• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New NTRU-Type Public-Key Cryptosystem over the Binary Field

    2019-07-18 01:59:58YouyuGuXiongweiXieandChunshengGu
    Computers Materials&Continua 2019年7期

    Youyu Gu, Xiongwei Xie and Chunsheng Gu

    Abstract: As the development of cloud computing and the convenience of wireless sensor netowrks, smart devices are widely used in daily life, but the security issues of the smart devices have not been well resolved.In this paper, we present a new NTRU-type public-key cryptosystem over the binary field.Specifically, the security of our scheme relies on the computational intractability of an unbalanced sparse polynomial ratio problem (DUSPR).Through theoretical analysis, we prove the correctness of our proposed cryptosystem.Furthermore, we implement our scheme using the NTL library, and conduct a group of experiments to evaluate the capabilities and consuming time of encryption and decryption.Our experiments result demonstrates that the NTRU-type public-key cryptosystem over the binary field is relatively practical and effective.

    Keywords: Public key cryptosystem, NTRU, lattice attack, meet in the middle attack.

    1 Introduction

    In the past few years, cloud computing has attracted a lot of research efforts.At the same time, more and more companies start to move their data and operations to public or private clouds.For example, out of 572 business and technology executives that were surveyed in Berman et al.[Berman, Lynn, Marshall et al.(2012)],51% relied on cloud computing for business model innovation.These demands also become a driving force for the development of cloud security and wireless security, which ranges from very theoretical efforts such as homomorphic encryption to very engineering mechanisms defending against side channel attacks through memory and cache sharing [Xie and Wang (2013b); Xie, Wang and Qin (2015); Pan, Lei, Zhang et al.(2018)].

    As the development of cloud computing and the convenience of wireless sensor netowrks, smart devices are widely used in daily life, such as smart phones, but the security issues of the smart devices have not been well resolved [Xie and Wang (2013a); Ren, Shen, Liu et al.(2016)].One reason is that smart devices do not have enough computing resource, and they are not suitable for the use of traditional cryptographic schemes directly, such as RSA,ECC.Therefore, in order to design a lightweight cryptographic scheme suitable for smart devices, this paper constructs a candidate public key encryption scheme based on NTRU over the binary field to partially solve the security problems in smart device applications.The NTRU public-key cryptosystem was introduced by Hoffstein, Pipher and Silverman in 1996 [Hoffstein, Pipher and Silverman (1998)].Unlike more classical public-key cryptosystems such as RSA, ECC or ElGamal, its security is based on the hardness of finding the shortest vector problem (SVP) and the closest vector problem (CVP) in a cyclic modular lattice, which are not known to be susceptible to quantum attack.As a consequence, it is considered as one of the most viable quantum-resistant public-key cryptosystems, whereas the classical cryptosystems based on the hardness of integer factorization, or the discrete logarithm over finite fields are no longer secure once the quantum computer becomes a reality[Shor(1997)].

    The NTRU system is determined by a set of parameters(n,q,p,χf,χg,χr,χe).First,the parameter n is set to be prime and used to define the polynomial ring R = ?[x]/〈xn-1〉.Second,p and q are relatively prime,q is much larger than p,and they are used to define the quotient polynomial rings Rq=R/qR and Rp=R/pR that form the ciphertext space and message space of NTRU,respectively.Finally,(χf,χg,χr,χe)are probability distributions defined in certain subsets of R,and output random polynomials with most coefficients being 0 and the rest in the set{1,-1}.

    Given these parameters of NTRU, Alice samples g from χg, and f from χfso that f is invertible in Rqand Rp.Alice publishes h = g/f ∈Rqas his public key, and keep f as his private key.To encrypt a message polynomial m ∈Rp,Bob takes Alice's public key h,samples r from χrand e from χe,computes the ciphertext c = p(hr+e)+m ∈Rq,and sends it to Alice.To decrypt the ciphertext c,Alice computes a=fc mod q,and outputs the message polynomialmod p.

    Related work.Since NTRU is the most efficient lattice-based public-key cryptosystem,many variants of NTRU were presented by replacing the ring of integers ? with other rings.Gaborit, Ohler, and Solé introduced CTRU as an analogue to NTRU where the coefficients of polynomials are frominstead of ?.However,Kouzmenko[Kouzmenko(2006)] presented a polynomial time algorithm which breaks CTRU.This is because the CTRU system uses low-degree polynomials instead of "small norm" polynomials.As a consequence, the CTRU system is no longer secure.Several variants of NTRU are proposed by using the Dedekind domains, including GNTRU over the Gaussian integers?[i][Kouzmenko(2006)],ETRU over the Eisenstein integers ?[ζ3][Nevins,Karimianpour and Miri (2010); Jarvis and Nevins (2015)], NTRUSIGN [Hoffstein, Howgrave-Graham,Pipher et al.(2003)]and NTRU Signature Scheme(NSS)[Hoffstein,Pipher and Silverman(2001)].The security of these variants is equivalent to the security of NTRU in general.On the other hand, some non-commutative versions of NTRU are also described over the non-commutative ring, including MaTRU over integer matrices [Coglianese and Goi(2005)], QTRU and BQTRU over quaternion algebras [Malekian, Zakerolhosseini and Mashatan(2009,2011);Bagheri,Sadeghi and Panario(2017)].

