产精品片| 亚洲欧美一区二区三区国产| 成年免费大片在线观看| 禁无遮挡网站| 婷婷色av中文字幕| 亚洲av中文字字幕乱码综合| 国产黄片美女视频| 熟女电影av网| 又粗又硬又长又爽又黄的视频| 高清欧美精品videossex| 女人被狂操c到高潮| 免费在线观看成人毛片| av女优亚洲男人天堂| 能在线免费观看的黄片| av黄色大香蕉| 亚洲,欧美,日韩| 日韩欧美 国产精品| 亚洲欧美精品专区久久| 亚洲美女视频黄频| 国产精品一及| 国产黄色小视频在线观看| 毛片女人毛片| 狂野欧美白嫩少妇大欣赏| 午夜爱爱视频在线播放| 国产精品嫩草影院av在线观看| 老司机影院成人| 欧美高清性xxxxhd video| 午夜免费观看性视频| 精品熟女少妇av免费看| 久久精品久久久久久噜噜老黄| 日韩欧美三级三区| 国产精品久久久久久av不卡| 偷拍熟女少妇极品色| 91狼人影院| 国产伦理片在线播放av一区| 伦精品一区二区三区| 国产老妇女一区| 你懂的网址亚洲精品在线观看| 天天一区二区日本电影三级| 免费观看av网站的网址| 热99在线观看视频| 深爱激情五月婷婷| 韩国av在线不卡| 成人综合一区亚洲| 亚洲美女视频黄频| 2021少妇久久久久久久久久久| 可以在线观看毛片的网站| 久久99精品国语久久久| 好男人在线观看高清免费视频| 亚洲人成网站在线观看播放| 欧美日韩精品成人综合77777| 欧美日韩国产mv在线观看视频 | 国产精品久久久久久精品电影小说 | av女优亚洲男人天堂| 亚洲在久久综合| 99热网站在线观看| 国产精品伦人一区二区| 国产精品久久久久久久电影| 一夜夜www| 又黄又爽又刺激的免费视频.| 中文字幕av成人在线电影| 免费观看无遮挡的男女| 80岁老熟妇乱子伦牲交| 国产精品一及| 国产黄色视频一区二区在线观看| 女人久久www免费人成看片| 国产成人精品婷婷| 欧美成人午夜免费资源| 亚洲精品久久久久久婷婷小说| 久久6这里有精品| 天堂网av新在线| 国产精品福利在线免费观看| 成人性生交大片免费视频hd| 精品国产露脸久久av麻豆 | 又爽又黄a免费视频| 在线观看av片永久免费下载| 午夜免费激情av| 成人午夜精彩视频在线观看| 国产精品一及| 男人狂女人下面高潮的视频| 欧美不卡视频在线免费观看| 乱系列少妇在线播放| 一级黄片播放器| videos熟女内射| 秋霞伦理黄片| 三级国产精品欧美在线观看| 久久99精品国语久久久| 亚洲av电影在线观看一区二区三区 | 日韩精品青青久久久久久| 青青草视频在线视频观看| 老女人水多毛片| 熟女电影av网| 国产精品一及| 国产亚洲最大av| 午夜老司机福利剧场| 别揉我奶头 嗯啊视频| 色综合色国产| av国产免费在线观看| 久久综合国产亚洲精品| 免费看日本二区| 欧美激情国产日韩精品一区| 哪个播放器可以免费观看大片| 两个人视频免费观看高清| 中文字幕免费在线视频6| 国产探花极品一区二区| 边亲边吃奶的免费视频| 男人舔女人下体高潮全视频| 亚洲精品色激情综合| 18禁在线无遮挡免费观看视频| 91精品国产九色| 亚洲在久久综合| 久久这里只有精品中国| 成年免费大片在线观看| 亚洲精品aⅴ在线观看| av卡一久久| 人人妻人人看人人澡| 日本与韩国留学比较| 少妇裸体淫交视频免费看高清| 97热精品久久久久久| 国产精品久久久久久久久免| 亚洲国产日韩欧美精品在线观看| 2022亚洲国产成人精品| 成人漫画全彩无遮挡| 