• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Progenitors of Type Ia Supernovae with Asymptotic Giant Branch Donors

    2023-09-03 15:24:28LuHanLiDongDongLiuandBoWang

    Lu-Han Li,Dong-Dong Liu,and Bo Wang

    1 Yunnan Observatories,Chinese Academy of Sciences,Kunming 650216,China;liudongdong@ynao.ac.cn,wangbo@ynao.ac.cn

    2 Key Laboratory for the Structure and Evolution of Celestial Objects,Chinese Academy of Sciences,Kunming 650216,China

    3 International Centre of Supernovae,Yunnan Key Laboratory,Kunming 650216,China

    4 University of Chinese Academy of Sciences,Beijing 100049,China

    Abstract Type Ia supernovae(SNe Ia)are among the most energetic events in the universe.They are excellent cosmological distance indicators due to the remarkable homogeneity of their light curves.However,the nature of the progenitors of SNe Ia is still not well understood.In the single-degenerate model,a carbon–oxygen white dwarf (CO WD)could grow its mass by accreting material from an asymptotic giant branch(AGB)star,leading to the formation of SNe Ia when the mass of the WD approaches to the Chandrasekhar-mass limit,known as the AGB donor channel.In this channel,previous studies mainly concentrate on the wind-accretion pathway for the mass-increase of the WDs.In the present work,we employed an integrated mass-transfer prescription for the semidetached WD+AGB systems,and evolved a number of WD+AGB systems for the formation of SNe Ia through the Roche-lobe overflow process or the wind-accretion process.We provided the initial and final parameter spaces of WD+AGB systems for producing SNe Ia.We also obtained the density distribution of circumstellar matter at the moment when the WD mass reaches the Chandrasekhar-mass limit.Moreover,we found that the massive WD+AGB sample AT 2019qyl can be covered by the final parameter space for producing SNe Ia,indicating that AT 2019qyl is a strong progenitor candidate of SNe Ia with AGB donors.

    Key words: stars: evolution–(stars:) supernovae: general–(stars:) binaries (including multiple): close–(stars:)white dwarfs

    1.Introduction

    Type Ia supernovae (SNe Ia) have strong Si II absorption lines,but no H and He lines near the maximum luminosity in their spectrum (Filippenko 1997).Due to the homogeneity of the SN Ia light curves,they are good distance indicators and used for precise distance measurements in cosmology,revealing the current accelerating expansion of the universe most possibly driven by dark energy (e.g.,Riess et al.1998;Perlmutter et al.1999;Howell 2011).It has been suggested that the local Hubble constant could be accurately measured if the Hubble flow samples of SNe Ia and the calibrations of Cepheid variables could be well combined (Riess et al.2019,2022).

    SNe Ia are thought to be the thermonuclear explosion of carbon–oxygen white dwarfs (CO WDs) with masses close to the Chandrasekhar-mass limit (MCh) in close binaries (e.g.,Hoyle &Fowler 1960;Nomoto et al.1984).However,the nature of progenitor system of SNe Ia,especially the donor is still unclear.In the past decades,many progenitor models have been proposed,in which the most popular models are the single-degenerate (SD)model and the double-degenerate (DD)model.(1) In the SD model,a CO WD increases its mass by accreting H-/He-rich material from a non-degenerate donor,and explodes as an SN Ia when its mass approaches toMCh.Typically,the non-degenerate donor of the WD can be a mainsequence (MS) star,a sub-giant,a red giant (RG),an asymptotic giant branch(AGB)star,or a He star(e.g.,Whelan&Iben 1973;Nomoto 1982;Li &van den Heuvel 1997;Langer et al.2000;Han &Podsiadlowski 2004,2006;Wang et al.2009;Wang &Han 2010).(2) In the DD model,a CO WD merges with another CO WD driven by the gravitational wave radiation,which may lead to the formation of an SN Ia if their total mass is larger thanMCh(e.g.,Iben&Tutukov 1984;Webbink 1984;Han 1998;Liu et al.2016,2017,2018).In addition,there are some other progenitor models to explain the observed variety of SNe Ia,such as the core-degenerate (CD)model,the hybrid CONe model,the common-envelope wind model,the double WD collision model(for recent reviews,see Livio &Mazzali 2018;Soker 2018;Wang 2018).