    Recently, Aggarwal et al.[Aggarwal, Joux, Prakash et al.(2017)] presented a new public-key cryptosystem via Mersenne numbers (AJPS) that is an integer version of the NTRU system.The security of the AJPS system relies on the conjectured hardness of the Mersenne low hamming ratio assumption.However, Beunardeau et al.[Beunardeau,Connolly,Géraud et al.(2017)]described a practical LLL-based algorithm that recovering the secret key from the public key is much faster than the security estimates in Aggarwal et al.[Aggarwal,Joux,Prakash et al.(2017)].Furthermore,de Boer et al.[de Boer,Ducas,Jeffery et al.(2017)]further refined the attack analysis of Beunardeau et al.[Beunardeau,Connolly,Géraud et al.(2017)].

    Although there are many research results related to variants of NTRU in the past few years,secure NTRU-type public key cryptosystem over the binary field has not attracted a lot of research afforts.

    1.1 Our contribution

    We propose a new NTRU-type public key cryptosystem over the binary field.As a warmup,Alice chooses two sparse polynomials f,g ∈R2=?2[x]/〈xn+1〉,and sets f as the secret key and h = g/f ∈R2as the public key.For encrypting a bit b ∈{0,1}, Bob chooses sparse polynomials r,e,generates a ciphertext c=rh+e+bm,where m is the polynomial of all coefficients 1, and sends c to Alice.For decryption, Alice computes a = cf and outputs b=0 if the number of the non-zero coefficients of a is less than a fixed value(e.g.,n/4),otherwise b=1.The advantage of this scheme is simple,but it can not be extended to multi-bit schemes easily.In this paper,we propose a multi-bit scheme by using unbalanced sparse polynomials.Namely,Alice chooses two sparse polynomials f,g ∈R2so that the degree of f is at most β, and sets the public keyand the secret key f,where β,θ are positive integers and β +θ <n.It is not difficult to construct a multi-bit scheme by using these unbalanced sparse polynomials.Concrete construction is described in Section 2.However,the use of unbalanced polynomials in the construction makes it more vulnerable to man-in-the-middle attacks.Therefore,we will take large enough parameters to resist this attack.

    Furthermore,we observe that the distribution of coefficients“1”in the product of two sparse polynomials is almost uniform.If the number of coefficients “1” in the product of two sparse polynomials is k,the probability that each coefficient is“1”is approximately equal to k/n.As a consequence, we assume that this distribution is uniform to improve the efficiency of our scheme.

    1.2 Organization

    The remainder of the paper is organized as follows.Firstly,we propose a NTRU-type public key cryptosystem and theoretically prove the correctness of it in Section 2.In Section 3,we analyze the security of our scheme and discuss the resistance to popular known attacks.In Section 4, we implement our NTRU-type scheme,and evaluate the capabilities and the consuming time for encryption and decryption.Finally,Section 5 concludes the paper.

    2 NTRU-type public key cryptosystem

    In this section,we present the details of our new NTRU-type public key cryptosystem over the binary field.Our construction is similar in form to the variant of NTRU [Stehlé and Steinfeld (2011)].However, our scheme works over the binary field ?2, and their variant works over ?qwith q ?2.It is not trivial to generalize their construction from ?qto ?2.For simplicity,we concretely define the notations of our scheme as follows:

    λ: the security parameter.

    ρ=λ/4: the number of coefficients"1"of random polynomials.

    α=4ρ: the length of message vectors.

    δ =2ρ: the extended length of plaintext bits.

    β =4ρ2: the degree of secret key polynomials.

    n ≥20ρ2+1: the degree of modulo polynomial defined the ring.

    R=?2[x]/〈xn+1〉: the working polynomial ring.

    R?: the set of all invertible polynomials in R.

    P =?2[x]: the ring of sampling random polynomials.

    P<β: the set of all polynomials of degree less than β in P.

    m ?1: the tensor product of two vectors m and 1.

    2.1 Construction

    Key generation:(pk,sk)←KeyGen(1λ).

    (1)Choose a prime n ≥20ρ2+1 so that

    GCD(xn+1,x2β+1)=x+1 mod 2,xn+1=(x+1)k(x) mod 2,

    where k(x)has at most two irreducible factors modulo 2.

    (4)Output the public key pk ={λ,ρ,n,β,h},and the secret key sk ={s}.

    Encryption:(c)←Enc(pk,m).

    (1)Given the public key pk,and a plaintext vector m ∈{0,1}α,compute d = m ?1,and set

    c=rh+e+d mod (xn+1) mod 2

    (3)Output the ciphertext c.

    Decryption:m ←Dec(sk,c).

    (1)Given the secret key sk,and a ciphertext c,compute over R

    w =fc mod (xn+1) mod 2

    v =w mod (x2β+1) mod 2

    (2)For i=0,1,··· ,α-1

    (2.2)If ui≥ρ,then mi=1,otherwise mi=0.

    (3)Output the plaintext vector m.

    Remark 2.1(1)To improve the efficiency of our construction,we can relax the condition of the factor number of xn+1 over the polynomial ring P.Namely,for a large enough prime n,the factor number of x is only required to be a small constant.In this case,in addition to factor x+1 of xn+1,other factors need to be able to resist man-in-the-middle attacks.

    (2) Our scheme uses unbalanced sparse polynomials to encrypt multi-bit plaintexts.If we construct a single-bit scheme, we only require to use sparse polynomials instead of unbalanced sparse polynomials.

