• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Spin Measurement of MAXI J0637-430: a Black Hole Candidate with High Disk Density

    2023-09-03 15:25:06NanJiaYeFengYuJiaSongJunYangJieunYuhPeiJunHuangandLiJunGou

    Nan Jia ,Ye Feng ,Yu-Jia Song ,Jun Yang ,Jieun Yuh ,Pei-Jun Huang ,and Li-Jun Gou

    1 Key Laboratory for Computational Astrophysics,National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China;nanjia@nao.cas.cn

    2 School of Astronomy and Space Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;lgou@nao.cas.cn

    3 Shanghai American School Puxi Campus,Shanghai 201107,China

    4 Shenzhen Yaohua Experimental School,Shenzhen 518034,China

    Abstract The Galactic black hole candidate MAXI J0637-430 was first discovered by MAXI/GSC on 2019 November 2.We study the spectral properties of MAXI J0637-430 by using the archived NuSTAR data and Swift/XRT data.After fitting the eight spectra by using a disk component and a powerlaw component model with absorption,we select the spectra with relatively strong reflection components for detailed X-ray reflection spectroscopy.Using the most stateof-art reflection model,relxillCp,the spectral fitting measures a black hole spin a*>0.72 and the inclination angle of the accretion disk i= degrees,at a 90% confidence level.In addition,the fitting results show an extreme supersolar iron abundance.Combined with the fitting results of reflection model reflionx_hd,we consider that this unphysical iron abundance may be caused by a very high-density accretion disk(ne >2.34×1021 cm-3) or a strong Fe Kα emission line.The soft excess is found in the soft state spectral fitting results,which may be an extra free–free heating effect caused by high density of the accretion disk.Finally,we discuss the robustness of black hole spin obtained by X-ray reflection spectroscopy.The result of relatively high spin is self-consistent with broadened Fe Kα line.Iron abundance and disk density have no effect on the spin results.

    Key words: black hole physics–X-rays: binaries–accretion–accretion disks

    1.Introduction

    An X-ray binary consists of a compact object and a donor star.According to the donor star mass,the X-ray binary can be divided into high mass X-ray binary (HMXB) and low mass X-ray binary(LMXB).In LMXBs,the companion star fills the Roche lobe and forms an accretion disk around the compact object.While in HMXBs,the accreted matters from the companion stars via wind.The compact object in the X-ray binary is commonly found to be a neutron star or a stellar-mass black hole.So far,at least 20 black hole X-ray binaries(BHXRBs)have been discovered(Reynolds 2021).Most of the BHXRBs are transients,and a few are persistents such as Cyg X-1 and LMC X-1.

    BHXRBs are ideal objects for testing general relativity and studying the physical properties of black holes with surrounding structures,like the accretion disk and corona.For a real astrophysical environment,a black hole can be characterized by the black hole mass(MBH)and the black hole spin(a*).Usually the black hole mass can be measured from dynamical studies,including mass function and radial velocity curve (Orosz et al.2002,2007).As for the black hole spin measurement,it could be more complicated.Since the BHXRBs show various X-ray spectral features during the whole outburst,which means that the geometric structure of the accretion disk and the physical properties of the corona have been changed.The black hole X-ray binaries will experience an evolution from hard state(HS)to soft state (SS),with a short time intermediate state between them (Remillard &McClintock 2006).It is generally believed that the inner disk radius extends to the innermost stable circular orbit (ISCO) in the soft state.According to Bardeen et al.(1972),there is a degenerate relationship between the ISCO radius and black hole spin.So once we have obtained the inner disk radius,we can estimate the black hole spin via X-ray spectroscopy.At present,two methods that are widely used to measure the black hole spin are the continuum-fitting method,which models the profile of the thermal emission from the accretion disk (Zhang et al.1997);and the X-ray reflection spectroscopy method,which models the relativistic broadened Fe Kα emission line and Compton hump (Fabian et al.1989).Using the continuum-fitting method to measure the black hole spin requires a prior information,that is the black hole mass,inclination,and distance.In most cases,these three dynamical parameters of the black hole are unknown;we need to utilize the other method,the X-ray reflection spectroscopy method.The thermal radiation emitted from the accretion disk in the vicinity of the black hole undergoes Comptonization in the corona,and the produced power-law radiation will be irradiated back to the accretion disk to produce reflection emission.The significant reflection features are the Fe Kα emission line and Compton hump.At the inner region of the accretion disk in the vicinity of the black hole,the Fe Kα emission line is distorted and broadened due to the Doppler effect,beaming effect and gravitational redshift.Using the reflection model to fit the Fe Kα profile and the Compton hump,the black hole spin can be obtained.So far,several sources have used both two methods to measure the black hole spin,which include Cyg X-1(Tomsick et al.2013;Gou et al.2014;Zhao et al.2020,2021b),XTE J1550-564 (Steiner et al.2011),LMC X-1 (Gou et al.2009;Steiner et al.2012),4U 1543-47(Shafee et al.2006;Dong et al.2020b),GRO J1655-40 (Shafee et al.2006;Reis et al.2009),GRS 1915+105 (Miller et al.2013;Reid et al.2014) and GX339-4 (Kolehmainen &Done 2010;García et al.2015).Because of the absence of the dynamical parameters or the Fe Kα emission line,other sources could only use one of the methods to measure the black hole spin.BHXRBs such as A0620-00 (Gou et al.2010),MAXI J1820+070 (Zhao et al.2021a),MAXI J1659-152(Feng et al.2022c)and MAXI J1305-704(Feng et al.2022a)have successfully used the continuumfitting method to obtain the black hole spin.The X-ray reflection spectroscopy method is also widely used in the study of measuring the black hole spin,like MAXI J1535-571(Xu et al.2018;Dong et al.2022),XTE J1752-223(García et al.2018a),MAXI J1836-194(Dong et al.2020a),AT2019wey(Feng et al.2022d),MAXI J1348-630 (Jia et al.2022) and MAXI J1803+298(Feng et al.2022b).

