• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance of FAST with an Ultra-Wide Bandwidth Receiver at 500–3300 MHz

    2023-09-03 15:24:46ChuanPengZhangPengJiangMingZhuJunPanChengChengHongFeiLiuYanZhuChunSunandFASTCollaboration

    Chuan-Peng Zhang ,Peng Jiang ,Ming Zhu ,Jun Pan ,Cheng Cheng ,Hong-Fei Liu ,Yan Zhu,Chun Sun,and FAST Collaboration

    1 National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China;cpzhang@nao.cas.cn

    2 Guizhou Radio Astronomical Observatory,Guizhou University,Guiyang 550000,China

    3 College of Earth Sciences,Guilin University of Technology,Guilin 541004,China

    Abstract The Five-hundred-meter Aperture Spherical radio Telescope (FAST) has been running for several years.A new ultra-wide bandwidth (UWB) receiver,simultaneously covering 500–3300 MHz,has been mounted in the FAST feed cabin and has passed a series of observational tests.The whole UWB band is separated into four independent bands.Each band has 1,048,576 channels in total,resulting in a spectral resolution of 1 kHz.At 500–3300 MHz,the antenna gain is around 14.3–7.7 K Jy-1,the aperture efficiency is around 0.56–0.30,the system temperature is around 88–130 K,and the half-power beamwidth is around 7.6′–1.6′.The measured standard deviation of pointing accuracy is better than~7.9″when zenith angle is within 26.4°.The sensitivity and stability of the UWB receiver are confirmed to satisfy expectations through spectral observations,e.g.,H I and OH.The FAST UWB receiver has already demonstrated good performance in capturing sensitive observations for various scientific goals.

    Key words: instrumentation: detectors–telescopes–line: profiles

    1.Introduction

    The Five-hundred-meter Aperture Spherical radio Telescope (FAST),with an effective diameter of 300 m,has obtained many groundbreaking achievements,for example,in observations of pulsars,fast radio bursts,star formation and galaxy evolution (e.g.,Cheng et al.2020;Han et al.2021;Li et al.2021;Ching et al.2022;Niu et al.2022;Xu et al.2022),since construction was completed on 2016 September 25(Nan et al.2011;Jiang et al.2019,2020).Until now,the FAST has mainly worked at frequencies of 1000–1500 MHz with a 19-beam receiver.Recently,a new cryogenic ultra-wide bandwidth (UWB) receiver at 500–3300 MHz was developed by Liu et al.(2022) and mounted in the FAST feed cabin for scientific observations.The 19-beam receiver uses all three helium cryogenic compressors and occupies most of the space in the feed cabin,so there it not enough space to place any more cryogenic compressors for an UWB receiver.However,the FAST UWB receiver has now passed a series of tests and could carry out several kinds of spectral observations.

    At 500–3300 MHz,the FAST UWB receiver is able to simultaneously cover 330 radio combination lines for Hnα,Henα and Cnα (n=235–126),respectively.This could help us to investigate the active star-formation regions in the Milky Way (e.g.,Chen et al.2020;Zhang et al.2021;Hou et al.2022).Furthermore,the UWB receiver could simultaneously cover the hydrogen (H I at 1420.406 MHz) and hydroxyl radical (OH at 1612.231,1665.402,1667.359 and 1720.530 MHz) lines,and their high redshift signals withz?1.8.This gives us an opportunity to study star formation and evolution not only in the Milky way,but also in the nearby galaxies and especially to provide us with multiwavelength spectral data.In addition,the UWB receiver has been able to catch the methyladyne (CH) line at 3263.794 MHz.This would provide us with high spatial resolution data (~1.6′) for better inspections of our galaxy.Furthermore,the UWB receiver has a sufficient sensitivity and high spectral resolution (1 kHz).This allows us to study the kinematic properties of star formation in the Milky Way and the hyperfine structures of some spectral lines (e.g.,OH at~1665.402 MHz).

    Thanks to the advantageous characteristics of the FAST,we are able to complete a series of observational tests in a short time.In this report,we mainly present the performance of the FAST UWB receiver and relevant antenna parameters at 500–3300 MHz.General parameters of the FAST UWB receiver are listed in Table 1.In Section 2,we introduce the measurement parameters of the UWB receiver system including the noise dipole,beam properties,pointing accuracy,antenna gain,aperture efficiency,and system temperature.In Section 3,we present the properties of the spectral backend,and the measurement results in spectral H I and OH observations.A summary is presented in Section 4.

    Table 1General Parameters of the FAST with the UWB Receiver

    2.Measurement Parameters of the UWB Receiver

    2.1.The Noise Source

    Like the FAST 19-beam array,the UWB receiver also contains a stabilized noise injection system (Jiang et al.2020).The noise is injected between the feed and the low-noise amplifiers.The noise source is a single diode whose signal is split into each polarization.The noise diode has two adjustable power output modes with 1.5–2.0 K for low-power noise temperatures and 13.5–22.0 K for high-power noise temperatures.Based on the test results of a series of hot-load measurements,the noise diode is stable and meets the requirements of data calibration.The low-and high-power noise temperatures are shown in Figure 1 and listed in Table 2.The full noise diode data for UWB 500–3300 MHz can be downloaded online.