    2.2 Correctness

    For the correctness of our scheme, it requires to prove that the algorithm Dec correctly recovers the plaintext from a ciphertext with high probability.

    We first give the following Chernoff bound.

    Lemma 2.2Let X1,··· ,Xδbe independent identically distributed random variables such that Xi←Berτ,where Berτdenotes the Bernoulli distribution with the parameter 0 ≤τ ≤1.Ifthen

    Pr[X ≥(τ +?)δ]≤e-2δ?2.

    Lemma 2.3Given sk and a ciphertext c,the algorithm Dec correctly decrypts the plaintext vector m.

    Proof.According to Dec,we have

    w =fc mod (xn+1) mod 2=f(rh+e+d) mod (xn+1) mod 2=rg+fe+fd mod (xn+1) mod 2

    By KeyGen,we have deg(f)=deg(s(x2β+1)+1)<3β =12ρ2.

    Again through deg(d)≤2β-1 <8ρ2,we get deg(fd)<20ρ2<n.

    So,the polynomial fd remains unchanged in modulo xn+1.Namely,fd mod xn+1=fd.

    Without loss of generality, let e = e(1)+x2βe(2).Similarly, the polynomial fe(1)also remains unchanged in modulo xn+1 since deg(e(1))≤2β-1.

    So,w =u+fe(1)+fd mod 2,where u=(rg+fx2βe(2)) mod (xn+1).

    As a result,v =w =(u mod (x2β+1))+e(1)+d mod (x2β+1) mod 2.

    In the following analysis, we assume that the coefficients "1" of noise polynomials are uniformly distributed.Concretely speaking, the probability that any coefficient of a noise polynomial y with length k is"1"is equal to

    Since z = u mod (x2β+1)+e(1)is a noise polynomial in v, the probability that any coeffciient of z is"1"is equal to

    Therefore,the expected number of"1"in a polynomial of length 2ρ is

    By Lemma 2.2,we have

    So,the probability that mican be correctly recovered is about

    3 Security

    In this section, we will define decisional unbalanced sparse polynomial ratio problem(DUSPR)and the DUSPR assumption,and analyze some known attacks.

    The security of the NTRU variant [Stehlé and Steinfeld (2011)] is reduced to worst-case problems over ideal lattices, but the security of NTRU is still based on the computational hardness assumption generated by NTRU.Similarly,the security of our NTRU-type scheme is also based on the new DUSPR hardness assumption.

    3.1 Hardness assumption

    Definition 3.1 Decisional unbalanced sparse polynomial ratio problem (DUSPR).

    Given the above parameters{λ,ρ,β,n},a distinguisher D is said to(λ,ρ,β,n,t,?)-solve the DUSPRλ,ρ,β,nproblem if

    where h=g/f ∈R?,f =s(x2β+1)+1,g ←,s ←with s,g ∈R?,and a ←R?,and D runs in time at most t.

    Our public key cryptosystem is based on the following assumption.

    Definition 3.2 DUSPR assumption.For any probabilistic distinguisher D that(λ,ρ,β,n,t,?)-solves the DUSPRλ,ρ,β,nproblem for all large enough λ, where ρ = λ/4,β =4ρ2,n=20ρ2+1,and t is polynomial in λ,the advantage ? that D holds is negligible as a function of λ.

    Lemma 3.3Under the DUSPR assumption, the public key encryption scheme(Enc,Dec)described in Section 2 is secure against chosen plaintext attack.

    Proof.Given two polynomials d0,d1∈P<2βcorresponding to plaintext vectors m0,m1,for i=0,1 let ci=rih+ei+dimod (xn+1) mod 2,be the ciphertexts of di,where

    Note that for simplicity we assume that c1,c2∈R?.The reason is that if GCD(ci,xn+1)1,we can flip the 0-th coefficient of ci.

    By contradiction,assume that there exists a polynomial time algorithm B,so that

    Let b ←R?.According to the DUSPR assumption,for any polynomial time algorithm A we have

    Table 1: The concrete parameter settings of our NTRU-type scheme

    Since B is a polynomial time algorithm,we get

    where negl0(λ),negl1(λ),and negl(λ)are negligible functions in λ.

    This generates a contradiction for the expression(1)and(3).

    3.2 Known attacks

    In the following subsection, we theoretically analyze how our proposed scheme prevents known attacks, including NTRU-type lattice attack, meet in the middle attack, and attack of factoring modulo xn+1.Our analysis result demonstrates that our scheme can resist all these known attacks.

    NTRU-type lattice attack.For the NTRU system, given the public key h = g/f over the ring ?q[x]/(xn-1),it is easy to construct the NTRU public lattice[Coppersmith and Shamir(1997);Hoffstein,Pipher and Silverman(1998)]as follows:

    where H is a circulant matrix generated from h.

    According to the parameter settings of NTRU,the vector(g,f)in L1has size(df+dg)1/2,where df,dgare the number of the non-zero coefficients of f,g, respectively.Since det(L1) = qn, the Gaussian heuristic suggests that(g,f)is in general the shortest vector in L1.However,the current lattice reduction algorithm that find(g,f)requires exponential in the security parameter n.