    Observationally,there are some massive WD+AGB systems that are SN Ia progenitor candidates,such as V407 Cyg,AT 2019qyl and TUVO-22albb.(1)V407 Cyg is considered as a symbiotic star containing a mira donor and a massive WD(e.g.,Tatarnikova et al.2003a,2003b;Hachisu &Kato 2012),which have almost the widest orbit among symbiotic stars with an orbital period of 43 yr (Munari et al.1990).The WD in V407 Cyg is at least 1.2M⊙(Mikolajewska 2010),and may be as massive as 1.35–1.37M⊙(Hachisu &Kato 2012).(2)AT 2019qyl is a nova with an O-rich AGB donor in the nearby Sculptor Group galaxy NGC 300(Jencson et al.2021).Jencson et al.(2021) estimated that the allowed range of the AGB star mass in AT 2019qyl isM2=1.2–2.0M⊙,with the best-fitting value isM2=1.2M⊙and the orbital periodP?1800 days by assuming the mass ratio to be 1.In the present work,we found that the estimated parameters of AT 2019qyl can be covered based on the WD+AGB channel,also known as the AGB donor channel.(3) TUVO-22albb,located in the nearby spiral galaxy NGC 300,is a probable very fast nova discovered by Modiano &Wijnands (2022) in their Transient UV Object project,and its donor has been suggested to be an AGB star by further comparison with color-magnitude diagram.

    The WD+AGB systems will form dense circumstellar medium (CSM) via the mass-loss of the AGB wind or the Roche-lobe overflow(RLOF)process.The interaction between SN ejecta and pre-explosion CSM can generate electromagnetic radiation in X-ray and radio bands (Chevalier 1982).Detecting the signal from the interaction between explosive ejecta of the SN and CSM can help us distinguish different progenitor systems.In the observations,the supernova remnant(SNR) of SN 1604,also known as Kepler’s SNR,is located relatively high above the Galactic plane.SN 1604 is considered as an SN Ia because of its prominent Fe-L emission and relatively little oxygen emission (Kinugasa &Tsunemi 1999;Reynolds et al.2007).Chiotellis et al.(2012) suggested that a WD and a 4–5M⊙AGB donor provided a possible pathway to explain the characteristics of Kepler’s SNR through hydrodynamical simulations.

    Some previous studies suggested that the AGB donor channel can produce SNe Ia through the wind-accretion,but it is relatively difficult to produce SNe Ia from the stable RLOF process (e.g.,Li &van den Heuvel 1997;Yungelson &Livio 1998;Han &Podsiadlowski 2004).The main reason for this is that previous studies usually assumed that the exceeding mass of the donor should be immediately transferred to the accretor as soon as the donor exceeds its Roche-lobe,which may overestimate the mass-transfer rate when the mass donor is a giant star and thus prevent the WD from increasing its mass toMCh(for more discussions see Liu et al.2019).Recently,Liu et al.(2019) adopted an integrated RLOF mass-transfer prescription described in Ge et al.(2010) to investigate the mass-transfer process of semidetached WD+RG systems and provided a significantly enlarged parameter space for producing SNe Ia.

    In the present work,we adopted the integrated RLOF masstransfer prescription of Ge et al.(2010) for the mass-transfer process of the semidetached WD+AGB systems.We provided the parameter space of WD+AGB systems for the production of SNe Ia both through the mass-transfer of RLOF and windaccretion.In Section 2,we describe the numerical methods and basic assumptions employed in this work.The corresponding results are presented in Section 3.Finally,a discussion and summary are given in Section 4.

    2.Numerical Methods

    By using the Eggleton stellar evolution code (Eggleton 1973),we evolve a large number of WD+AGB star systems,in which the WDs are treated as point mass.We adopt the typical Population I composition (H fractionX=0.7,He fractionY=0.28,and metallicityZ=0.02) for the initial MS models.In this work,we consider the mass-transfer both through RLOF and wind-accretion.When the mass of WDs grows up to 1.378M⊙,we assume that WDs would explode as SNe Ia.We consider the angular momentum loss due to the mass-loss,including the stellar wind of the donors and the mass-loss around the WDs through optically thick wind or nova outburst.