国产v大片淫在线免费观看| 国产一区二区三区综合在线观看 | 国产大屁股一区二区在线视频| 欧美高清成人免费视频www| 免费看不卡的av| 少妇的逼水好多| 成人亚洲精品一区在线观看 | 又粗又硬又长又爽又黄的视频| 成人性生交大片免费视频hd| 亚洲成色77777| 欧美一区二区亚洲| 亚洲图色成人| 国产av码专区亚洲av| av播播在线观看一区| 久久久久久久久大av| 午夜老司机福利剧场| 最近最新中文字幕大全电影3| 国产伦在线观看视频一区| 神马国产精品三级电影在线观看| 精品久久久精品久久久| 欧美不卡视频在线免费观看| 久久99热这里只频精品6学生| 一级爰片在线观看| 亚洲综合色惰| 亚洲精品一区蜜桃| 最新中文字幕久久久久| 亚洲国产成人一精品久久久| 高清午夜精品一区二区三区| 五月玫瑰六月丁香| videossex国产| 亚洲精品一区蜜桃| 99视频精品全部免费 在线| 国产亚洲91精品色在线| 插阴视频在线观看视频| 天堂网av新在线| 婷婷六月久久综合丁香| 麻豆精品久久久久久蜜桃| 国产女主播在线喷水免费视频网站 | 99久国产av精品| 大话2 男鬼变身卡| 精品午夜福利在线看| 精品人妻熟女av久视频| 国产成人精品一,二区| 一级毛片黄色毛片免费观看视频| av在线观看视频网站免费| 天天躁日日操中文字幕| 国产精品不卡视频一区二区| 综合色av麻豆| 免费av观看视频| 有码 亚洲区| 久久久久久久亚洲中文字幕| 亚洲av.av天堂| 亚洲久久久久久中文字幕| 亚洲精品,欧美精品| 大香蕉97超碰在线| 麻豆成人av视频| 精品人妻视频免费看| av在线天堂中文字幕| 亚洲人与动物交配视频| 久久精品熟女亚洲av麻豆精品 | 噜噜噜噜噜久久久久久91| 亚洲三级黄色毛片| 日韩av免费高清视频| 十八禁国产超污无遮挡网站| 久久久久久久久久黄片| 中文字幕亚洲精品专区| 深夜a级毛片| 三级毛片av免费| 国产av码专区亚洲av| 国国产精品蜜臀av免费| 色视频www国产| 日韩在线高清观看一区二区三区| 91午夜精品亚洲一区二区三区| 国产高清国产精品国产三级 | 干丝袜人妻中文字幕| 亚洲精品视频女| 国产精品久久久久久精品电影小说 | 午夜精品国产一区二区电影 | 高清午夜精品一区二区三区| 久久99热这里只有精品18| 欧美zozozo另类| 伊人久久国产一区二区| av网站免费在线观看视频 | 欧美日韩亚洲高清精品| 欧美bdsm另类| 国产久久久一区二区三区| 精品一区二区三区人妻视频| 天美传媒精品一区二区| 精品久久久久久成人av| 人人妻人人澡人人爽人人夜夜 | 一夜夜www| 97超碰精品成人国产| a级毛片免费高清观看在线播放| 高清在线视频一区二区三区| 汤姆久久久久久久影院中文字幕 | 天堂影院成人在线观看| 日韩在线高清观看一区二区三区| 国产亚洲5aaaaa淫片| 精品久久久久久久久av| 午夜福利高清视频| 国产一区亚洲一区在线观看| 好男人在线观看高清免费视频| 秋霞伦理黄片| 精品国产三级普通话版| 啦啦啦啦在线视频资源| 日韩中字成人| 直男gayav资源| 九九久久精品国产亚洲av麻豆| 嘟嘟电影网在线观看| 亚洲欧美精品专区久久| 女的被弄到高潮叫床怎么办| 亚洲美女视频黄频| 亚洲国产精品国产精品| 爱豆传媒免费全集在线观看| 中文字幕免费在线视频6| 中文字幕av成人在线电影| 国产成人a∨麻豆精品| 精品久久久噜噜| 国产亚洲5aaaaa淫片| 69人妻影院| 