    MAXI J0637-430 is a new transient source (Kennea et al.2019) that was discovered by the Monitor of All-sky X-ray Image Gas Slit Camera(MAXI/GSC;Matsuoka et al.2009)on 2019 November 2nd (MJD 58 789).And then the X-ray outburst was detected by several X-ray satellites,such as the Neil Gehrels Swift Observatory X-ray Telescope (Swift/XRT;Burrows et al.2005),the Neutron star Interior Composition Explorer (NICER;Gendreau et al.2012),Insight-HXMT(Zhang et al.2020),the Nuclear Spectroscopic Telescope Array(NuSTAR;Harrison et al.2013),and the AstroSAT(Singh et al.2014).The whole outburst lasted about six months.Unlike the spectral evolution shown by a typical transient,MAXI J0637-430 lacks the characteristics of the hard state at the beginning of the outburst or the duration of hard state is very short(Tetarenko et al.2021).

    Since the outburst in 2019,MAXI J0637-430 has been studied several times.In the optical band,the optical counterpart was first observed by the Southern Astrophysical Research(SOAR)telescope on 2019 November 3rd and then observed by Gemini in 2019 December(Tetarenko et al.2021).A correlation between the X-ray irradiation heating the accretion disk and the evolution of the He II 4686 ? emission line profiles detected in the optical spectra have been found in Tetarenko et al.(2021).Much research was carried out in the X-ray band.Jana et al.(2021)presented detailed studies of MAXI J0637-430 using by NICER and Swift.In the timing analysis,they found no evidence of quasi-periodic oscillations (QPO) in the power density spectrum(PDS)of the source.Under the assumption of the source distance ofd<10 kpc,they estimated the mass of black hole to be in the range of 5–12M⊙.This conclusion was also verified by the work of Baby et al.(2021).The power spectrum density generated in the 0.01–100 Hz present no QPOs by using AstroSAT.Lazar et al.(2021) used NuSTAR and Swift data to analyze the spectra and timing properties of MAXI J0637-430.They found that a single multicolour disk component could not be well fitted in the soft state spectra,and the fitting results showed that there were at least two components.They suggested that the additional soft excess is the emission from the plunging region or a reflection component from the blackbody returning radiation with a thermal Comptonization component.Different from typical X-ray binaries,MAXI J0637-430 has undergone a strange evolution,with a rapid transition at the beginning of the outburst,a lower luminosity and a shorter decay timescale (Ma et al.2022).By fitting the soft state spectral,they find that it has deviations from the standardLdisk∝relationship,and additional thermal components may exist.They propose some accretion disk geometry to explain the scenario,like a hotter blackbody component plus a colder disk component or an ionized outflows plus a disk component.

    Although MAXI J0637-430 has obtained a mass estimation,we also need to know the black hole spin value if we could fully characterize a black hole.For this reason,we utilize X-ray reflection spectroscopy to analyze the archived data of NuSTAR.The state-of-art reflection physical model is used to fit the spectrum to obtain the spin and other parameters of the black hole.

    This paper is organized as follows.In Section 2,we describe the observations and data reduction of MAXI J0637-430.In Section 3,we present the spectral analysis results.In Section 4,we discuss the possible reason for the extreme high supersolar abundance,soft excess found in the soft state and robustness of the high spin value.In Section 5,we summarize the results and present our conclusion.

    2.Observations and Data Reduction

    We obtained the daily averaged light curve from MAXI/GSC5http://maxi.riken.jp(Matsuoka et al.2009).The hardness ratio plot of MAXI J0637-430 is also shown in Figure 1.At the beginning of the outburst,MAXI J0637-430 seems to be missing the hard state or the timescale of the hard state is very short,and it entered the intermediate state (IMS) when it was found.The X-ray flux reached the maximum at MJD 58793,and then entered the relatively slow decay phase.The source remained in the soft state from MJD 58800 to MJD 58858 with a low hardness ratio.From MJD 58858 to MJD 58880,the source X-ray intensity has a steep decline and a significant increase on hardness ratio,which means the source entered in the intermediate state.It is worth noting that the properties of the two intermediate states are different when the source is in the first intermediate state and when the source returns to the intermediate state for the second time.From the research of Jana et al.(2021),we can see that the normalization of the accretion disk component shows a great difference,which is also verified in our fitting results in Section 3.After that,the source evolved to the low hard state and remained in low X-ray luminosity until the end of the observations.Our classification of spectral states refers to Jana et al.(2021).

    Figure 1.Upper panel: MAXI/GSC light curves of MAXI J0637-430 in 2.0–20.0 keV.The colourful dashed vertical lines represent the observation of NuSTAR.Different spectral states are marked in the color background.Lower panel: time evolution of the hardness ratio (4–20 keV/2–4 keV).

    2.1.NuSTAR

    The observations of NuSTAR started from MJD 58792 and ended in MJD 58801.NuSTAR made eight observations during the whole outburst.We use the v2.0.0 of NuSTARDAS pipeline with version 202103152 of the calibration database6https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/caldb_supported_missions.html(CALDB)to process the NuSTAR archived data.7https://heasarc.gsfc.nasa.gov/FTP/nustar/data/The NuSTAR source spectra are extracted following the standard procedure8https://heasarc.gsfc.nasa.gov/docs/nustar/analysis/nustar_swguide.pdfprovided by the NuSTAR guide.We then choose a circle(withr=120″) centered on the source to extract the source spectra.The background spectra are extracted by using the same circle size (r=120″) from a source-free region.Using command GRPPHA in HEASOFT v6.28,the NuSTAR data is grouped to have at least 25 photons per energy bin.The state of the source,the exposure time,and the count rates with the different instruments,are listed in Table 1.

    Table 1NuSTAR Observation log of MAXI J0637-430

    2.2.Swift/XRT

    When studying the spectrum of X-ray binaries,the disk composition sometimes requires data less than 3 keV to limit the disk temperature,so we process the Swift/XRT data to obtain the precise parameters of the thermal component.The observations of the Swift/XRT covered the whole outburst beginning from MJD 58790.The Swift/XRT spectra over 0.5–10 keV could jointly fit with the NuSTAR spectra over 3–79 keV.However,we noticed that the first observation of NuSTAR had no corresponding Swift/XRT observation,and the X-ray flux of the Swift/XRT observation(obsID:00088999002) corresponding to the last NuSTAR observation (obsID:80502324016) is too low.Here we carry out joint fitting for the second to seventh observations.The spectra are generated from the standard online Swift/XRT data product generator provided by UK Swift Science Data Centre9https://www.swift.ac.uk/user_objects(Evans et al.2009).All the spectra are grouped to have at least 1 count per bin (Kaastra &Bleeker 2016).Detailed Swift/XRT observations are shown in Table 2.