    Similarly,for our NTRU-type system,given the public key h = g/f over ?2[x]/(xn+1),we can also construct a lattice from h.Owing to using the unbalanced private key f, we only need to use the 2β rows of the circulant matrix H generated by h.The reaseon is thatfh=(s+1)h+s(x2βh)=f1h+f2h.As a reasult,we write a matrix form as follows:

    Table 2: The performance of our NTRU-type scheme

    where H is a circulant matrix generated from h, H[i : j]represents the sub-matrix of the i-th row to the j-th row of H.

    By our parameter settings,the vector(g,f1,f2)in L2has size(3ρ+1)1/2or(3ρ-1)1/2.Since det(L2) = 2n,the Gaussian heuristic suggests that(g,f1,f2)is usually the shortest vector in L2.When n is large enough, the lattice reduction algorithm that computes(g,f1,f2)requires time complexity at about 2O(n).

    Meet in the middle attack.The idea of the meet-in-the-middle attack on NTRU[Howgrave-Graham (2007)] is that if f1+ f2= f, then (f1+ f2)h = g mod q.In other words, the entries of y1= f1h and y2= -f2h differ only by 0 or 1 mod q.According to this property,the meet-in-the-middle attack performs sampling f1with df/2"1" coefficients, and storing them in boxes dependent on the y1.If two binary elements f1,f2are satisfied f =f1+f2,then we hope that this can be detected by a collision in a box.For any collisions, we can retrieve the f1,f2from the stored box, and determine whether(f1+f2)h is binary or not.Once we find a very small vector in the NTRU public lattice,it is very likely one of the rotation of(g,f).According to the analysis,the classical(resp.quantum)meet-in-the-middle attack requires the time complexity and space complexity at least[Howgrave-Graham (2007)] (resp.[de Boer,Ducas,Jeffery and Wolf(2017)]).

    Similarly, for our NTRU-type system, it is not difficult to verify that the classical (resp.quantum)meet-in-the-middle attack requires the time complexity and space complexity at least

    Attack of factoring xn+1 modulo 2.According to our parameter settings,the xn+1 has at most three factors modulo 2.In other words, xn+1 = (x+1)k(x) mod 2 such that k(x) is irreducible or k(x) = k1(x)k2(x) modulo 2.As far as we know, when n is large enough,no effective algorithm can use the factors of xn+1 to attack our system.

    4 Implementation

    To evaluate the encryption and decryption capabilities of the proposed approach,and access its consuming time on different security level,we conduct one group of experiments.The experiment environment setup is as follows.We implemented our NTRU-type public key cryptosystem over the NTL library.All programs were run on the physical machine,which has a 3.20 GHz Intel Core i5-3470 processor,and 8 GB of RAM.

    Tab.1 is our concrete parameter settings.We define different security level with different parameter values.Tab.2 is the performance result of our NTRU-type scheme.Note that the estimate of the security level mainly relies upon the time complexity of the classical meet-in-the-middle attack on our NTRU-type scheme.

    When security level is 80 (λ=120, ρ=30, β=3600, n=18013), we have 100% successful rate for testing frequency=2000,and average excryption/decryption time is about 3 ms with 150 expansion rate.When security level is 160 (λ=200, ρ=50, β=10000, n=50021), we have 100%successful rate for testing frequency=2000,and average excryption/decryption time is about 15ms with 250 expansion rate.From our experiments result, we can notice that if we directly encrypt plaintexts by applying our public key scheme,its performance is relatively weak,especially for the ciphertext expansion rate.However,if we use our public key scheme for key encapsulation mechanism, our scheme will be relatively practical and effective.

    It should be noted that we did not optimize our implementation and only illustrate the relative practicality of our construction.

    5 Conclusions

    In this paper,we propose a new NTRU-type public-key cryptosystem over the binary field,whose security relies on the computational intractability on the DUSPR problem.We present the details of our new NTRU-type plublic key cryptosystem with the theoretical analysis,and prove our decryption algorithm correctly recovers the plaintext from a ciphertext with high probability.We also theoretically analyze and prove that our proposed cryptosystem could avoid known attacks,including NTRU-type lattice attack,meet in the middle attack,and and attack of factoring modulo xn+1.Furthermore,we implement our scheme using the NTL library,and conduct a group of experiments in different security level.Our result demonstrates that our proposed NTRU-type public-key cryptosystem over ?2is relatively practical.

    Immediate extensions to our approach consist of the following aspects.First, we plan to experiment our approach with cell phone so that we can evaluate its improvements comparing to traditional cryptosystem.Second, we plan to study the feasibility and security of digital signature and authentication through conducting NTRU-type public key cryptosystem over the binary field.Finally, we plan to reduce the security of our scheme to the learning parity with noise(LPN)[Pietrzak(2012)]problem theoretically,so that we could get rid of the assumption of DUSPR.

    Acknowledgement:This work was supported by the National Natural Science Foundation of China (Nos.61672270, 61702236 and 61602216) and Changzhou Sci&Tech Program(Grant No.CJ20179027).We thank anonymous reviewers for their helpful suggestions which greatly improved the presentation of this paper.

    Conflict of Interest

    We declare that the funding in the Acknowledgment section did not lead to any conflict of interests regarding the publication of this manuscript.Also,there is no any other conflict of interests in the manuscript.