国产色婷婷99| 久久精品国产自在天天线| 免费在线观看成人毛片| 免费高清在线观看视频在线观看| 国产精品国产三级国产专区5o| 成人毛片a级毛片在线播放| 久久久色成人| 男的添女的下面高潮视频| 久99久视频精品免费| 日韩人妻高清精品专区| 最近的中文字幕免费完整| 边亲边吃奶的免费视频| 亚洲婷婷狠狠爱综合网| 看黄色毛片网站| 亚洲av成人精品一二三区| 色视频www国产| 亚洲精品aⅴ在线观看| 亚洲国产精品成人久久小说| 久久久午夜欧美精品| 成年免费大片在线观看| 黄片无遮挡物在线观看| 精品久久久久久成人av| 日本wwww免费看| 日韩欧美国产在线观看| 97超视频在线观看视频| 久久这里有精品视频免费| 国产亚洲最大av| 人妻一区二区av| 亚洲av电影在线观看一区二区三区 | 亚洲精品成人久久久久久| 99久久精品国产国产毛片| 91狼人影院| 观看美女的网站| 国产毛片a区久久久久| 性插视频无遮挡在线免费观看| 精品酒店卫生间| 国产精品久久视频播放| 亚洲第一区二区三区不卡| av女优亚洲男人天堂| 亚洲精品亚洲一区二区| 蜜桃亚洲精品一区二区三区| 久久99热这里只有精品18| 亚洲图色成人| 777米奇影视久久| 欧美高清性xxxxhd video| 婷婷色麻豆天堂久久| 午夜老司机福利剧场| 91狼人影院| 亚洲18禁久久av| 超碰97精品在线观看| 亚洲自拍偷在线| 男人狂女人下面高潮的视频| 99久久精品热视频| videos熟女内射| 亚洲av成人av| 中国美白少妇内射xxxbb| 日韩成人av中文字幕在线观看| 国产探花极品一区二区| 欧美成人一区二区免费高清观看| 夜夜看夜夜爽夜夜摸| 毛片女人毛片| 国内少妇人妻偷人精品xxx网站| 婷婷色综合www| 精品酒店卫生间| 免费看美女性在线毛片视频| 亚洲成人一二三区av| 国产精品综合久久久久久久免费| 久久97久久精品| 国产精品人妻久久久久久| 综合色丁香网| 国产老妇女一区| 中文乱码字字幕精品一区二区三区 | 一级二级三级毛片免费看| 日本熟妇午夜| 国产精品久久久久久av不卡| 三级国产精品欧美在线观看| 久久久久性生活片| 少妇人妻一区二区三区视频| 欧美高清性xxxxhd video| 亚洲va在线va天堂va国产| 欧美激情久久久久久爽电影| 午夜福利视频精品| 麻豆久久精品国产亚洲av| 成人性生交大片免费视频hd| 深夜a级毛片| 国产乱人偷精品视频| 国产国拍精品亚洲av在线观看| 国产激情偷乱视频一区二区| 亚洲av.av天堂| av线在线观看网站| 日韩欧美精品v在线| 亚洲最大成人手机在线| 黄色一级大片看看| 搡老乐熟女国产| 亚洲精华国产精华液的使用体验| 偷拍熟女少妇极品色| 亚洲av二区三区四区| 2021少妇久久久久久久久久久| 91久久精品电影网| 99久国产av精品| 国产 亚洲一区二区三区 | 亚洲精品乱码久久久v下载方式| 久久久成人免费电影| 成人欧美大片| 超碰av人人做人人爽久久| 老司机影院毛片| 国产人妻一区二区三区在| 身体一侧抽搐| 五月天丁香电影| 大陆偷拍与自拍| 毛片一级片免费看久久久久| 日韩欧美一区视频在线观看 | 韩国av在线不卡| 男女下面进入的视频免费午夜| av黄色大香蕉| 国产视频首页在线观看| 亚洲av二区三区四区| 久久久久精品性色| eeuss影院久久| 久久久久久久亚洲中文字幕| 深爱激情五月婷婷| 国产有黄有色有爽视频| 青春草国产在线视频| 