    Table 2Swift/XRT Observation Log of MAXI J0637-430

    We use XSPEC v12.11.510https://heasarc.gsfc.nasa.gov/xanadu/xspecto ignore bad channels and then fit all the spectra.If not specifically mentioned,all uncertainties quoted in this paper are given at a 90 per cent confidence level.

    3.Spectral Analysis and Results

    In this section,we conduct a detailed spectral analysis of NuSTAR and Swift/XRT data.The spectra with strong reflection characteristics are selected to measure the black hole spin.At the beginning of the fitting process,we use a simple absorbed power-law model,constant*tbabs*powerlaw,to fit the spectra.Constant is used to reconcile the calibration difference among the XRT,FPMA and FPMB.When we use the joint fitting of the spectra of NuSTAR and Swift,we fix the constant of XRT and make the constant of FPMA and FPMB change freely.tbabs is the interstellar medium (ISM) absorption model.We set the cross-sections in Verner et al.(1996)and abundances in Wilms et al.(2000).For the spectra of the intermediate state and the soft state,we add the diskbb model to fit the accretion disk component.We fix the hydrogen column density (NH) at 4.39×1020cm-2corresponding toE(B-V)=0.064 (Tetarenko et al.2021).By ignoring 6–7 keV and 15–40 keV to fit the spectra,we find that the spectrum(obsid:80502324002)in the intermediate state has obvious reflection characteristics.A broadened Fe Kα emission line between 6 and 7 keV and a Compton hump component between 20 and 50 keV are clearly shown in Figure 2.This is the reason that we chose this spectrum to measure the black hole spin.All the fitting results are listed in Table 3.From these fitting results,the spectra of the hard state could well be constrained by model constant*tbabs*powerlaw with a good fitting statistics.However,when using model constant*tbabs*(diskbb+powerlaw) to jointly fit the Swift/XRT and NuSTAR spectra of soft states,it was found that additional residuals exist in the soft energy bands.As shown in Figure 3,there is an obvious residual near 1 keV in the spectrum of the soft state.We will discuss this spectral feature in Section 4.2.

    Figure 2.The fitting residuals from model constant*tbabs*(diskbb+powerlaw) for 80 502 324 002.FPMA and FPMB data are plotted in black and red,respectively.

    Figure 3.The fitting residuals from model constant*tbabs*(diskbb+powerlaw)for 80 502 324 006.XRT,FPMA and FPMB data are plotted in green,black and red,respectively.

    Table 3Fitting Results for Simple Models

    Then,we use a preliminary phenomenological model,constant*tbabs*(diskbb+Gaussian+powerlaw),to fit the spectrum of the first observation.The model Gaussian represents the iron emission line and the central energy is set at 6.4 keV.After adding the model Gaussian,the fitting result has been greatly improved with=1.20.In order to measure the spin of MAXI J0637-430,we use the most stateof-art reflection model relxillCp v2.211http://www.sternwarte.uni-erlangen.de/dauser/research/relxill(Dauser et al.2014;García et al.2014)to fit the spectrum of the intermediate state.The model relxillCp is widely utilized in the research of black hole X-ray binary systems(Wang-Ji et al.2018;Xu et al.2018;Sharma et al.2019).The model combines the normal reflection model xillver (Garcia &Kallman 2010;García et al.2011,2013)and the relativistic model relline(Dauser et al.2010,2013).And the incident spectrum in relxillCp is the nthcomp Comptonization continuum.The configuration of our physical model is constant*tbabs*(diskbb+relxillCp).Before measuring the black hole spin,we need to examine the location of the inner radius of the disk(Rin).If the inner radius of the disk does not extend to the ISCO,the truncation of the accretion disk may occur,thus affecting the measurement of the black hole spin.We set the black hole spin(a*) at the maximum value of 0.998 and make theRinfitted freely.For the parameters of the emissivity index,we assume a canonical case (qout=qin=3) (Fabian et al.1989).The outer radius of accretion disk (Rout) is frozen at the default value 400Rg(gravitational radiusRg=GM/c2).Considering the MAXI J0637-430 is a Galactic transient,we fix the redshift(z)at zero.Other parameters like inclination angle(i),photon index of the X-ray spectrum (Γ),ionization of the accretion disk(logξ),iron abundance (AFe),reflection fraction (Rf),electron temperature in the corona(kTe)and normalization(Norm)vary freely.The fitting result show that the inner radius of the disk extended to the ISCO withRin=After examining the location of the inner radius of the disk,we set theRin=RISCOand let the black hole spin as a free parameter.By using the model relxillCp to fit the spectrum of the intermediate state,we obtain that the black hole spina*>0.72.The inclination angle is constrained to beidegrees.Our fitting result shows that the accretion disk is highly ionized with logξ=and a hot corona withkTe>197.1 keV.It is worth noting that the fitting result shows a supersolar iron abundance withAFe>8.89AFe,⊙.This result has also appeared in other black hole X-ray binaries,and we will discuss the issue of iron abundance in Section 4.The spectral fit of model constant*tbabs*(diskbb+relxillCp) is shown in Figure 4.All the best fitting parameters for model constant*tbabs*(diskbb+relxillCp) are listed in Table 4.

    Figure 4.The fitting residuals from model constant*tbabs*(diskbb+relxillCp) for 80 502 324 002.FPMA and FPMB data is plotted in black and red,respectively.