    Table 2Detailed Parameters of Noise Diode Temperature(Tcal),Antenna Gain,Aperture Efficiency(η),System Temperature(Tsys),and Half-power Beamwidth(HPBW)for the UWB Receiver

    Figure 1.The high-and low-power noise diode temperatures of the average of two polarizations XX and YY for the FAST UWB 500–3300 MHz measured on 2022 June 17.

    2.2.Beam Size

    To measure the beam properties of FAST UWB receiver,we directly make mapping observations toward a radio point source 3C286 on the sky on 2023 March 26.The used observation mode is OTF along the direction of the RA,and sampling time is 0.2 s,scanning velocity is 20″per second,and the scanning space is 12″.The mapping area is around 20′ × 20′,which is large enough for covering the whole beam structure at 500–3300 MHz.Figure 2 displays examples of observed and fitted beam structures at 800,1400,2000,and 2900 MHz.Table 2 lists all the measured half-power beamwidth (HPBWs) at 500–3300 MHz.Figure 3 shows the observed HPBWs and the theoretical HPBW=1.22 λ/Dwith an assumed telescope diameterD=300 m at 500–3300 MHz.We find that below~2400 MHz,the observed HPBW is smaller than the theoretical HPBW.This indicates that the telescope effective aperture is larger than 300 m below~2400 MHz.We notice that the measured UWB HPBWs are consistent with the FAST 19-beam receiver between 1000 and 1500 MHz.

    Figure 2.The beam structures at 800,1400,2000,and 2900 MHz measured by observing calibrator 3C286 on 2023 March 26.The used observation mode is OTF along the direction of the RA,and sampling time is 0.2 s,scanning velocity is 20″ per second and the scanning space is 12″.

    Figure 3.The HPBW distribution(blue dotted line)for UWB 500–3300 MHz measured by observing radio point source 3C286 within ZA of 26.4°on 2023 March 26.The red curve indicates the theoretical HPBW=1.22 λ/D with an assumed telescope diameter D=300 m.

    2.3.Pointing Accuracy

    In the FAST feed cabin,the UWB receiver has been placed at the phase center based on many pointing tests.According to antenna measurements,the UWB observations have the same pointing accuracy as the FAST 19-beam array.The measured standard deviation of pointing accuracy is better than~7.9″within zenith angle(ZA)of 26.4°(Jiang et al.2020).For example,the measured pointing error is~7.0″ when measuring the beam structures using the radio point source 3C286 on 2023 March 26.The pointing accuracy of~7.0″only takes around one twelfth of the HPBW (HPBW3300MHz≈ 1.6′) at the frequency of 3300 MHz for the FAST.Therefore,the pointing accuracy meets the requirements for current UWB receiver observations.

    2.4.Antenna Gain and Aperture Efficiency

    Figure 4 shows the antenna gain distribution within ZA of 26.4°for UWB 500–3300 MHz measured by observing a stable flux calibrator 3C286 on 2023 March 5.With absolute measurement of noise dipole,the UWB observed ON-OFF data could be calibrated to antenna temperature (Ta,3C286) in Kelvin.The flux density (in Jy) of 3C286 within UWB band could be fitted with a polynomial function (Perley &Butler 2017)

    Figure 4.The antenna gains within ZA of 26.4°for UWB 500–3300 MHz measured by observing flux calibrator 3C286 on 2023 March 5.Four separated UWB bands are indicated with different colors.

    whereS3C286and ν are the flux density in Jy and the frequency in GHz,respectively.Then the antenna gain could be estimated as

    The derived UWB gain at~1400 MHz is~12.0 K Jy-1,which is lower than that of the FAST 19-beam array (~16.0 K Jy-1),mainly because the UWB receiver is uncooled.Up to 3200 MHz,the UWB gain is~9.5 K Jy-1.This meets the requirement for CH observation at~3263.794 MHz.The full antenna gain parameters for UWB 500–3300 MHz can be download online and are partly listed in Table 2.

    As can be seen in Figure 4,the antenna gain becomes low at the high-frequency end,probably because the reflector precision or the reflection efficiency becomes low at such a high-frequency band.The wild fluctuation at the low-frequency end could have resulted from the serious radio frequency interference (RFI) pollution at 500–920 MHz.Generally,the variation of the monitored antenna gain is less than~10%from 2022 August to 2023 March.This indicates that the FAST UWB receiver is relatively stable,but it still needs long-term monitoring for better data calibration.

    Assuming that the aperture efficiency of the FAST is 300 m at 500–3300 MHz,the corresponding geometric illumination area produces a theoretical gain withG0=25.6 K Jy-1(Jiang et al.2020).The aperture efficiency η of the FAST UWB receiver can be estimated by η=Gain/G0.The maximum and minimum gains are,respectively,0.56 and 0.30 at 500–3300 MHz.All derived aperture efficiencies are listed in Table 2.