    2.1.The Roche-lobe Overflow Process

    We investigated the mass-transfer rate in semidetached WD+AGB systems by the integrated RLOF mass-transfer prescription shown in Ge et al.(2010),written as

    in whichRLis the effective Roche-lobe radius of the donor,Gis the gravitational constant,M2is the donor mass,the mass ratioq=M2/MWD,Γ is the adiabatic index,ρ is the local gas density,andPis the local gas pressure.The upper and lower limits of integral are stellar surface potential energy (φS) and the Roche-lobe potential energy (φL),respectively.The integration over potential φ is approximately expressed as follows:

    whereRis the donor radius.The combined coefficientf(q)is a slowly varying function of the mass ratioq:

    wherea2is defined as

    in whichxLis accurately approximated as

    2.2.The Wind-accretion Process

    In the present work,we employ the Reimers wind before the donor evolves to the AGB phase,and adopt the Blocker wind after the donor evolves to the AGB phase (Reimers 1975;Bloecker 1995).For the mass-accretion efficiency of WDs,we consider both the Bondi–Hoyle mass-accretion efficiency and the wind Roche-lobe overflow (WRLOF) mass-accretion efficiency,and adopted the larger one in the calculations.

    (1) The Bondi–Hoyle accretion efficiency (Bondi &Hoyle 1944;Boffin &Jorissen 1988) is written as:

    whereeis the orbital eccentricity(we assumed that binary orbit is circular ande=0),αaccis the accretion efficiency parameter that is generally set as 1.5 in MESA,vorbis the orbital velocity,vwis the wind velocity,we setvwto 5 km s-1,which is similar to Chen et al.(2011).Abate et al.(2013)suggested that stellar wind velocity of AGB star is in the range of 5–30 km s-1when the binary period is around 104days.A more detailed relationship between the wind velocity and the escape velocity can be seen in Eldridge et al.(2006).

    (2) WRLOF occurs when the wind acceleration radius of AGB star is larger than the Roche-lobe radius,during which WD can accrete material in the wind-accretion zone through the inner Lagrangian point (Mohamed &Podsiadlowski 2012;Abate et al.2013).The WRLOF mass-accretion efficiency can be expressed as

    2.3.Mass-growth Rate of WDs

    Generally,the WD mass-growth rate remains controversial,especially for the recurrent nova outbursts during the masstransfer process (e.g.,Yaron et al.2005;Nomoto et al.2007;Miko?ajewska &Shara 2017).In this work,we use the prescription provided by Hachisu et al.(1999) to calculate the WD mass-growth rate,which can be written as

    in which ηHis the mass-accumulation efficiency for H-shell burning(e.g.,Wang et al.2010),ηHeis the mass-accumulation efficiency for He-shell flashes (Kato &Hachisu 2004).

    When the WD mass-accretion rate is larger than a critical mass-accretion ratewe assume that the WD accumulates H-rich matter at the rate ofthe rest of matter wound be blown away in the form of the optically thick wind (e.g.,Nomoto 1982;Kato&Hachisu 1994;Hachisu et al.1996).The critical mass-accretion rate is

    in whichXis the H mass fraction,andMWDis the mass of WDs in units ofM⊙.The mass-accumulation efficiency of hydrogen can be expressed as follows:

    3.Results

    In order to explore the parameter space for producing SNe Ia,we evolved about 600 WD+AGB systems,for which the initial masses of the WDs are in the range from 1.15 to 1.25M⊙,the initial masses of the donors are in the range of 1.8–3.0M⊙.The initial orbital periods are in the range of 25–25,000 days;the donor in a binary with a shorter period will fill its Roche-lobe in the RG phase,and the binary with longer period will experience mass-transfer with a high rate and lose so much mass via the optically thick wind that the WD cannot increase its mass toMCh.

    3.1.Examples of Binary Evolution Calculations

    Figure 3 shows the comparison of the Bondi–Hoyle accretion efficiency and the WRLOF accretion efficiency for the wind-accretion case shown in Figure 2.From this figure,we can see that the Bondi–Hoyle accretion efficiency works before the donor evolves to the AGB phase.Note that the curve of the WRLOF accretion efficiency has two peaks aroundt=6.5×108yr,which corresponds to the Hertzsprung-Gap phase and the RGB phase.The donor expands rapidly during these two phases,leading to the decrease of its effective temperature.In this case,the value of theRddecreases and βacc,WRLOFsignificantly increases(see Equation(7)).When the donor evolves to the AGB phase att=8.0×108yr,it expands quickly and βacc,WRLOFsignificantly increases over βacc,BH,during which the WRLOF accretion efficiency starts to work.