    Table 4Best-fitting Parameters for Relativistic Reflection Models

    Table 5Best-fitting Parameters for Different Incident Radiation of the Reflection Model

    4.Discussion

    4.1.Supersolar Iron Abundance

    In this section,we mainly discuss the possible reasons for supersolar iron abundance from reflection analysis of the first observation and the effect of supersolar iron abundance on black hole spin.In previous studies,some black hole X-ray binaries have shown supersolar iron abundance,such as GX 339-4(AFe=5±1AFe,⊙in García et al.2015 andAFe=6.6±0.5AFe,⊙in Parker et al.2016),V404 Cyg(AFe~5AFe,⊙in Walton et al.2017),Cyg X-1 (AFe=4.7±0.1AFe,⊙in Parker et al.2015 andAFe=4.0–4.3AFe,⊙in Walton et al.2016),4U 1543-47AFe,⊙in Dong et al.2020b andAFe3.6–10.0AFe,⊙in Prabhakar et al.2023),AT2019wey(AFe~5AFe,⊙in Feng et al.2022d),MAXI J1836-194(AFe>4.5AFe,⊙in Dong et al.2020a)and MAXI J1348-630(AFe~7.0–10.0AFe,⊙in Jia et al.2022).Some of these sources show extreme supersolar iron abundance like MAXI J0637-430.For the supersolar iron abundance obtained by X-ray reflection,García et al.(2018b) proposes a possible explanation that the model shortfall at very high densities(ne>1018cm-3)due to atomic data shortcomings in this regime.In the parameter settings of the old version of the reflection model relxillCp,the disk density is fixed to 1015cm-3.However,the prediction of the disk density in the research of the standard α-disk model(Shakura &Sunyaev 1973) and 3D magneto-hydrodynamic(MHD) simulations is much larger (Noble et al.2010;Schnittman et al.2013).The higher density of the accretion disk will contribute to the spectra in two aspects: (1) free–free heating produces a flux excess at soft energies and(2)the effect on the atomic parameters control line emission and photoelectric absorption.The underestimation of the disk density may lead to the issue of supersolar iron abundance.The latest version of the reflection model relxillCp already allows free fitting of the disk density,ranging from 1015cm-3to 1020cm-3.In the previous work of Jia et al.(2022),the high-density model is successfully used to explain the high iron abundance and the fitting results show that it has a negligible effect on the spin measurement.Therefore,on the basis of the model constant*tbabs*(diskbb+relxillCp) in Section 3,the disk density is freely fitted.We set the inclination angle to range from 40°.8 to 50°.1 which is obtained by the fitting spectrum in Section 3.From the fitting results by using high-density reflection model constant*tbabs*(diskbb+relxillCp),we can see that the disk density will be pegged at the maximum value of 1020cm-3after free fitting,and the iron abundance appears to be much larger than that of the solar abundance.The phenomenon may be caused by the maximum disk density(1020cm-3)of the model relxillCp,which is still not enough to fit the actual value of the iron abundance.

    Tomsick et al.(2018) obtained the results of extreme supersolar iron abundance when using the reflection model of constant density(1015cm-3)to study Cyg X-1.They use a new version of reflection model reflionx_hd12https://ftp.ast.cam.ac.uk/pub/mlparker/reflionx/to fit the spectrum,which obtained a result of high disk densityne=3.98×1020cm-3(Tomsick et al.2018).This decreases the need for extremely supersolar abundances.We combine the relativistic convolution model relconv and the high disk density model reflionx_hd as the reflection component. Moreover,we plus a Comptonization continuum model nthcomp in the whole model configuration.In the parameter setting,we tie the photon index Γ of reflionx_hd to the photon index Γ of nthcomp.The inclination angle of the accretion disk is in the range of 40.8-50.1 degrees (obtained from fitting results of Section 3).Because the temperature of the corona is so high that it cannot be limited,we fix it at the maximum.Additionally,the iron abundance of this model is set at the solar abundance.Under the assumption that the iron abundance is set at the solar abundance,a higher disk density(ne>2.34×1021cm-3) is obtained by fitting.This result suggests that MAXI J0637-430 is a stellar-mass black hole with an high-density accretion disk,which is compared to the typical black hole X-ray binary systems.There is no significant difference in the spin value obtained by using the high-density model (both relxillCp and reflionx_hd).For model relxillCp,the black hole spin obtained by fitting isa*>0.83.For model reflionx_hd,the black hole spin obtained by fitting isa*>0.79.In Section 3,we obtain the spin of MAXI J0637-430 witha*>0.72,which shows that the changes of iron abundance and accretion disk density have a negligible effect on the spin measurement.All the best-fitting results of high density relativistic reflection models are shown in Table 6.

    In addition,there is another possibility to explain the extremely supersolar iron abundance.According to the research of Kinch et al.(2021)and Mondal et al.(2021),the Fe Kα line strength increases with Fe abundance sub-linearly.Therefore,an iron line with higher equivalent width may lead to an abnormal increase in iron abundance.When we use the constant*tbabs*(diskbb+Gaussian+powerlaw)model for spectral fitting,we calculate the equivalent width of the Gaussian model used to fit the iron line component.The equivalent width is about 381 eV,which represents a relatively strong iron line component.Besides,the line width of the Gaussian component is up to 1.4 keV.Therefore,the iron line profile is highly broadened by the strong gravity.Such a strong iron line may be a potential reason for the extremely high iron abundance.The discovery is expected to be verified in more research in the future.

    4.2.Soft Excess

    In the research of Lazar et al.(2021),the soft excess may be an emission from a combination of the thermal Comptonization component and reflection component of disk blackbody returning radiation.We also explored this possible scenario by using the reflection model relxillNS,13http://www.sternwarte.uni-erlangen.de/dauser/research/relxill/in which the incident spectrum was changed to a blackbody radiation.This model is usually used to study the reflection components in the radiation of neutron stars.We set the blackbody temperaturekTbbin the reflection model relxillNS equal to the temperature of the disk component diskbb,which represents the case that the light is bent back to the accretion disk by strong gravity.In addition,we set the black hole spin and accretion disk inclination angle to the results in Section 3.The fitting results of the soft state spectra by using the relxillNS model are shown in Table 5.The spectra can be well fitted by using the black hole spin and inclination results that we obtained in Section 3.The additional thermal residuals in the soft state can be explained by the returning blackbody radiation,which is consistent with the conclusion in Lazar et al.(2021).In Section 4.1,we also discussed that the soft excess in the intermediate state spectrum may be caused by the large density of the accretion disk.Therefore,we attempt to use the high-density version of the typical reflection model relxillCp to fit the soft state spectral,where the incident radiation is a Comptonization component from the hot corona.The fitting results of the soft state spectra by using the relxillCp model are shown in Table 5.We find that relxillCp model can also obtain acceptable fitting statistical results.Comparing the fitting results of the two reflection models,we find that the blackbody temperature of the accretion disk is lower when using the relxillNS model,while the higher disk density is obtained when using the relxillCp model,which may be due to different descriptions of the mechanism of soft excess.From the fitting statistical results of the two reflection models,the relxillNS model can provide a better fitting.To distinguish which physical scenario is more physical may require more observations and studies in the future.At present,both the highdensity accretion disk and the return radiation from the accretion disk may be potential reasons.