九九久久精品国产亚洲av麻豆| 中文字幕免费在线视频6| av国产免费在线观看| 亚洲成人久久爱视频| 卡戴珊不雅视频在线播放| 91精品一卡2卡3卡4卡| 欧美另类一区| a级一级毛片免费在线观看| 久久99热这里只有精品18| 国产中年淑女户外野战色| 国产永久视频网站| 韩国高清视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产成人精品一,二区| 久久综合国产亚洲精品| 夜夜看夜夜爽夜夜摸| 51国产日韩欧美| 欧美日韩精品成人综合77777| 极品少妇高潮喷水抽搐| 激情五月婷婷亚洲| 免费av不卡在线播放| 久久精品夜色国产| 九九久久精品国产亚洲av麻豆| 亚洲在线观看片| 国产亚洲最大av| 色5月婷婷丁香| 综合色av麻豆| 亚洲人成网站在线观看播放| 亚洲内射少妇av| 亚洲国产精品国产精品| 亚洲美女视频黄频| 如何舔出高潮| 高清av免费在线| 岛国毛片在线播放| 男人爽女人下面视频在线观看| 2022亚洲国产成人精品| 又爽又黄a免费视频| 我要看日韩黄色一级片| 在线天堂最新版资源| 色视频www国产| 亚洲精品乱久久久久久| 内射极品少妇av片p| 国产精品熟女久久久久浪| 哪个播放器可以免费观看大片| 在线观看人妻少妇| 一个人免费在线观看电影| 亚洲成色77777| 欧美日韩国产mv在线观看视频 | 听说在线观看完整版免费高清| 国产成人精品一,二区| 国产精品爽爽va在线观看网站| 伦理电影大哥的女人| 国产黄色视频一区二区在线观看| 26uuu在线亚洲综合色| 日韩欧美一区视频在线观看 | 一级毛片黄色毛片免费观看视频| 亚洲精品成人av观看孕妇| 久久久久久久久大av| av在线亚洲专区| 亚洲最大成人手机在线| 3wmmmm亚洲av在线观看| 一级爰片在线观看| 国产亚洲午夜精品一区二区久久 | 国产高清三级在线| 国产 亚洲一区二区三区 | 中文字幕亚洲精品专区| 国产伦精品一区二区三区视频9| 欧美一级a爱片免费观看看| 久久97久久精品| 国产乱人视频| 日韩欧美国产在线观看| 乱人视频在线观看| 国产一级毛片七仙女欲春2| 超碰97精品在线观看| 一级片'在线观看视频| 少妇高潮的动态图| 秋霞在线观看毛片| 久久久久久久久久黄片| 久久久久久久久久成人| 国产精品久久久久久精品电影小说 | 精品99又大又爽又粗少妇毛片| 男女下面进入的视频免费午夜| 国产精品久久久久久久久免| 亚洲熟女精品中文字幕| 亚洲av电影不卡..在线观看| 亚洲精品成人久久久久久| 精品亚洲乱码少妇综合久久| 一级二级三级毛片免费看| 精品一区二区三区人妻视频| 九九爱精品视频在线观看| 乱人视频在线观看| 国产精品一区二区性色av| 欧美高清性xxxxhd video| 国产精品精品国产色婷婷| 国产熟女欧美一区二区| 女的被弄到高潮叫床怎么办| 综合色av麻豆| 日本-黄色视频高清免费观看| 男人狂女人下面高潮的视频| 夫妻午夜视频| 一级毛片黄色毛片免费观看视频| 亚洲一区高清亚洲精品| 天堂√8在线中文| 国产精品99久久久久久久久| 亚洲精品影视一区二区三区av| 欧美日韩综合久久久久久| 免费观看的影片在线观看| 中文天堂在线官网| 一级黄片播放器| 亚洲精品成人久久久久久| 天堂影院成人在线观看| 久久久久久国产a免费观看| .国产精品久久| 韩国高清视频一区二区三区| 高清av免费在线| 精品国产一区二区三区久久久樱花 | 哪个播放器可以免费观看大片|