    3.2.Parameter Space for Producing SNe Ia

    Figure 4 shows the initial and final contours of WD+AGB systems for producing SNe Ia with the initial WD masses of 1.15,1.20 and 1.25M⊙.The initial donor masses for producing SNe Ia are larger than 2M⊙.The intermediate-mass stars will develop convective envelopes when their masses decrease to be less than 1.5M⊙,after which the magnetic braking should work(e.g.,Rappaport et al.1983;Paxton et al.2015;Chen et al.2020;Deng et al.2021;Guo et al.2022).In the present work,we ignore the magnetic braking,even when the donors evolve into low-mass stars with masses less than 1.5M⊙.From this figure,we can see that as the initial WD mass increases,the initial parameter spaces of the RLOF case expands to the upper left,and the wind-accretion case expands upper right.It is notable that the position of AT 2019qyl can be basically covered by the final contours of the wind-accretion case,which indicates that AT 2019qyl is a strong progenitor candidate of SNe Ia.

    The surrounding boundaries of initial parameter space are determined by different reasons.The binaries beyond the upper boundaries cannot produce SNe Ia because too much material is lost via optically thick wind during the mass-transfer phase due to the large mass ratios.The lower boundaries of the two contours are set by the less massive donors and the low masstransfer rate,in which the WDs cannot increase their masses toMCh.The donors in binaries beyond the left RLOF boundaries will fill their Roche–lobes at the RGB phase.The binaries beyond the right wind-accretion boundaries and between the two contours are caused by the fact that these binaries have experienced relatively fast mass-transfer processes with and thus lost too much mass through the optically thick wind.

    3.3.Density Distribution of CSM

    Similar to Moriya et al.(2019),the assumptions for the wind velocity of the lost material during the mass-transfer process are shown as follows: (1) in the stable H-shell burning phase,we assume that about 1%of transferred mass escaping from the outer Lagrangian point and the wind velocity is supposed to approximately equal to the orbital velocity (~100 km s-1)(Huang &Yu 1996;Deufel et al.1999).This assumption is only used to estimate the density distribution of CSM.In the binary evolution calculations,we do not consider this mass escape from the outer Lagrangian point.(2)In the weak H-shell flash phase,the wind velocity is assumed to be similar to that of novae,which is assumed to be about 1000 km s-1.(3) In the optically thick wind phase,the wind velocity is assumed as the escape velocity at the radius of H-envelope and approximated as a speed of approximately 1000 km s-1.After these simplifications,the density of CSM can be expressed aswhereis the mass-loss rate of the binary,ais the distance from the binary,andVlossis the wind velocity of the lost material.

    Figure 5 presents the density distribution of CSM for the evolutionary cases in Figure 1 (RLOF) and Figure 2 (wind accretion) when the WD masses increase toMCh.From this figure,we can see that the distribution basically meets ρ ∝a-2.Note that the CSM in the region ofloga?22is similar for these two cases,because neither of their donors fill their Roche–lobes and the mass-loss originates from the stellar wind of the donors.There is a small peak atloga≈23.8.At this time,the two donors evolve to their RGB phase and the stellar wind becomes stronger.They evolve to AGB phase when loga≈22.5.We can also see that there is a peak in the curve of RLOF case aroundloga≈21 .The donor fills its Rochelobe at this time and the mass-transfer rate increases rapidly.In this case,a large amount of matter lost from the binary in the form of the optically thick wind.

    Figure 1.A typical binary evolution for producing an SN Ia through RLOF.In the left figure,the black solid curve stands for the evolutionary track of the mass donor in the HR diagram,and the red dashed–dotted curve shows the evolution of the orbital periods.The black crosses stand for the start of mass-transfer.In the right figure,the evolution of WD mass-accretion rate(),WD mass-growth rate(),binary mass-loss rate()and WD mass(MWD)as a function of time are shown as black solid,blue dashed,green dashed–dotted and red dashed–dotted curves,respectively.The asterisks stand for the position where an SN Ia explosion occurs.