    2.5.System Temperature

    System temperature is a synthetic contribution from the noise of receiver (Trec),the continuum brightness temperature of the sky(Tsky),emission of the Earth's atmosphere(Tatm),and radiation of the surrounding terrain (Tscat) (Campbell 2002;Jiang et al.2020) as

    Figure 5 displays the system temperature (Tsys) within ZA of 26.4° for UWB 500–3300 MHz measured by observing cold sky on 2023 March 5.The raw data were converted to antenna temperature with the noise data in Figure 1.The data points,which are deviated from the main curve,result from strong RFI.The UWB system temperatures are 90–130 K for the band of 500–3300The high system temperature mostly arises from the uncooled UWB receiver,whose parameters are presented in Liu et al.(2022).The measured system temperature (Tsys) for UWB 500–3300 MHz are also listed in Table 2.Such high system temperatures require lengthy integration times for compensation.In the future,once there is enough space in the feed cabin,the UWB receiver will have a cryogenic low-noise front-end installed;then,a lower system noise temperature and a higher detection sensitivity could be achieved.

    Figure 5.The system temperature within ZA of 26.4°for UWB 500–3300 MHz measured by observing cold sky on 2023 March 5.Four separated UWB bands are indicated with different colors.

    3.Spectral-line Backend and Observations

    3.1.Backend

    At the backend,the whole UWB passband is separated into four subbands,0–1100 MHz,800–1900 MHz,1600–2700 MHz,and 2400–3500 MHz.Each subband has 1,048,576 channels,so the frequency resolution is~1049.04 Hz (or~1 kHz).Any two adjacent bands have some overlapping frequency ranges to compensate for the shortcomings of the analog filter.The effective frequency ranges are 500–1000 MHz,900–1800 MHz,1700–2600 MHz,and 2500–3400 MHz,but the recommended frequency ranges for science observations are 500–950 MHz for UWB-1,950–1750 MHz for UWB-2,1750–2550 MHz for UWB-3,and 2550–3300 MHz for UWB-4 (see details in Table 1).Combining the four subbands,the UWB could simultaneously and effectively cover the frequency ranging from 500 to 3300 MHz(see Figure 1).The observed data are recorded in the spectral-line backend using a dual linear polarization (XX and YY) mode.The sampling time is adjustable,e.g.,in 0.1 s,0.2 s,0.5 s,or 1.0 s.

    3.2.Observation Modes

    All the observation modes available in the FAST 19-beam array can be used in the UWB receiver,such as Drift,OnOff,OTF,and so on(see details in Jiang et al.2020).However,we have to remember that the UWB only has one receiver available for observation.The setup parameters for scanning velocity is also the same as those for the FAST 19-beam array.The maximum scanning velocity is 15″ and 30″ per second in direction of DEC and RA,respectively.

    3.3.Radio Frequency Interference

    In radio astronomy,RFI becomes more and more serious for radio observational facilities (Kesteven 2005;An et al.2017;Zeng et al.2021;Zhang et al.2022).RFI always influences the search and study of interesting astronomical objects.Figure 6 displays the whole bandwidth with one minute integration using UWB 500–3300 MHz.In many tests,we found that,in different sky directions,the RFI distribution at different frequencies is generally similar to that shown in Figure 6,but the intensities vary.Additionally,the low frequency bands(500–950 MHz)have more serious RFI pollution than the other high-frequency bands (Zhang et al.2020).All the emission lines are basically RFI,except for the H I line at 1420 MHz.The extremely strong and evident RFIs mainly come from communication satellites and navigation satellites (Wang et al.2021).Therefore,we must carefully avoid areas of strong RFI.

    Figure 6.The spectral bandpass and RFI distribution with one minute integration for UWB 500–3300 MHz measured by observing cold sky on 2022 November 23.The emission lines basically are RFI,except for the H I line at 1420 MHz.

    3.4.H I and OH lines

    Figure 7 shows Arp 220 (IC 4553) OH emission and H I absorption lines observed by the UWB receiver with 600 s ontime integration.Arp 220 is a well-known starburst galaxy with a redshift of 0.018 40(Baan et al.1982).The observed redshift frequencies of the OH and H I lines are,respectively,1637 and 1395 MHz,which are covered by the UWB-4 and UWB-2 bands,respectively.In 600 s integration,the measured spectral rms is around 15.27 mJy with an original channel space of 1.0 kHz.For the H I absorption line of Arp 220 (see the H I line in Figure 7),the measured flux density by the FAST UWB receiver is only~3% higher than the Arecibo 300 m observations (Mirabel 1982).In addition,for the OH emission line of Arp 220 with the rest frequency of 1665.402 MHz (see the right OH peak in Figure 7),the measured flux density by the UWB is also only~3% higher than the Arecibo 300 m observations(Baan et al.1982).However,for the OH emission line of Arp 220 at its rest frequency of 1667.359 MHz(see the left OH peak in Figure 7),the measured flux density by the UWB is~10% higher than the Arecibo 300 m observations(Baan et al.1982).This is probably because the OH flux density of Arp 220 at 1665.402 MHz is variable (Darling &Giovanelli 2002).Generally,our flux density and velocity measurements (OH and Hi lines) of Arp 220 are coincide well with Arecibo 300 m observations (Baan et al.1982;Mirabel 1982;Mirabel &Sanders 1988).This further suggests that the FAST UWB receiver already demonstrates good performance for spectral scientific observation at 500–3300 MHz.