    欧美亚洲日本最大视频资源| 男女午夜视频在线观看| 少妇被粗大的猛进出69影院| 三级毛片av免费| 老鸭窝网址在线观看| 一个人免费看片子| 黄色片一级片一级黄色片| 亚洲成a人片在线一区二区| 一级a爱视频在线免费观看| 亚洲 国产 在线| 亚洲成a人片在线一区二区| 十八禁网站网址无遮挡| 亚洲欧美激情在线| 国产精品九九99| 老熟妇仑乱视频hdxx| av片东京热男人的天堂| 精品乱码久久久久久99久播| 一进一出抽搐动态| 欧美午夜高清在线| 在线 av 中文字幕| 人妻一区二区av| 手机成人av网站| 婷婷丁香在线五月| 岛国毛片在线播放| 亚洲欧美精品综合一区二区三区| 视频在线观看一区二区三区| 纯流量卡能插随身wifi吗| 一区二区三区国产精品乱码| av片东京热男人的天堂| 日本欧美视频一区| 国产老妇伦熟女老妇高清| 欧美精品一区二区免费开放| 高清视频免费观看一区二区| 黄网站色视频无遮挡免费观看| 久久久国产一区二区| 亚洲国产精品一区二区三区在线| 老熟妇仑乱视频hdxx| 丰满人妻熟妇乱又伦精品不卡| 捣出白浆h1v1| 久久九九热精品免费| 国产一区有黄有色的免费视频| 欧美久久黑人一区二区| 国产色视频综合| 国产日韩欧美视频二区| 久久精品国产99精品国产亚洲性色 | 国产av又大| 91麻豆精品激情在线观看国产 | 一级黄色大片毛片| 夜夜夜夜夜久久久久| 国产精品免费一区二区三区在线 | 色尼玛亚洲综合影院| 亚洲国产精品一区二区三区在线| 亚洲精品在线观看二区| 老司机深夜福利视频在线观看| 日本撒尿小便嘘嘘汇集6| 午夜福利一区二区在线看| 欧美 亚洲 国产 日韩一| 日本vs欧美在线观看视频| 精品乱码久久久久久99久播| 岛国在线观看网站| 亚洲情色 制服丝袜| 成人黄色视频免费在线看| 18禁国产床啪视频网站| 热re99久久精品国产66热6| 亚洲avbb在线观看| 国产精品成人在线| 飞空精品影院首页| 日日爽夜夜爽网站| 日本vs欧美在线观看视频| 精品视频人人做人人爽| 精品少妇久久久久久888优播| 最黄视频免费看| av天堂久久9| 91av网站免费观看| 国产成人免费无遮挡视频| 桃花免费在线播放| 欧美精品一区二区大全| 一进一出好大好爽视频| 欧美精品亚洲一区二区| 9色porny在线观看| 在线观看免费日韩欧美大片| av有码第一页| 精品亚洲乱码少妇综合久久| 国产老妇伦熟女老妇高清| www.精华液| 亚洲熟女精品中文字幕| 久久久久精品人妻al黑| 免费在线观看影片大全网站| 18禁裸乳无遮挡动漫免费视频| 在线看a的网站| 精品国产一区二区三区四区第35| 搡老乐熟女国产| 狠狠婷婷综合久久久久久88av| 不卡一级毛片| 啦啦啦在线免费观看视频4| 免费看十八禁软件| 性高湖久久久久久久久免费观看| www.999成人在线观看| 另类精品久久| 成人精品一区二区免费| 最新的欧美精品一区二区| 亚洲成人免费av在线播放| 欧美 亚洲 国产 日韩一| 精品第一国产精品| 亚洲av国产av综合av卡| 久久av网站| 女人高潮潮喷娇喘18禁视频| 五月天丁香电影| 久久久久久亚洲精品国产蜜桃av| 一个人免费在线观看的高清视频| 中文亚洲av片在线观看爽 | 1024香蕉在线观看| 美女国产高潮福利片在线看| 淫妇啪啪啪对白视频| 欧美黄色淫秽网站| 色精品久久人妻99蜜桃| 91成年电影在线观看| 巨乳人妻的诱惑在线观看| 婷婷成人精品国产| 色婷婷久久久亚洲欧美| 我的亚洲天堂| 亚洲国产av影院在线观看| 国产精品久久久久久人妻精品电影 | 日韩中文字幕欧美一区二区| 黄片播放在线免费| 一级毛片电影观看| 欧美日韩视频精品一区| 国产伦人伦偷精品视频| 99re6热这里在线精品视频| 国产日韩欧美亚洲二区| 免费一级毛片在线播放高清视频 | 亚洲国产中文字幕在线视频| 日本黄色日本黄色录像| 自线自在国产av| 亚洲av成人不卡在线观看播放网| 成人永久免费在线观看视频 | 国产在视频线精品| 国产高清videossex| 一边摸一边抽搐一进一小说 | 看免费av毛片| 一级,二级,三级黄色视频| 男女无遮挡免费网站观看| 国产av国产精品国产| 巨乳人妻的诱惑在线观看| 天天躁日日躁夜夜躁夜夜| 亚洲一区二区三区欧美精品| 在线观看人妻少妇| 亚洲精品乱久久久久久| 欧美激情 高清一区二区三区| 亚洲色图 男人天堂 中文字幕| 国产无遮挡羞羞视频在线观看| 亚洲精品国产色婷婷电影| 午夜激情久久久久久久| 亚洲欧美一区二区三区黑人| 久久久久久久大尺度免费视频| xxxhd国产人妻xxx| 日韩大片免费观看网站| 久久99一区二区三区| 国产精品.