    Figure 2.Similar to Figure 1,but for a typical binary evolution for producing an SN Ia through stellar wind-accretion.The red crosses in the left figure stand for the beginning of WD mass growth.In the right figure,the evolution of WD mass-accretion rate WD mass-growth rate binary mass-loss rate and WD mass (MWD) as a function of time are shown as black solid,blue dashed,green dashed–dotted and red dashed–dotted curves,respectively.The WD massaccretion rate in this case is equal to the donor mass-loss rate multiplied by mass-accretion efficiency.The asterisks stand for the position where an SN Ia explosion occurs.

    Figure 3.The comparison of Bondi–Hoyle accretion efficiency and WRLOF accretion for the wind-accretion case shown in Figure 2.Red solid and green dashed curves stand for Bondi–Hoyle accretion efficiency and WRLOF accretion accretion,respectively.The red cross stands for the beginning of WD mass growth.

    Figure 4.Initial and final regions of WD+AGB systems in their orbital period-donor mass (P M log -2) plane for producing SNe Ia with different initial WD masses.The thick and thin lines represent initial and final parameter space,respectively.The left and right contours represent the RLOF cases and windaccretion cases,respectively.The data for AT 2019qyl are taken from Jencson et al.(2021).

    4.Discussion and Summary

    The CSM forms during the mass-transfer process will interact with SN ejecta,which would generate radio synchrotron emission and X-ray emission.The physical processes and characteristic features of the interactions have been well studied(e.g.,Chevalier 1998;Chevalier &Fransson 2006;Maeda 2012).Meng &Han (2016) found that the X-ray and radio flux may be high enough to be detected for a nearby SN Ia from a WD+AGB system.From Figure 4,we can infer that the masses of CSM at the moment of SNe Ia explosion in RLOF cases and wind-accretion cases are in the range of 0.85–1.69M⊙and 0.15–1.29M⊙,respectively.According to binary evolution calculations,we can summarize that the massloss rate at the moment of SNe Ia explosion is in the range of 8.38×10-9-3.61×10-6M⊙yr-1for the RLOF cases,and 2.64×10-8-5.05×10-5M⊙yr-1for the wind-accretion cases.

    Unlike previous studies,we found that the semidetached WD+AGB binaries can also produce SNe Ia in the present work.In the RLOF process,the integrated mass-transfer prescription is more physical and suitable for semidetached binaries with giant donors.This prescription is based on laminar mass overflow and the stellar state equation that obeys the adiabatic power law.When the donor fills its Roche-lobe,the mass-transfer rate is lower than that of previous models,resulting in that the WDs can accumulate more material through stable RLOF process(for more discussions see Liu et al.2019).

    It is worth noting that the CD model for producing SNe Ia also involves the WD+AGB systems.In the CD model,the merger of a WD with the hot CO-core of an AGB star during or after a common envelop phase would produce an SN Ia (e.g.,Kashi &Soker 2011;Ilkov &Soker 2012,2013;Soker et al.2014;Aznar-Siguán et al.2015).Tsebrenko &Soker (2015)estimated that at least 20% of all SNe Ia are produced by this channel.Recently,Soker &Bear (2022) suggested that the merger of a WD with the hot CO-core of an He subgiant can explain the He-rich CSM of SN 2020eyj under the CD model.In this model,the common envelope ejection will form one or multiple shells.Soker et al.(2013)argue that the multiple shells of CSM in SN Ia PTF 11kx can be explained by a merger of WD and the hot core of an AGB star.But in this work,the CSM has a continuous distribution that basically meets ρ ∝a-2,which is the basic difference for the CSM distribution between the SD model and the CD model.It has been suggested that the Kepler’s SNR may be the result of SN Ia explosion in the SD model with an AGB donor(Chiotellis et al.2012).