    Figure 7.Arp 220 (IC 4553) OH emission and H I absorption lines simultaneously covered by the UWB-3 and UWB-2 bands,respectively.Arp 220 is a well-known starburst galaxy with redshift of 0.01840 (Baan et al.1982).For the FAST UWB observed lines,the integration time is 10 minutes,and they have been smoothed into a frequency resolution of 12.0 kHz,leading to an rms of 4.41 mJy.The dotted and dashed curves present the OH and H I lines observed by Arecibo 300 m from Baan et al.(1982)and Mirabel(1982),respectively.The integration time is 25 minutes for the Arecibo OH line,but for the Arecibo H I line there is no integration-time parameter recorded in Mirabel (1982).

    4.Summary

    The FAST has been running well since it began its commission when construction was completed on 2016 September 25.The 19-beam receiver covering 1.05–1.45 GHz is used for most of its scientific observations.However,highfrequency observations,e.g.,OH lines at rest frequencies of 1665 and 1667 MHz,are needed to study star formation in the Milky Way and nearby galaxies.The precision of the designed FAST reflector has met observational requirements at the high frequency of around 3000 MHz.

    A new uncooled UWB receiver,simultaneously covering 500–3300 MHz,was mounted in the FAST feed cabin in 2022 June,and has passed a series of observational tests.The whole UWB band has been separated into four independent bands,but the recommended frequency ranges for users are UWB-1 for 500–950 MHz,UWB-2 for 950–1750 MHz,UWB-3 for 1750–2550 MHz,and UWB-4 for 2550–3300 MHz.Each band has 1,048,576 channels in the total frequency range,resulting in an adequately high spectral resolution of 1 kHz.At 500–3300 MHz,the antenna gain is around 14.3–7.7 K Jy-1,the aperture efficiency is around 0.56–0.30,the system temperature is around 88–130 K and the HPBW is around 7.6′–1.5′.The measured antenna parameters above are listed in Table 2 for data reduction.The measured standard deviation of pointing accuracy is better than~7.9″,when ZA is within 26.4°.In addition,the sensitivity and stability of the UWB receiver are confirmed to satisfy expectations through spectral H I and OH observations.The measured Arp 220 (OH and H I lines) flux density and velocity coincide well with Arecibo 300 m observations.This further suggests that the FAST UWB receiver already demonstrates good performance in taking sensitive observations for various scientific goals at 500–3300 MHz.

    In the future,once there is enough space in the FAST feed cabin,the UWB receiver will have a cryogenic low-noise frontend,and then the performance of the UWB receiver will be significantly improved.For example,the system temperature would decrease~50 K and the antenna gain would increase~2.5 K Jy-1.That will help us to make more sensitive observations towards more various scientific goals than at present.

    Acknowledgments

    This work is supported by the National Key R&D Program of China No.2018YFE0202900.C.P.Z.acknowledges support by the West Light Foundation of the Chinese Academy of Sciences(CAS).C.C.and H.F.L.thank support by the National Natural Science Foundation of China Nos.11803044,11933003,12173045,and 12273072.This work is sponsored partly by the CAS South America Center for Astronomy(CASSACA)and the China Manned Space Project No.CMS-CSST-2021-A05.FAST is a Chinese national mega-science facility,operated by the National Astronomical Observatories of CAS (NAOC).We also wish to thank the anonymous referee for comments and suggestions that improved the clarity of the paper.