久久久| 久久精品国产亚洲av香蕉五月 | 午夜福利视频精品| 久久久久久久久免费视频了| 老司机福利观看| av天堂久久9| 真人做人爱边吃奶动态| 中文字幕最新亚洲高清| 成人国产av品久久久| 操出白浆在线播放| 日韩人妻精品一区2区三区| 一本—道久久a久久精品蜜桃钙片| 久久久欧美国产精品| 国产野战对白在线观看| 岛国在线观看网站| 日本av手机在线免费观看| 老鸭窝网址在线观看| 亚洲第一青青草原| 999精品在线视频| 亚洲成人免费电影在线观看| 岛国在线观看网站| av电影中文网址| 亚洲国产欧美网| 午夜91福利影院| 看免费av毛片| 丰满人妻熟妇乱又伦精品不卡| 三级毛片av免费| 如日韩欧美国产精品一区二区三区| 午夜福利在线免费观看网站| 午夜福利欧美成人| 免费在线观看影片大全网站| 水蜜桃什么品种好| 女人爽到高潮嗷嗷叫在线视频| 国产片内射在线| 亚洲五月婷婷丁香| 99精国产麻豆久久婷婷| 一二三四社区在线视频社区8| 99久久人妻综合| 国产精品久久久av美女十八| 少妇粗大呻吟视频| 麻豆成人av在线观看| 五月天丁香电影| 日日摸夜夜添夜夜添小说| 欧美另类亚洲清纯唯美| 精品国产一区二区久久| 桃红色精品国产亚洲av| 黄频高清免费视频| 国产三级黄色录像| 波多野结衣av一区二区av| 一级黄色大片毛片| av国产精品久久久久影院| 国产亚洲欧美精品永久| 老汉色av国产亚洲站长工具| 亚洲少妇的诱惑av| 精品一区二区三区视频在线观看免费 | 欧美日韩一级在线毛片| 狠狠狠狠99中文字幕| 一级片'在线观看视频| 国产一区二区三区综合在线观看| 日韩欧美一区视频在线观看| 女人高潮潮喷娇喘18禁视频| 一二三四在线观看免费中文在| 欧美激情久久久久久爽电影 | 国产在视频线精品| 人妻久久中文字幕网| 性少妇av在线| 在线观看免费日韩欧美大片| 国产成人精品无人区| 五月开心婷婷网| 国产亚洲欧美在线一区二区| 91精品三级在线观看| 国产淫语在线视频| 每晚都被弄得嗷嗷叫到高潮| 一区二区三区国产精品乱码| 国产精品一区二区在线不卡| 中文字幕色久视频| av片东京热男人的天堂| 欧美激情高清一区二区三区| 国产精品免费一区二区三区在线 | 美女午夜性视频免费| 悠悠久久av| 亚洲精品国产区一区二| 亚洲欧美日韩另类电影网站| 91九色精品人成在线观看| 丝袜美足系列| 窝窝影院91人妻| 两个人看的免费小视频| 欧美日韩一级在线毛片| 久久久久国内视频| av网站免费在线观看视频| 国产成人精品无人区| 90打野战视频偷拍视频| 99热国产这里只有精品6| 大片电影免费在线观看免费| 人人妻人人添人人爽欧美一区卜| netflix在线观看网站| 国产精品一区二区精品视频观看| 精品亚洲成a人片在线观看| 啦啦啦 在线观看视频| 久久香蕉激情| 淫妇啪啪啪对白视频| 精品久久久精品久久久| 50天的宝宝边吃奶边哭怎么回事| 国产成人欧美在线观看 | 色老头精品视频在线观看| 两个人看的免费小视频| 午夜激情久久久久久久| 精品欧美一区二区三区在线| 女人精品久久久久毛片| 亚洲国产av新网站| 无人区码免费观看不卡 | 一边摸一边抽搐一进一小说 | 男人舔女人的私密视频| 老熟妇乱子伦视频在线观看| 欧美乱码精品一区二区三区| 成人精品一区二区免费| 99国产精品99久久久久| 丁香六月欧美| 在线av久久热| 美女扒开内裤让男人捅视频| svipshipincom国产片| 伦理电影免费视频| 最近最新中文字幕大全免费视频| 性高湖久久久久久久久免费观看| 成人亚洲精品一区在线观看| 日韩视频一区二区在线观看| 国产精品九九99| 天天添夜夜摸| 如日韩欧美国产精品一区二区三区| 丝袜美腿诱惑在线| 日韩视频一区二区在线观看| 大型av网站在线播放| 亚洲一区二区三区欧美精品| 久久人妻福利社区极品人妻图片| 最近最新中文字幕大全免费视频| 久久久久久久久久久久大奶| 电影成人av| 精品熟女少妇八av免费久了| 操出白浆在线播放| 精品午夜福利视频在线观看一区 | 一进一出抽搐动态| 欧美精品一区二区免费开放| 国产精品成人在线| 丝袜美腿诱惑在线| 岛国毛片在线播放| 亚洲av日韩精品久久久久久密| 亚洲第一青青草原| 亚洲,欧美精品.