    4.3.Spin Parameter

    Using the most state-of-art reflection model to fit the spectral,the spin parameter of MAXI J0637-430 is measured witha*>0.72.In a recent work of MAXI J0637-430,Soria et al.(2022)proposed to calculate black hole spin(a*<0.25)using mass and distance.This inconsistency may be caused by the difference between the inclination angle and the inner radius of the disk.Under this method,the black hole mass,source distance,and inclination angle of the accretion disk have a great effect on the spin measurement.Usually,we use the continuumfitting method to measure the black hole spin when the dynamical parameters are known.Using the X-ray reflection spectroscopy,we only need to obtain the black hole spin by fitting the reflection components in the spectral regardless of the precise dynamical parameters.In the work of Kinch et al.(2021)mentioned in Section 4.1,the Fe Kα profile is more sensitive to the accretion rate than to the black hole spin.According to Tetarenko et al.(2021)and Ma et al.(2022),MAXI J0637-430 has a relatively low accretion rate.This may suggest that the broadening of the Fe Kα emission line is caused by the strong gravitational redshift effect from relatively high black hole spin rather than the mass accretion rate.

    5.Conclusion

    In this work,we mainly analyze the NuSTAR and Swift/XRT archived data of MAXI J0637-430 and use the spectra with strong reflection components for spin measurement.The reflection model relxillCp can be used to fit the spectra well,and the parameters characterized by physical properties can be obtained,including the relatively high black hole spina*>0.72 and the inclination angle of the accretion diski=degrees(at 90%confidence level).Remarkably,the fitting results show the extremely high iron abundance in the intermediate state.Using the reflection model with higher disk density,we get a high-density accretion disk (ne>2.34×1021cm-3) under the assumption of a solar abundance,which is consistent with the results predicted by previous magnetohydrodynamics simulations.In addition,the relatively strong Fe kα line,that is,the Fe Kα line with higher equivalent width,will show a sublinear relationship with iron abundance.The equivalent width of the Fe Kα line of MAXI J0637-430 is about 381 eV,which may be the potential reason for the extreme supersolar iron abundance.Moreover,we discussed the results from Lazar et al.(2021).We prove that the black hole spin and inclination angle obtained by fitting can be used to describe the soft state spectra well.The additional residuals shown in the soft state spectral can be well fitted by either the relxillNS model or the high-density version of the relxillCp model.This suggests that there are two possible scenarios to explain the soft excess in the thermal state.One is from Lazar et al.(2021),where the soft excess is from a combination of the thermal Comptonization component and reflection component of the disk blackbody returning radiation,a light-bending effect caused by the strong gravity.The other is from the extra free–free heating caused by the high density of the accretion disk and produces a flux excess at soft energies.At present,the study cannot determine which physical scenario is more realistic,and we hope that more data and more advanced models can confirm the difference between the two possibilities in future.The spin parameter is also discussed,and its reliability is verified from the aspects of the model fitting and theoretical application.The iron abundance and disk density have a negligible effect on the spin measurement results.

    Acknowledgments

    We thank the anonymous referee for useful comments.This work has made use of data obtained from the NuSTAR satellite,a Small Explorer mission led by the California Institute of Technormlogy (Caltech) and managed by NASA’s Jet Propulsion Laboratory in Pasadena.We thank the NuSTAR Operations,Software,and Calibration teams for support with the execution and analysis of these observations.This research has made use of the NuSTAR Data Analysis Software NuSTARDAS,jointly developed by the ASI Science Data Center (ASDC,Italy) and the California Institute of Technormlogy (USA).This work made use of data supplied by the UK Swift Science Data Centre.L.J.G.is supported by the National Natural Science Foundation of China (grant No.U12273058).

    Data Availability

    The data underlying this article is observed by NuSTAR,which is accessed from https://heasarc.gsfc.nasa.gov/xamin.