    国产亚洲精品久久久久久毛片| 最近最新免费中文字幕在线| 色尼玛亚洲综合影院| 国产亚洲欧美98| 欧美激情久久久久久爽电影| 国产久久久一区二区三区| 欧美在线一区亚洲| 欧美精品国产亚洲| 有码 亚洲区| 色噜噜av男人的天堂激情| 热99re8久久精品国产| 成人午夜高清在线视频| 欧美性猛交黑人性爽| 国产国拍精品亚洲av在线观看| 一进一出好大好爽视频| 国产高清激情床上av| 神马国产精品三级电影在线观看| 亚洲电影在线观看av| 在线a可以看的网站| 国产精品一区二区三区四区免费观看 | 午夜福利18| 国产精品久久久久久精品电影| 一个人免费在线观看电影| 国内精品久久久久久久电影| 色综合婷婷激情| 亚洲专区中文字幕在线| 色综合站精品国产| 国产欧美日韩一区二区精品| 午夜福利成人在线免费观看| 成人性生交大片免费视频hd| 国产白丝娇喘喷水9色精品| 国产精品一区二区免费欧美| 欧美日韩亚洲国产一区二区在线观看| 春色校园在线视频观看| 欧美日韩乱码在线| 99久久精品热视频| 久久精品久久久久久噜噜老黄 | 人人妻人人澡欧美一区二区| 成人三级黄色视频| av中文乱码字幕在线| 亚洲 国产 在线| 男女啪啪激烈高潮av片| 午夜影院日韩av| 日韩欧美一区二区三区在线观看| 国产主播在线观看一区二区| 国产高清激情床上av| 国产精品国产三级国产av玫瑰| 亚洲真实伦在线观看| 午夜福利在线在线| 亚洲无线在线观看| 国内精品久久久久久久电影| 看免费成人av毛片| 国产蜜桃级精品一区二区三区| 夜夜爽天天搞| 又黄又爽又刺激的免费视频.| 国产熟女欧美一区二区| 天堂√8在线中文| 最近在线观看免费完整版| 国产成人a区在线观看| 动漫黄色视频在线观看| 亚洲国产欧美人成| 免费看av在线观看网站| 国产毛片a区久久久久| 少妇人妻一区二区三区视频| 久久久久久久精品吃奶| 老女人水多毛片| 日本-黄色视频高清免费观看| 在线免费观看的www视频| 最后的刺客免费高清国语| 乱码一卡2卡4卡精品| 一个人看的www免费观看视频| 久久精品久久久久久噜噜老黄 | 韩国av一区二区三区四区| 国产高潮美女av| 国产av不卡久久| 给我免费播放毛片高清在线观看| 啦啦啦韩国在线观看视频| 免费观看在线日韩| 免费高清视频大片| 国产淫片久久久久久久久| 免费人成在线观看视频色| 亚洲专区中文字幕在线| 日韩欧美免费精品| 99久久成人亚洲精品观看| av天堂中文字幕网| 少妇的逼好多水| 一进一出抽搐动态| 黄色一级大片看看| 国产91精品成人一区二区三区| 国产精品久久视频播放| 99热这里只有是精品50| 日日啪夜夜撸| 国产精品久久视频播放| 成人一区二区视频在线观看| 国产乱人视频| 免费不卡的大黄色大毛片视频在线观看 | 精品乱码久久久久久99久播| 精华霜和精华液先用哪个| 一区福利在线观看| 国产高清激情床上av| 在线免费观看的www视频| 欧美日韩中文字幕国产精品一区二区三区| 听说在线观看完整版免费高清| 搡老妇女老女人老熟妇| 日本 欧美在线| av女优亚洲男人天堂| 99久国产av精品| netflix在线观看网站| 黄片wwwwww| 免费搜索国产男女视频| 欧美xxxx性猛交bbbb| 色av中文字幕| 免费观看精品视频网站| 两性午夜刺激爽爽歪歪视频在线观看| 国产免费男女视频| 亚洲中文日韩欧美视频| 精品久久久噜噜| 欧美潮喷喷水| 亚洲成av人片在线播放无| 亚洲av二区三区四区| 欧美又色又爽又黄视频| 亚洲精品日韩av片在线观看| av在线亚洲专区| 国产乱人视频| 日韩中字成人| 制服丝袜大香蕉在线| 亚洲人成伊人成综合网2020| 九色国产91popny在线| 看黄色毛片网站| 在线a可以看的网站| 亚洲精品日韩av片在线观看| 免费不卡的大黄色大毛片视频在线观看 | 超碰av人人做人人爽久久| 亚洲人成网站在线播| 国产精品亚洲一级av第二区| 九九热线精品视视频播放| 国内精品久久久久久久电影| 99视频精品全部免费 在线| 日韩欧美三级三区| 美女高潮的动态| 国产精品一区二区三区四区免费观看 | 精品久久久久久久久av| 国产视频内射| 成人特级黄色片久久久久久久| 亚洲内射少妇av| 国产69精品久久久久777片| 婷婷亚洲欧美| 国产一区二区在线av高清观看| 亚洲欧美激情综合另类| 亚洲成人免费电影在线观看| 偷拍熟女少妇极品色| 国产久久久一区二区三区| 我的老师免费观看完整版| 久久久精品欧美日韩精品| 