| 国产欧美日韩一区二区三| 亚洲av电影在线进入| 国产黄色免费在线视频| 久久久久国内视频| 波多野结衣一区麻豆| 人人妻人人澡人人看| 亚洲精品乱久久久久久| www.熟女人妻精品国产| 丁香六月欧美| 中文字幕高清在线视频| 国产成人精品久久二区二区免费| av不卡在线播放| 黄色丝袜av网址大全| 欧美日韩亚洲国产一区二区在线观看 | 国产在线观看jvid| 王馨瑶露胸无遮挡在线观看| 搡老乐熟女国产| www.自偷自拍.com| 国产精品久久久久久精品古装| 天天躁夜夜躁狠狠躁躁| 热99国产精品久久久久久7| 色老头精品视频在线观看| 一边摸一边抽搐一进一出视频| 啦啦啦在线免费观看视频4| 中文字幕最新亚洲高清| 亚洲一卡2卡3卡4卡5卡精品中文| 性少妇av在线| 成人三级做爰电影| 国产片内射在线| 搡老乐熟女国产| 欧美精品啪啪一区二区三区| 一级毛片电影观看| 色尼玛亚洲综合影院| 欧美一级毛片孕妇| 成人18禁高潮啪啪吃奶动态图| 黄色丝袜av网址大全| 咕卡用的链子| 天堂8中文在线网| 不卡av一区二区三区| 国产亚洲av高清不卡| 韩国精品一区二区三区| 91精品三级在线观看| 欧美在线一区亚洲| 18禁裸乳无遮挡动漫免费视频| 精品国内亚洲2022精品成人 | 亚洲欧美一区二区三区久久| 成人永久免费在线观看视频 | av电影中文网址| 欧美 亚洲 国产 日韩一| 国产精品久久久久成人av| 亚洲熟女毛片儿| 精品国产亚洲在线| 在线观看免费视频日本深夜| 另类精品久久| 日韩 欧美 亚洲 中文字幕| 黑人巨大精品欧美一区二区蜜桃| 久久久久久久大尺度免费视频| 精品一区二区三卡| 男女床上黄色一级片免费看| 国产亚洲欧美在线一区二区| 久久久久久久精品吃奶| 午夜精品久久久久久毛片777| 久久这里只有精品19| 91麻豆av在线| 欧美久久黑人一区二区| 一级毛片精品| 高清欧美精品videossex| 国产亚洲一区二区精品| 三上悠亚av全集在线观看| 搡老岳熟女国产| 久久av网站| 亚洲成人国产一区在线观看| 亚洲精品粉嫩美女一区| 男女免费视频国产| 男女下面插进去视频免费观看| 高清毛片免费观看视频网站 | 精品午夜福利视频在线观看一区 | 电影成人av| av福利片在线| 国产男女内射视频| 色综合婷婷激情| 亚洲精品国产区一区二| 巨乳人妻的诱惑在线观看| 亚洲av美国av| 久久亚洲真实| 性少妇av在线| 啦啦啦在线免费观看视频4| 欧美日韩国产mv在线观看视频| 黄色 视频免费看| 80岁老熟妇乱子伦牲交| 免费女性裸体啪啪无遮挡网站| 色婷婷av一区二区三区视频| 午夜福利视频精品| 动漫黄色视频在线观看| 80岁老熟妇乱子伦牲交| 亚洲国产精品一区二区三区在线| 久久人妻福利社区极品人妻图片| 国产精品美女特级片免费视频播放器 | 久久久久久久大尺度免费视频| 欧美激情极品国产一区二区三区| 女警被强在线播放| 欧美 亚洲 国产 日韩一| 久久精品aⅴ一区二区三区四区| 电影成人av| 日本av手机在线免费观看| 国产精品影院久久| 大型av网站在线播放| 中文字幕最新亚洲高清| 自线自在国产av| 亚洲精品中文字幕一二三四区 | 国产一区有黄有色的免费视频| 丝袜人妻中文字幕| 午夜免费鲁丝| 纯流量卡能插随身wifi吗| 叶爱在线成人免费视频播放| 大片电影免费在线观看免费| 不卡一级毛片| 狠狠婷婷综合久久久久久88av| 国产精品欧美亚洲77777| 国产成人欧美| 国内毛片毛片毛片毛片毛片| 亚洲第一欧美日韩一区二区三区 | 亚洲精品国产精品久久久不卡| 香蕉丝袜av| 国产成人一区二区三区免费视频网站| 最近最新中文字幕大全电影3 | 免费观看a级毛片全部| 国产成人影院久久av| 亚洲熟女精品中文字幕| 国产高清国产精品国产三级| 下体分泌物呈黄色| 老司机午夜福利在线观看视频 | 久久香蕉激情| 国产男女内射视频| 91老司机精品| 久热爱精品视频在线9| 国产日韩欧美在线精品| videosex国产| 90打野战视频偷拍视频| 成人黄色视频免费在线看| 国产高清videossex| 国产视频一区二区在线看| 国产亚洲精品第一综合不卡| 天堂动漫精品| 久久性视频一级片| 黑人猛操日本美女一级片| 大码成人一级视频| 曰老女人黄片| 少妇被粗大的猛进出69影院| 欧美亚洲 丝袜 人妻 在线| 人人妻人人添人人爽欧美一区卜| 久久人人97超碰香蕉20202| 90打野战视频偷拍视频| 两人在一起打扑克的视频| 亚洲专区字幕在线| 