    ORCID iDs

    亚洲精品,欧美精品| 日本欧美视频一区| 国产日韩欧美视频二区| 我要看黄色一级片免费的| 老司机深夜福利视频在线观看 | 美女扒开内裤让男人捅视频| 18在线观看网站| av在线观看视频网站免费| 日本色播在线视频| 美女脱内裤让男人舔精品视频| 久久久久久久久久久免费av| 伦理电影大哥的女人| 在线天堂中文资源库| 成人免费观看视频高清| 秋霞伦理黄片| 国产不卡av网站在线观看| 亚洲,欧美,日韩| 欧美日本中文国产一区发布| 国产免费现黄频在线看| 免费高清在线观看日韩| 99国产综合亚洲精品| 亚洲第一区二区三区不卡| 制服丝袜香蕉在线| 久久久久久久久久久久大奶| 亚洲av国产av综合av卡| 免费av中文字幕在线| 免费日韩欧美在线观看| 成年av动漫网址| 午夜福利一区二区在线看| 亚洲久久久国产精品| 免费看不卡的av| 成人免费观看视频高清| 欧美97在线视频| 天天躁夜夜躁狠狠躁躁| 精品视频人人做人人爽| 亚洲精品一二三| 国产成人系列免费观看| 欧美av亚洲av综合av国产av | 日本午夜av视频| 亚洲欧洲国产日韩| 一级片免费观看大全| 男女边摸边吃奶| 美女主播在线视频| av网站在线播放免费| 久久久精品94久久精品| 少妇猛男粗大的猛烈进出视频| 欧美国产精品va在线观看不卡| 超碰97精品在线观看| 亚洲欧美一区二区三区久久| 天天躁日日躁夜夜躁夜夜| 好男人视频免费观看在线| 午夜91福利影院| 在线观看免费高清a一片| 中文字幕精品免费在线观看视频| 成人漫画全彩无遮挡| 亚洲情色 制服丝袜| 亚洲 欧美一区二区三区| 啦啦啦视频在线资源免费观看| 人妻人人澡人人爽人人| 99热全是精品| 免费日韩欧美在线观看| 日韩免费高清中文字幕av| 国产一区二区 视频在线| 国产片内射在线| 丁香六月欧美| 青春草亚洲视频在线观看| 我的亚洲天堂| av卡一久久| 国精品久久久久久国模美| 一本久久精品| 最近手机中文字幕大全| a 毛片基地| 国产精品一二三区在线看| 最近手机中文字幕大全| 夜夜骑夜夜射夜夜干| 亚洲欧美激情在线| 久久久久久人人人人人| 午夜精品国产一区二区电影| 免费黄网站久久成人精品| 免费黄频网站在线观看国产| 美女视频免费永久观看网站| 下体分泌物呈黄色| 国语对白做爰xxxⅹ性视频网站| 无限看片的www在线观看| 亚洲精品第二区| 黄网站色视频无遮挡免费观看| 日韩一区二区三区影片| 国产日韩欧美亚洲二区| 一区福利在线观看| 亚洲精品美女久久av网站| 欧美日韩成人在线一区二区| 可以免费在线观看a视频的电影网站 | 交换朋友夫妻互换小说| 久久这里只有精品19| 一边亲一边摸免费视频| 嫩草影院入口| 妹子高潮喷水视频| 久久精品熟女亚洲av麻豆精品| 国产探花极品一区二区| 天天添夜夜摸| 亚洲精品自拍成人| 欧美日韩福利视频一区二区| 亚洲精品国产一区二区精华液| 亚洲精品av麻豆狂野| av片东京热男人的天堂| 别揉我奶头~嗯~啊~动态视频 | 欧美 日韩 精品 国产| 精品一区二区三卡| 国产在线视频一区二区| 日韩人妻精品一区2区三区| 人人妻人人澡人人看| 亚洲精品国产一区二区精华液| 国产视频首页在线观看| 久久久久国产一级毛片高清牌| 中文字幕最新亚洲高清| 99久国产av精品国产电影| 美女国产高潮福利片在线看| 午夜精品国产一区二区电影| 秋霞伦理黄片| 欧美最新免费一区二区三区| 高清黄色对白视频在线免费看| 免费观看a级毛片全部| 亚洲一级一片aⅴ在线观看| 青青草视频在线视频观看| 中文字幕精品免费在线观看视频| 亚洲av综合色区一区| 国产成人系列免费观看| 人妻一区二区av| 国产一区二区激情短视频 | 女性被躁到高潮视频| 99九九在线精品视频| 国语对白做爰xxxⅹ性视频网站| 国产一区二区三区综合在线观看| 久久性视频一级片| 精品第一国产精品| 黄网站色视频无遮挡免费观看| 午夜免费男女啪啪视频观看| 1024视频免费在线观看| 丰满乱子伦码专区| 99久国产av精品国产电影| 日韩制服丝袜自拍偷拍| 欧美激情极品国产一区二区三区| 波多野结衣一区麻豆| 亚洲精品久久午夜乱码| 超碰97精品在线观看| 五月开心婷婷网| 在线观看免费日韩欧美大片| 国产日韩一区二区三区精品不卡| 国产精品久久久久久精品古装| 国产毛片在线视频| 亚洲精品久久久久久婷婷小说| 国产精品欧美亚洲77777| av女优亚洲男人天堂| 国产xxxxx性猛交| 最近中文字幕2019免费版| 日韩不卡一区二区三区视频在线| 国产免费视频播放在线视频| 男女午夜视频在线观看| 国产av精品麻豆| 大码成人一级视频| 2021少妇久久久久久久久久久| 亚洲av成人不卡在线观看播放网 | 国语对白做爰xxxⅹ性视频网站| 无遮挡黄片免费观看| 狠狠婷婷综合久久久久久88av| 别揉我奶头~嗯~啊~动态视频 | 90打野战视频偷拍视频| a级毛片在线看网站| 久久影院123| 男人爽女人下面视频在线观看| 97在线人人人人妻| av有码第一页| 大话2 男鬼变身卡| 久久久精品国产亚洲av高清涩受| 欧美国产精品一级二级三级| 高清欧美精品videossex| 久久久久久免费高清国产稀缺| 考比视频在线观看| 亚洲七黄色美女视频| 最黄视频免费看| 熟女少妇亚洲综合色aaa.