精品日产1卡2卡| 亚洲人成网站在线播放欧美日韩| 国产精品精品国产色婷婷| 一卡2卡三卡四卡精品乱码亚洲| 全区人妻精品视频| 国产黄色小视频在线观看| 欧美极品一区二区三区四区| 日韩人妻高清精品专区| 99国产精品一区二区蜜桃av| 日韩大尺度精品在线看网址| 久久精品久久久久久噜噜老黄 | 国产真实伦视频高清在线观看 | 日韩一本色道免费dvd| 亚洲七黄色美女视频| 国产 一区 欧美 日韩| 又粗又爽又猛毛片免费看| 欧美激情在线99| 男女那种视频在线观看| 无遮挡黄片免费观看| 97热精品久久久久久| 大又大粗又爽又黄少妇毛片口| 国产三级中文精品| 十八禁网站免费在线| 91狼人影院| 一个人看的www免费观看视频| 国产av在哪里看| 99在线人妻在线中文字幕| 国产伦人伦偷精品视频| 一级毛片久久久久久久久女| 天天躁日日操中文字幕| 午夜激情福利司机影院| 亚洲欧美日韩高清在线视频| 亚洲最大成人中文| 成人毛片a级毛片在线播放| 99热网站在线观看| 日本免费a在线| 久久久国产成人免费| 亚洲人成网站在线播| 亚洲三级黄色毛片| 亚洲一区二区三区色噜噜| 搡女人真爽免费视频火全软件 | 国产精品综合久久久久久久免费| 色吧在线观看| 国产高清有码在线观看视频| 婷婷丁香在线五月| 日韩,欧美,国产一区二区三区 | eeuss影院久久| 国产精品,欧美在线| 韩国av一区二区三区四区| 欧美不卡视频在线免费观看| 亚洲av二区三区四区| 99热这里只有是精品50| 全区人妻精品视频| 久久久久久久久大av| 亚洲aⅴ乱码一区二区在线播放| 国产乱人视频| 欧美区成人在线视频| 999久久久精品免费观看国产| 国产一区二区在线观看日韩| 欧美日韩中文字幕国产精品一区二区三区| 午夜精品久久久久久毛片777| 波多野结衣巨乳人妻| 亚洲精品日韩av片在线观看| 国模一区二区三区四区视频| 精品久久久久久久久久免费视频| 波多野结衣高清无吗| 在线观看美女被高潮喷水网站| 久久精品国产亚洲网站| 日本熟妇午夜| 久久久久久久久大av| 亚洲自拍偷在线| 国产 一区精品| 亚洲狠狠婷婷综合久久图片| 成人av在线播放网站| 亚洲在线观看片| 久久久久免费精品人妻一区二区| 久久午夜亚洲精品久久| 中出人妻视频一区二区| 免费人成在线观看视频色| 精品人妻偷拍中文字幕| 乱人视频在线观看| 99热这里只有精品一区| 国产精品亚洲一级av第二区| 国国产精品蜜臀av免费| 麻豆精品久久久久久蜜桃| 韩国av一区二区三区四区| 91久久精品电影网| 色吧在线观看| 午夜免费激情av| 亚洲精品乱码久久久v下载方式| 欧美日本视频| 精品人妻视频免费看| 色综合站精品国产| 亚洲熟妇中文字幕五十中出| 高清毛片免费观看视频网站| 国产在线精品亚洲第一网站| 国产精品一区二区性色av| 少妇被粗大猛烈的视频| 看免费成人av毛片| 日韩人妻高清精品专区| 亚洲18禁久久av| 国产欧美日韩一区二区精品| 久久久精品大字幕| 99视频精品全部免费 在线| 九九热线精品视视频播放| 国产精品久久电影中文字幕| 日本黄大片高清| 噜噜噜噜噜久久久久久91| 国产精品久久电影中文字幕| 欧美日韩黄片免| 久久精品影院6| 久久草成人影院| 夜夜看夜夜爽夜夜摸| 舔av片在线| 免费黄网站久久成人精品| 国语自产精品视频在线第100页| 精品人妻视频免费看| 岛国在线免费视频观看| 精品午夜福利视频在线观看一区| 亚洲中文日韩欧美视频| 女的被弄到高潮叫床怎么办 | 色哟哟哟哟哟哟| 国产探花极品一区二区| 一a级毛片在线观看| 在线观看午夜福利视频| 又爽又黄a免费视频| 成年女人毛片免费观看观看9| 伦精品一区二区三区| 婷婷色综合大香蕉| 性色avwww在线观看| 看片在线看免费视频| 熟女电影av网| 国产在线男女| 亚洲专区国产一区二区| 男人舔奶头视频| 在线观看美女被高潮喷水网站| 三级毛片av免费| 在线国产一区二区在线| 99国产极品粉嫩在线观看| 欧美在线一区亚洲| a级一级毛片免费在线观看| 久久精品国产自在天天线| 午夜爱爱视频在线播放| 国产乱人伦免费视频| 国产精品人妻久久久影院| 乱系列少妇在线播放| 久久久久久久久中文| 久久精品久久久久久噜噜老黄 | 在现免费观看毛片| 天堂网av新在线| 色在线成人网| 亚洲国产精品成人综合色| 亚洲天堂国产精品一区在线| 欧美三级亚洲精品| 人人妻,人人澡人人爽秒播| a级一级毛片免费在线观看| 欧美三级亚洲精品| 