    It has been suggested that an accretion disk is possibly formed around the WD during the mass-transfer process,and the accretion disk may become thermally unstable when the effective temperature in the disk falls below the hydrogen ionization temperature (e.g.,van Paradijs 1996;King et al.1997;Lasota 2001).Some previous studies have investigated the influence of the thermally unstable accretion of WD binaries (e.g.,Xu &Li 2009;Wang &Han 2010;Wang et al.2010).After considering the disk instability,it has been found that the mass-accumulation efficiency of WD can be significantly improved and the systems with less-massive donors can also produce possible SNe Ia,which would be helpful to explain the SNe Ia with long delay times(Chen&Li 2007;Xu&Li 2009;Wang&Han 2010;Wang et al.2010).In this case,we can infer that the lower boundaries of initial parameter space for producing SNe Ia would expand downwards because of the larger mass-accumulation efficiency of WD if the accretion-disk instability is considered in WD+AGB binaries.Ablimit et al.(2022) compared the evolution of non-magnetic and magnetized WD+RG binaries,and found that the accretion would occur on the two small polar caps of the WDs,which may potentially suppress nova outbursts.They suggested that the WD+RG binaries with shorter orbital periods and lower donor masses in the initial parameter space could produce SNe Ia if the magnetic confinement is considered.Therefore,we can speculate that magnetic confinement would have a similar effect on the AGB donor channel for producing SNe Ia .

    In the present work,the accretor is treated as a mass point,and thus the provided parameter space is also useful if the accretor is an oxygen-neon (ONe) WD,which may evolve to the accretion-induced collapse (AIC) events.Unlike CO WDs,massive ONe WDs in close binaries may experience the AIC process when their masses approach toMCh,which would lead to the formation of neutron star systems(e.g.,Taam&van den Heuvel 1986;Michel 1987;Canal et al.1990).The neutron stars can be spun up after the donors refill their Roche-lobe,which is a possible path for the formation of millisecond pulsars (e.g.,Bhattacharya &van den Heuvel 1991;Shao &Li 2012;Tauris et al.2013).In this case,the symbiotic systems may also evolve to NS systems via the AIC process.Wang et al.(2022) investigated the formation of millisecond pulsars through the RG donor channel,and found that there exists an anticorrelation between the final neutron star mass and the final orbital period based on this channel.Ablimit (2023) investigated the evolution of non-magnetic or magnetized ONe WDs+RG binaries,and found the initial parameter space shifts to be lower and narrower after considering the influence of the magnetic field.

    In this work,we studied the formation of SNe Ia from the semidetached and detached WD+AGB systems.We found that the semidetached WD+AGB system is a possible path for the formation of SNe Ia after a more physical mass-transfer method is adopted.In addition,we provided the parameter space of the semidetached and detached WD+AGB systems for the formation of SNe Ia.We also compared the density distribution of CSM from these two cases.We suggest that AT 2019qyl is a strong candidate for the progenitors of SNe Ia with AGB donors.In order to understand the AGB donor channel for the formation of SNe Ia,further numerical research on the masstransfer prescription for semidetached binaries with giant donors are needed,and large samples of observed WD+AGB systems are expected.

    Acknowledgments

    We acknowledge the useful comments and suggestions from the referee.This study is supported by the National Natural Science Foundation of China (Nos.12225304,12273105 and 11903075),the National Key R&D Program of China (Nos.2021YFA1600404,2021YFA1600403 and 2021YFA1600400),the Western Light Project of CAS (No.XBZG-ZDSYS-202117),the science research grants from the China Manned Space Project(No.CMS-CSST-2021-A12),the Youth Innovation Promotion Association CAS(No.2021058),the Yunnan Fundamental Research Projects (Nos.202001AS070029,202001AU070054,202101AT070027,202101AW070047 and 202201BC070003),the Frontier Scientific Research Program of Deep Space Exploration Laboratory(No.2022-QYKYJH-ZYTS-016) and International Centre of Supernovae,Yunnan Key Laboratory (No.202 302AN360001).