国产不卡一卡二| 18在线观看网站| 国产精品一区二区免费欧美| 老汉色∧v一级毛片| 国产三级黄色录像| 大码成人一级视频| 超碰97精品在线观看| 他把我摸到了高潮在线观看 | 色综合婷婷激情| av天堂在线播放| 狠狠婷婷综合久久久久久88av| 久久久久国产一级毛片高清牌| 变态另类成人亚洲欧美熟女 | 老汉色av国产亚洲站长工具| 国产欧美日韩一区二区精品| 亚洲 欧美一区二区三区| 成人av一区二区三区在线看| 一个人免费在线观看的高清视频| 18禁裸乳无遮挡动漫免费视频| 九色亚洲精品在线播放| 亚洲中文av在线| 国产激情久久老熟女| 在线观看www视频免费| 90打野战视频偷拍视频| 欧美日韩亚洲国产一区二区在线观看 | 午夜福利在线免费观看网站| 桃花免费在线播放| 亚洲欧美日韩另类电影网站| 国产精品一区二区在线观看99| 欧美日韩视频精品一区| 国产在线精品亚洲第一网站| 又黄又粗又硬又大视频| 一本—道久久a久久精品蜜桃钙片| 18禁黄网站禁片午夜丰满| 亚洲av日韩精品久久久久久密| 99精品欧美一区二区三区四区| 亚洲精品中文字幕一二三四区 | 新久久久久国产一级毛片| av超薄肉色丝袜交足视频| 久久精品国产综合久久久| 99国产精品免费福利视频| 狂野欧美激情性xxxx| 欧美亚洲日本最大视频资源| 久久精品人人爽人人爽视色| 男女高潮啪啪啪动态图| 国产男靠女视频免费网站| 最近最新免费中文字幕在线| 在线观看免费高清a一片| 99re在线观看精品视频| 69精品国产乱码久久久| 成年版毛片免费区| 黑丝袜美女国产一区| 国产精品久久电影中文字幕 | 午夜激情久久久久久久| 999精品在线视频| 最近最新中文字幕大全免费视频| 精品少妇久久久久久888优播| 免费黄频网站在线观看国产| 国产成人影院久久av| 真人做人爱边吃奶动态| 他把我摸到了高潮在线观看 | 999精品在线视频| 久久人妻熟女aⅴ| 黑人欧美特级aaaaaa片| 国产又爽黄色视频| 欧美精品一区二区免费开放| 亚洲专区字幕在线| 19禁男女啪啪无遮挡网站| 国产激情久久老熟女| 精品人妻1区二区| 男人操女人黄网站| 亚洲av片天天在线观看| 国产不卡av网站在线观看| 性少妇av在线| 建设人人有责人人尽责人人享有的| 天堂中文最新版在线下载| 日日爽夜夜爽网站| 欧美黄色片欧美黄色片| 亚洲第一欧美日韩一区二区三区 | 国产高清激情床上av| 波多野结衣一区麻豆| 国产精品国产高清国产av | 国产淫语在线视频| 亚洲成a人片在线一区二区| 免费在线观看影片大全网站| 露出奶头的视频| 一级片'在线观看视频| 国产精品久久久久久精品古装| 狠狠狠狠99中文字幕| 国产成人免费无遮挡视频| kizo精华| 首页视频小说图片口味搜索| 午夜视频精品福利| 国产在视频线精品| 欧美黑人精品巨大| 18禁裸乳无遮挡动漫免费视频| 999久久久国产精品视频| 亚洲黑人精品在线| 美国免费a级毛片| 国产精品九九99| av一本久久久久| 日本欧美视频一区| 亚洲人成伊人成综合网2020| 午夜两性在线视频| 高清黄色对白视频在线免费看| 50天的宝宝边吃奶边哭怎么回事| 亚洲专区国产一区二区| 狠狠婷婷综合久久久久久88av| 久久青草综合色| 亚洲视频免费观看视频| 欧美国产精品一级二级三级| 午夜福利视频在线观看免费| 欧美日韩视频精品一区| 国产精品久久久久久精品电影小说| 亚洲九九香蕉| 亚洲中文日韩欧美视频| 美女高潮喷水抽搐中文字幕| 高清av免费在线| 国产淫语在线视频| 日韩大片免费观看网站| 老熟女久久久| 操出白浆在线播放| 黄网站色视频无遮挡免费观看| 国产精品 国内视频| 久久久久网色| 免费观看人在逋| 色综合婷婷激情| 老汉色av国产亚洲站长工具| 男女高潮啪啪啪动态图| 日本五十路高清| 波多野结衣一区麻豆| 在线观看www视频免费| 亚洲人成电影观看| 亚洲精品成人av观看孕妇| 国产精品久久久久久人妻精品电影 | 一本久久精品| 99在线人妻在线中文字幕 | 国产成人免费观看mmmm| 新久久久久国产一级毛片| 久久这里只有精品19| 亚洲少妇的诱惑av| 一本色道久久久久久精品综合| 亚洲伊人色综图| 两人在一起打扑克的视频| 精品人妻1区二区| 女人精品久久久久毛片| 少妇粗大呻吟视频| 中文欧美无线码| 午夜视频精品福利| 国产av又大| 国产高清视频在线播放一区| 99香蕉大伊视频| 国产在线一区二区三区精| 日本撒尿小便嘘嘘汇集6|