亚洲av日韩精品久久久久久密| 美女高潮的动态| 在线播放无遮挡| 亚洲性久久影院| 久久婷婷人人爽人人干人人爱| 色播亚洲综合网| 成人美女网站在线观看视频| 日本免费一区二区三区高清不卡| 国产私拍福利视频在线观看| 91久久精品电影网| av在线天堂中文字幕| 极品教师在线视频| 国产精品久久久久久久电影| 欧美不卡视频在线免费观看| 搡女人真爽免费视频火全软件 | 波野结衣二区三区在线| 精品一区二区三区av网在线观看| 亚洲中文字幕日韩| 国产精品一区二区三区四区久久| 日韩 亚洲 欧美在线| 亚洲欧美日韩东京热| 亚洲综合色惰| 日韩高清综合在线| 亚洲人成网站高清观看| 久久人人精品亚洲av| 欧美xxxx黑人xx丫x性爽| 老师上课跳d突然被开到最大视频| 精品人妻1区二区| 久久天躁狠狠躁夜夜2o2o| 十八禁国产超污无遮挡网站| 国产三级中文精品| 搡老妇女老女人老熟妇| 亚洲天堂国产精品一区在线| 国产女主播在线喷水免费视频网站 | 国产精品伦人一区二区| 男人和女人高潮做爰伦理| 午夜激情欧美在线| 亚洲av日韩精品久久久久久密| 桃红色精品国产亚洲av| av在线亚洲专区| 国产精品一及| 亚洲欧美日韩高清专用| 少妇熟女aⅴ在线视频| 亚洲无线在线观看| 日韩欧美国产在线观看| 91午夜精品亚洲一区二区三区 | 欧美极品一区二区三区四区| av在线蜜桃| 91在线精品国自产拍蜜月| 日韩欧美国产在线观看| 免费看光身美女| 中文在线观看免费www的网站| 99视频精品全部免费 在线| 偷拍熟女少妇极品色| 日韩欧美国产在线观看| 波多野结衣高清无吗| 亚洲七黄色美女视频| 日韩一区二区视频免费看| 亚洲av.av天堂| 欧美3d第一页| 亚洲电影在线观看av| 在线观看美女被高潮喷水网站| 日本一本二区三区精品| 深夜a级毛片| 精品一区二区三区视频在线| 婷婷精品国产亚洲av| 亚洲av日韩精品久久久久久密| 欧洲精品卡2卡3卡4卡5卡区| 国产精品综合久久久久久久免费| 中国美白少妇内射xxxbb| 日韩人妻高清精品专区| 69av精品久久久久久| 观看免费一级毛片| 亚洲人成网站在线播放欧美日韩| 免费看美女性在线毛片视频| 在线国产一区二区在线| 国产欧美日韩精品亚洲av| 久久久久精品国产欧美久久久| 国产不卡一卡二| 最近在线观看免费完整版| 女同久久另类99精品国产91| 日本爱情动作片www.在线观看 | 乱码一卡2卡4卡精品| avwww免费| 一级av片app| av天堂在线播放| 欧美黑人巨大hd| netflix在线观看网站| 99久久精品热视频| 很黄的视频免费| 久久精品国产亚洲av涩爱 | 制服丝袜大香蕉在线| 直男gayav资源| 午夜影院日韩av| av国产免费在线观看| 在线观看午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产欧洲综合997久久,| 久久久国产成人精品二区| 国产乱人视频| 久99久视频精品免费| 精品一区二区三区人妻视频| 99riav亚洲国产免费| 国产高清不卡午夜福利| 欧美在线一区亚洲| 亚洲va日本ⅴa欧美va伊人久久| 日韩强制内射视频| 欧美最黄视频在线播放免费| 热99在线观看视频| 精品无人区乱码1区二区| 少妇熟女aⅴ在线视频| 91久久精品国产一区二区三区| 亚洲欧美精品综合久久99| 男女啪啪激烈高潮av片| 欧美色视频一区免费| 亚洲中文字幕一区二区三区有码在线看| 欧美成人一区二区免费高清观看| 成人永久免费在线观看视频| 琪琪午夜伦伦电影理论片6080| 精品久久久久久成人av| 国产女主播在线喷水免费视频网站 | 22中文网久久字幕| 嫩草影院精品99| 亚洲精品乱码久久久v下载方式| 国产午夜精品久久久久久一区二区三区 | 国产极品精品免费视频能看的| av在线天堂中文字幕| 色尼玛亚洲综合影院| 小说图片视频综合网站| 国产女主播在线喷水免费视频网站 | 男女做爰动态图高潮gif福利片| 在现免费观看毛片| 黄色一级大片看看| 1024手机看黄色片| 欧美激情在线99| 国产激情偷乱视频一区二区| 久久久久久久久久黄片| 日韩欧美在线二视频| 无遮挡黄片免费观看| bbb黄色大片| 不卡一级毛片| 欧美日韩乱码在线| 欧美人与善性xxx| 18禁在线播放成人免费| 午夜免费男女啪啪视频观看 | 一级a爱片免费观看的视频| 人人妻人人澡欧美一区二区| 国产精品国产三级国产av玫瑰| 欧美丝袜亚洲另类 | 