    ORCID iDs

    亚洲精品美女久久久久99蜜臀| 亚洲欧美日韩高清在线视频 | av不卡在线播放| 国产精品av久久久久免费| 久久国产亚洲av麻豆专区| 国产三级黄色录像| 99久久综合免费| 成人免费观看视频高清| 日本av手机在线免费观看| 高清视频免费观看一区二区| 欧美大码av| 精品欧美一区二区三区在线| a在线观看视频网站| 91麻豆精品激情在线观看国产 | 一区二区三区激情视频| 别揉我奶头~嗯~啊~动态视频 | 1024视频免费在线观看| 精品国产超薄肉色丝袜足j| 久久久国产成人免费| 成人国产一区最新在线观看| 女人精品久久久久毛片| 天天影视国产精品| 夫妻午夜视频| 18禁国产床啪视频网站| 50天的宝宝边吃奶边哭怎么回事| 国产一区二区三区综合在线观看| 美女扒开内裤让男人捅视频| 亚洲专区中文字幕在线| 老司机午夜十八禁免费视频| 日本五十路高清| 精品久久蜜臀av无| 日韩精品免费视频一区二区三区| 黑人猛操日本美女一级片| 亚洲av美国av| 日日摸夜夜添夜夜添小说| 色94色欧美一区二区| 亚洲欧美清纯卡通| 久久精品国产亚洲av高清一级| 久久精品亚洲熟妇少妇任你| 国产精品久久久久久人妻精品电影 | 男女午夜视频在线观看| 一本—道久久a久久精品蜜桃钙片| 国产又爽黄色视频| av一本久久久久| 国产欧美日韩精品亚洲av| svipshipincom国产片| 女人被躁到高潮嗷嗷叫费观| 欧美xxⅹ黑人| 一级a爱视频在线免费观看| 一区二区三区精品91| 丝袜在线中文字幕| 国产成人免费观看mmmm| 成年动漫av网址| 久久人人爽av亚洲精品天堂| 亚洲精品粉嫩美女一区| 亚洲欧美一区二区三区久久| 精品福利永久在线观看| 天堂俺去俺来也www色官网| 99久久国产精品久久久| 日韩视频在线欧美| 国产高清国产精品国产三级| 日韩三级视频一区二区三区| 欧美乱码精品一区二区三区| 欧美精品一区二区大全| 国产精品一二三区在线看| 18禁黄网站禁片午夜丰满| 波多野结衣av一区二区av| √禁漫天堂资源中文www| 国产欧美日韩精品亚洲av| 无限看片的www在线观看| 又大又爽又粗| 好男人电影高清在线观看| 中文精品一卡2卡3卡4更新| 热99久久久久精品小说推荐| 亚洲色图综合在线观看| 亚洲欧美精品自产自拍| 日韩中文字幕欧美一区二区| 日本wwww免费看| 国产主播在线观看一区二区| 黄色怎么调成土黄色| 欧美xxⅹ黑人| 国产高清视频在线播放一区 | 国产成人欧美| 各种免费的搞黄视频| 亚洲成人国产一区在线观看| 咕卡用的链子| 青草久久国产| 国产一区有黄有色的免费视频| 搡老乐熟女国产| 啦啦啦视频在线资源免费观看| av一本久久久久| 狂野欧美激情性xxxx| 最黄视频免费看| 电影成人av| 精品国产乱码久久久久久男人| 天堂俺去俺来也www色官网| 岛国毛片在线播放| 岛国在线观看网站| bbb黄色大片| 久久av网站| 美女国产高潮福利片在线看| 99香蕉大伊视频| 欧美午夜高清在线| 欧美激情久久久久久爽电影 | 在线精品无人区一区二区三| 欧美av亚洲av综合av国产av| 777久久人妻少妇嫩草av网站| 亚洲av片天天在线观看| 黄色怎么调成土黄色| 亚洲五月婷婷丁香| 久久精品aⅴ一区二区三区四区| 91九色精品人成在线观看| 欧美成狂野欧美在线观看| 日韩精品免费视频一区二区三区| 精品国产国语对白av| 久9热在线精品视频| 国产一卡二卡三卡精品| 免费日韩欧美在线观看| 国产成人一区二区三区免费视频网站| 久热爱精品视频在线9| 大型av网站在线播放| 韩国精品一区二区三区| 黄色a级毛片大全视频| a级毛片在线看网站| 天天影视国产精品| 咕卡用的链子| 人人妻人人澡人人看| 欧美激情 高清一区二区三区| 欧美精品亚洲一区二区| 日韩中文字幕视频在线看片| 日韩,欧美,国产一区二区三区| 亚洲精品第二区| 国产精品免费大片| 