| 色播在线永久视频| 亚洲av综合色区一区| 免费看不卡的av| 纵有疾风起免费观看全集完整版| 一本色道久久久久久精品综合| 国产av国产精品国产| 亚洲精品成人av观看孕妇| 女性生殖器流出的白浆| 亚洲国产精品一区三区| 欧美精品高潮呻吟av久久| 又大又爽又粗| 超碰成人久久| 成人亚洲精品一区在线观看| 国产男女内射视频| 狠狠精品人妻久久久久久综合| 国产福利在线免费观看视频| 热re99久久国产66热| 国产av一区二区精品久久| 亚洲欧洲国产日韩| 热re99久久精品国产66热6| 欧美日韩一区二区视频在线观看视频在线| 精品少妇久久久久久888优播| 搡老岳熟女国产| 午夜av观看不卡| 老司机亚洲免费影院| 久久久久精品人妻al黑| 成人三级做爰电影| 极品少妇高潮喷水抽搐| 日本色播在线视频| 亚洲精品成人av观看孕妇| 免费高清在线观看日韩| 国产一区二区 视频在线| 久久久国产欧美日韩av| 亚洲精品日韩在线中文字幕| 咕卡用的链子| 亚洲国产日韩一区二区| 久久久久人妻精品一区果冻| 91成人精品电影| 国产精品国产三级专区第一集| 欧美乱码精品一区二区三区| 尾随美女入室| 黑人猛操日本美女一级片| av线在线观看网站| 十八禁人妻一区二区| 丰满少妇做爰视频| 啦啦啦 在线观看视频| 啦啦啦在线观看免费高清www| 超碰97精品在线观看| 精品一区二区三区av网在线观看 | 少妇被粗大猛烈的视频| 亚洲欧美一区二区三区国产| 国产免费福利视频在线观看| av在线播放精品| 亚洲欧美色中文字幕在线| 免费观看a级毛片全部| 男人爽女人下面视频在线观看| 国产欧美亚洲国产| 男女高潮啪啪啪动态图| 天天影视国产精品| 性少妇av在线| 狠狠精品人妻久久久久久综合| 一级,二级,三级黄色视频| 欧美乱码精品一区二区三区| 亚洲av日韩精品久久久久久密 | 亚洲婷婷狠狠爱综合网| 中文字幕人妻丝袜一区二区 | 国产伦理片在线播放av一区| 亚洲欧洲日产国产| 亚洲美女搞黄在线观看| 亚洲色图 男人天堂 中文字幕| 在现免费观看毛片| 90打野战视频偷拍视频| 国产av国产精品国产| 国产av一区二区精品久久| av片东京热男人的天堂| 自线自在国产av| 免费高清在线观看视频在线观看| 亚洲国产精品成人久久小说| 欧美激情高清一区二区三区 | av.在线天堂| 国精品久久久久久国模美| 赤兔流量卡办理| 18禁裸乳无遮挡动漫免费视频| 18禁动态无遮挡网站| 男的添女的下面高潮视频| 大片免费播放器 马上看| 熟女av电影| 在线观看三级黄色| 国产精品久久久av美女十八| 少妇人妻久久综合中文| 日韩制服丝袜自拍偷拍| 91aial.com中文字幕在线观看| 亚洲欧美中文字幕日韩二区| 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 欧美日本中文国产一区发布| 人人妻人人添人人爽欧美一区卜| 国产精品香港三级国产av潘金莲 | 日韩免费高清中文字幕av| 在线天堂中文资源库| 久久久久人妻精品一区果冻| 久久毛片免费看一区二区三区| 成年女人毛片免费观看观看9 | 日韩欧美一区视频在线观看| 久久久久国产一级毛片高清牌| 韩国精品一区二区三区| 国产 一区精品| 侵犯人妻中文字幕一二三四区| 精品国产乱码久久久久久男人| 日本爱情动作片www.在线观看| 人妻 亚洲 视频| 色吧在线观看| 精品亚洲乱码少妇综合久久| 亚洲国产av影院在线观看| 国产成人欧美| 香蕉国产在线看| 国产精品一区二区精品视频观看| 美女大奶头黄色视频| 热re99久久国产66热| 十八禁网站网址无遮挡| 精品少妇久久久久久888优播| 另类亚洲欧美激情| 激情五月婷婷亚洲| 男女无遮挡免费网站观看| 日韩一卡2卡3卡4卡2021年| 国产精品蜜桃在线观看| 两性夫妻黄色片| 秋霞在线观看毛片| 汤姆久久久久久久影院中文字幕| 狂野欧美激情性bbbbbb| 母亲3免费完整高清在线观看| 亚洲精品国产av成人精品| 色94色欧美一区二区| 人人妻人人添人人爽欧美一区卜| 99re6热这里在线精品视频| 中文字幕最新亚洲高清| 宅男免费午夜| 9色porny在线观看| 国产成人一区二区在线| 精品第一国产精品| 欧美人与善性xxx| 精品一区在线观看国产| 国产一卡二卡三卡精品 | 涩涩av久久男人的天堂| 女人精品久久久久毛片| 少妇精品久久久久久久| 日韩中文字幕视频在线看片| 一个人免费看片子| 在线观看三级黄色| 久久精品熟女亚洲av麻豆精品| 国产一区亚洲一区在线观看| 国产免费又黄又爽又色| 中文精品一卡2卡3卡4更新| 女人高潮潮喷娇喘18禁视频| 十分钟在线观看高清视频www| 久久精品国产a三级三级三级| 美女主播在线视频| 自线自在国产av| 日韩伦理黄色片| 美女视频免费永久观看网站| 少妇被粗大猛烈的视频| www.自偷自拍.com| 精品一区二区三区四区五区乱码 | 在线观看免费视频网站a站| 国产精品亚洲av一区麻豆 | 欧美精品av麻豆av| 免费看不卡的av| 激情五月婷婷亚洲| 亚洲,欧美精品.| 久久午夜综合久久蜜桃| 男女床上黄色一级片免费看| 我的亚洲天堂| 国产一区二区激情短视频 | 黑人欧美特级aaaaaa片| 99国产精品免费福利视频| 成人18禁高潮啪啪吃奶动态图| 两个人免费观看高清视频| 亚洲成国产人片在线观看| av在线老鸭窝| 国产男人的电影天堂91| 两个人免费观看高清视频| 欧美国产精品一级二级三级| 宅男免费午夜| xxxhd国产人妻xxx| 欧美激情极品国产一区二区三区| 亚洲婷婷狠狠爱综合网| 肉色欧美久久久久久久蜜桃| 在线 av 中文字幕| 伊人亚洲综合成人网| 男人爽女人下面视频在线观看| 国产成人精品久久二区二区91 | 欧美激情高清一区二区三区 | 亚洲精品,欧美精品| 丰满饥渴人妻一区二区三| 久久性视频一级片| 18禁动态无遮挡网站| 久久精品久久久久久噜噜老黄| 男人舔女人的私密视频| bbb黄色大片| 99久久人妻综合| 99久久精品国产亚洲精品| 国产日韩欧美亚洲二区| 成人三级做爰电影| 国产成人午夜福利电影在线观看| 观看美女的网站| 成年人免费黄色播放视频| av在线播放精品| 日韩熟女老妇一区二区性免费视频| 热re99久久国产66热| 亚洲成人av在线免费| 亚洲综合精品二区| 国产精品久久久久久人妻精品电影 | 国产一区二区激情短视频 | 久久青草综合色| 捣出白浆h1v1| av卡一久久| 日韩欧美一区视频在线观看| 久久午夜综合久久蜜桃| 91精品三级在线观看| 中文字幕av电影在线播放| videosex国产| 最近手机中文字幕大全| 伊人亚洲综合成人网| 精品少妇一区二区三区视频日本电影 | 国产一区二区在线观看av| 精品亚洲成a人片在线观看| 