99在线人妻在线中文字幕| av黄色大香蕉| www日本黄色视频网| bbb黄色大片| 国产高潮美女av| 中国美女看黄片| 内射极品少妇av片p| 久久久久久大精品| 一卡2卡三卡四卡精品乱码亚洲| 国产高清不卡午夜福利| 一夜夜www| 国产精品不卡视频一区二区| 国国产精品蜜臀av免费| 老女人水多毛片| av国产免费在线观看| 一区二区三区免费毛片| 最后的刺客免费高清国语| 特级一级黄色大片| a级毛片免费高清观看在线播放| 国产大屁股一区二区在线视频| 一a级毛片在线观看| av女优亚洲男人天堂| 亚洲电影在线观看av| 啪啪无遮挡十八禁网站| 日日摸夜夜添夜夜添av毛片 | 午夜爱爱视频在线播放| 永久网站在线| 亚洲欧美清纯卡通| 国产精品一区二区三区四区免费观看 | 我的老师免费观看完整版| 不卡视频在线观看欧美| 国产精品无大码| 精品一区二区三区视频在线| 国产视频一区二区在线看| 日韩欧美精品免费久久| 国内精品一区二区在线观看| a级毛片免费高清观看在线播放| 联通29元200g的流量卡| 国产成人福利小说| 日韩在线高清观看一区二区三区 | 欧美激情在线99| 欧美激情国产日韩精品一区| 18禁在线播放成人免费| 国产成人一区二区在线| 欧美性感艳星| 天天一区二区日本电影三级| 午夜亚洲福利在线播放| 日日摸夜夜添夜夜添av毛片 | 真实男女啪啪啪动态图| 日韩精品有码人妻一区| 又爽又黄无遮挡网站| 国产精品福利在线免费观看| 97超级碰碰碰精品色视频在线观看| 午夜免费成人在线视频| 在线看三级毛片| 久久人人精品亚洲av| 性欧美人与动物交配| 国产真实伦视频高清在线观看 | 亚洲精品成人久久久久久| 最新在线观看一区二区三区| 亚洲自拍偷在线| 欧美中文日本在线观看视频| 国产午夜精品久久久久久一区二区三区 | 97超视频在线观看视频| xxxwww97欧美| 嫩草影视91久久| 欧美xxxx性猛交bbbb| 老熟妇仑乱视频hdxx| 一进一出抽搐动态| 村上凉子中文字幕在线| 国产亚洲欧美98| 久久欧美精品欧美久久欧美| 51国产日韩欧美| 两个人的视频大全免费| 俺也久久电影网| 波多野结衣巨乳人妻| 免费看美女性在线毛片视频| 国产探花极品一区二区| 精品久久久久久久末码| 欧美最新免费一区二区三区| 91在线精品国自产拍蜜月| 国产白丝娇喘喷水9色精品| 久久久久九九精品影院| 国产一区二区三区视频了| 午夜精品久久久久久毛片777| 在线观看av片永久免费下载| 乱系列少妇在线播放| 亚洲真实伦在线观看| 欧美日韩亚洲国产一区二区在线观看| 成人国产麻豆网| 国产大屁股一区二区在线视频| 深夜精品福利| 国产又黄又爽又无遮挡在线| 亚洲av.av天堂| 九色国产91popny在线| 一区福利在线观看| 国产综合懂色| 长腿黑丝高跟| 在线观看舔阴道视频| 一个人观看的视频www高清免费观看| av福利片在线观看| 亚洲四区av| 麻豆久久精品国产亚洲av| 久久久久性生活片| 深夜a级毛片| 高清在线国产一区| 少妇的逼好多水| 国产激情偷乱视频一区二区| 偷拍熟女少妇极品色| 伦理电影大哥的女人| 美女cb高潮喷水在线观看| 又粗又爽又猛毛片免费看| 一级黄片播放器| 亚洲国产精品sss在线观看| 女的被弄到高潮叫床怎么办 | 干丝袜人妻中文字幕| avwww免费| 真实男女啪啪啪动态图| 久久久久久久午夜电影| 亚洲av中文字字幕乱码综合| 午夜亚洲福利在线播放| 国产毛片a区久久久久| 精品人妻视频免费看| 亚洲内射少妇av| 免费人成在线观看视频色| 日韩强制内射视频| 国产精品乱码一区二三区的特点| 一个人观看的视频www高清免费观看| 国产精品久久久久久久电影| 亚洲av免费高清在线观看| 男女啪啪激烈高潮av片| 国产日本99.免费观看| 亚洲乱码一区二区免费版| 国产69精品久久久久777片| 人人妻人人澡欧美一区二区| 成人二区视频| 色综合亚洲欧美另类图片| 久久国产精品人妻蜜桃| 99久久中文字幕三级久久日本| 99热这里只有是精品50| 成年女人永久免费观看视频| 国产精品99久久久久久久久| 色精品久久人妻99蜜桃| 久久精品人妻少妇| 亚洲avbb在线观看| 国产欧美日韩精品亚洲av| 成人永久免费在线观看视频| 欧美xxxx黑人xx丫x性爽| 精品一区二区三区人妻视频| 成人鲁丝片一二三区免费| 国产精品国产三级国产av玫瑰| 色综合婷婷激情| av视频在线观看入口| 亚洲中文字幕日韩| 人妻少妇偷人精品九色|