国产一区亚洲一区在线观看| av视频免费观看在线观看| 国产日韩一区二区三区精品不卡| 久久鲁丝午夜福利片| 91精品国产国语对白视频| 久久精品人人爽人人爽视色| 热re99久久国产66热| 欧美日韩亚洲综合一区二区三区_| 婷婷色综合www| 纵有疾风起免费观看全集完整版| 亚洲欧美激情在线| 国产欧美日韩综合在线一区二区| 新久久久久国产一级毛片| 精品午夜福利在线看| 人妻 亚洲 视频| 黑人欧美特级aaaaaa片| 女性生殖器流出的白浆| av不卡在线播放| 午夜福利网站1000一区二区三区| 日韩中文字幕欧美一区二区 | av国产精品久久久久影院| 精品酒店卫生间| 9191精品国产免费久久| 亚洲av日韩在线播放| 欧美日韩精品网址| 亚洲色图 男人天堂 中文字幕| 久久人人97超碰香蕉20202| 成人国语在线视频| 欧美变态另类bdsm刘玥| 天美传媒精品一区二区| 午夜福利在线免费观看网站| 久久精品亚洲熟妇少妇任你| 十八禁人妻一区二区| 久久久久久人人人人人| 黄色毛片三级朝国网站| 精品一区在线观看国产| 纯流量卡能插随身wifi吗| 香蕉国产在线看| 日韩中文字幕欧美一区二区 | 国产福利在线免费观看视频| 国语对白做爰xxxⅹ性视频网站| 亚洲男人天堂网一区| 中文精品一卡2卡3卡4更新| 一个人免费看片子| 亚洲伊人久久精品综合| 晚上一个人看的免费电影| 婷婷色麻豆天堂久久| 一本大道久久a久久精品| 亚洲欧美精品自产自拍| 成年人午夜在线观看视频| 免费观看人在逋| av卡一久久| 国产欧美亚洲国产| 在线观看免费高清a一片| 啦啦啦 在线观看视频| 黄色毛片三级朝国网站| av有码第一页| 热re99久久国产66热| 亚洲中文av在线| 国精品久久久久久国模美| 国产xxxxx性猛交| 午夜久久久在线观看| 成人午夜精彩视频在线观看| 2018国产大陆天天弄谢| 成年动漫av网址| 欧美日韩成人在线一区二区| 国产精品免费视频内射| 国产毛片在线视频| 国产高清国产精品国产三级| 日韩精品免费视频一区二区三区| 狂野欧美激情性xxxx| 国产精品久久久av美女十八| 国产一区二区在线观看av| 天天躁狠狠躁夜夜躁狠狠躁| xxx大片免费视频| 精品一区二区三卡| 免费av中文字幕在线| 亚洲欧美成人精品一区二区| 欧美少妇被猛烈插入视频| 少妇被粗大的猛进出69影院| 国产精品 欧美亚洲| 久久婷婷青草| 亚洲欧洲精品一区二区精品久久久 | 日韩制服丝袜自拍偷拍| 操出白浆在线播放| 国产深夜福利视频在线观看| 日韩大片免费观看网站| 在线亚洲精品国产二区图片欧美| 欧美日韩成人在线一区二区| 免费看av在线观看网站| av在线观看视频网站免费| 国产黄色视频一区二区在线观看| 欧美精品一区二区大全| 丝袜脚勾引网站| 国产黄色免费在线视频| 日韩一区二区三区影片| 免费人妻精品一区二区三区视频| 在线观看www视频免费| 街头女战士在线观看网站| 精品国产国语对白av| 成人亚洲精品一区在线观看| 国产精品一区二区精品视频观看| 久久ye,这里只有精品| 黑人巨大精品欧美一区二区蜜桃| 国产精品偷伦视频观看了| 国产老妇伦熟女老妇高清| 叶爱在线成人免费视频播放| 色播在线永久视频| 国产免费现黄频在线看| 亚洲国产精品一区三区| 亚洲欧美成人精品一区二区| 国产精品一区二区在线不卡| 国产精品国产av在线观看| 一级毛片电影观看| 久热这里只有精品99| 亚洲精品乱久久久久久| 日本91视频免费播放| 亚洲欧洲国产日韩| 国产爽快片一区二区三区| 日本午夜av视频| 国产精品蜜桃在线观看| 欧美日韩福利视频一区二区| 国产一级毛片在线| 一区在线观看完整版| 在线观看www视频免费| 免费人妻精品一区二区三区视频| 一级a爱视频在线免费观看| 国产成人精品久久二区二区91 | 老司机靠b影院| 狠狠婷婷综合久久久久久88av| 中文字幕精品免费在线观看视频| 欧美xxⅹ黑人| 国产老妇伦熟女老妇高清| 最近最新中文字幕大全免费视频 | 人妻人人澡人人爽人人| 人体艺术视频欧美日本| 无限看片的www在线观看| 19禁男女啪啪无遮挡网站| 91精品伊人久久大香线蕉| 成年人免费黄色播放视频| 国产成人免费无遮挡视频| www.av在线官网国产| 国产成人a∨麻豆精品| 国产高清不卡午夜福利| 丰满少妇做爰视频| 国产女主播在线喷水免费视频网站| 国产精品免费视频内射| 日本av免费视频播放| 久久久久久久国产电影| 亚洲伊人久久精品综合| 欧美精品高潮呻吟av久久| 成人国语在线视频| 久久婷婷青草| 成人影院久久| 欧美激情 高清一区二区三区| 天堂8中文在线网| 伦理电影大哥的女人| 欧美人与性动交α欧美软件| 久久人妻熟女aⅴ| 男人爽女人下面视频在线观看| 看十八女毛片水多多多| 99九九在线精品视频| 黄频高清免费视频| 国产黄色视频一区二区在线观看| 免费人妻精品一区二区三区视频| 国产成人欧美| 国产欧美日韩综合在线一区二区| 伊人久久国产一区二区| 女人精品久久久久毛片| h视频一区二区三区| 久久影院123| 精品酒店卫生间| 9191精品国产免费久久| 丝袜美腿诱惑在线| 欧美日韩av久久| 久久性视频一级片| 亚洲伊人色综图| 亚洲av福利一区| a级片在线免费高清观看视频| 欧美少妇被猛烈插入视频| 尾随美女入室| 黄色怎么调成土黄色| 久久国产精品大桥未久av| 老司机亚洲免费影院| 丝袜美腿诱惑在线| 一级a爱视频在线免费观看| 日本午夜av视频| 国产精品国产三级国产专区5o| 中文字幕人妻熟女乱码| 亚洲伊人色综图| 亚洲成国产人片在线观看| 1024香蕉在线观看| av国产精品久久久久影院| 国产男女超爽视频在线观看| 国产精品嫩草影院av在线观看| 国产极品天堂在线| 丝瓜视频免费看黄片| 国产一区亚洲一区在线观看| 蜜桃在线观看..| 校园人妻丝袜中文字幕| videosex国产| 亚洲一区中文字幕在线| 电影成人av| 飞空精品影院首页| 成人国产麻豆网| 91成人精品电影| 欧美日韩亚洲国产一区二区在线观看 | 欧美黑人欧美精品刺激|