欧美激情高清一区二区三区| 欧美+亚洲+日韩+国产| 黄色a级毛片大全视频| 汤姆久久久久久久影院中文字幕| 日韩精品免费视频一区二区三区| 国产成+人综合+亚洲专区| 久久这里只有精品19| 男女床上黄色一级片免费看| 黄色视频在线播放观看不卡| 最新在线观看一区二区三区| 成人免费观看视频高清| 女人被躁到高潮嗷嗷叫费观| 精品一区二区三区av网在线观看 | 美女视频免费永久观看网站| 国产高清国产精品国产三级| 伊人亚洲综合成人网| 国产亚洲av片在线观看秒播厂| 精品少妇内射三级| 99精品久久久久人妻精品| 亚洲成av片中文字幕在线观看| 精品少妇一区二区三区视频日本电影| 国产成人啪精品午夜网站| 欧美在线一区亚洲| 搡老岳熟女国产| 女性被躁到高潮视频| 狂野欧美激情性xxxx| 亚洲欧美精品自产自拍| 国产日韩欧美在线精品| 亚洲专区字幕在线| e午夜精品久久久久久久| 午夜福利在线免费观看网站| 99久久人妻综合| 午夜91福利影院| 一本色道久久久久久精品综合| 少妇裸体淫交视频免费看高清 | 国产无遮挡羞羞视频在线观看| 久久精品熟女亚洲av麻豆精品| 成在线人永久免费视频| 男女无遮挡免费网站观看| 女性被躁到高潮视频| 国产激情久久老熟女| 麻豆av在线久日| 国产不卡av网站在线观看| 黑人巨大精品欧美一区二区mp4| 欧美另类一区| 亚洲精品日韩在线中文字幕| 亚洲视频免费观看视频| 亚洲欧美激情在线| 久久综合国产亚洲精品| 91国产中文字幕| 欧美黑人欧美精品刺激| 老熟妇仑乱视频hdxx| 少妇猛男粗大的猛烈进出视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩三级视频一区二区三区| 18禁观看日本| 女人爽到高潮嗷嗷叫在线视频| 一本—道久久a久久精品蜜桃钙片| 男女免费视频国产| 最近最新免费中文字幕在线| 国产极品粉嫩免费观看在线| 日韩制服骚丝袜av| 性少妇av在线| 精品久久蜜臀av无| 欧美国产精品一级二级三级| 国产区一区二久久| 一级,二级,三级黄色视频| 亚洲国产日韩一区二区| 亚洲精品国产av蜜桃| 亚洲专区字幕在线| 中文字幕最新亚洲高清| 99精品久久久久人妻精品| 精品国产乱码久久久久久男人| 国产av一区二区精品久久| 在线观看www视频免费| 99久久99久久久精品蜜桃| 正在播放国产对白刺激| 50天的宝宝边吃奶边哭怎么回事| 日日爽夜夜爽网站| 女人爽到高潮嗷嗷叫在线视频| 麻豆乱淫一区二区| 精品久久久精品久久久| 久久午夜综合久久蜜桃| 国产国语露脸激情在线看| 亚洲精品中文字幕一二三四区 | 欧美 日韩 精品 国产| 精品久久久精品久久久| 亚洲欧洲精品一区二区精品久久久| 亚洲人成电影免费在线| 免费女性裸体啪啪无遮挡网站| 少妇被粗大的猛进出69影院| 12—13女人毛片做爰片一| 高清欧美精品videossex| av一本久久久久| 成人三级做爰电影| 欧美人与性动交α欧美软件| 久久毛片免费看一区二区三区| 香蕉国产在线看| 天堂8中文在线网| 午夜精品国产一区二区电影| 九色亚洲精品在线播放| 亚洲精品av麻豆狂野| 91麻豆av在线| 欧美日韩一级在线毛片| 精品福利永久在线观看| 美女高潮到喷水免费观看| 在线观看免费视频网站a站| 亚洲精品中文字幕在线视频| 超碰成人久久| 啦啦啦在线免费观看视频4| 成人三级做爰电影| av福利片在线| 亚洲精华国产精华精| 国产三级黄色录像| 少妇被粗大的猛进出69影院| 99久久人妻综合| 亚洲熟女毛片儿| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产精品一区三区| 99热网站在线观看| 黄片大片在线免费观看| 欧美xxⅹ黑人| 性高湖久久久久久久久免费观看| 国产欧美日韩一区二区精品| 大陆偷拍与自拍| 欧美老熟妇乱子伦牲交| 一个人免费看片子| 久久久久久人人人人人| 狂野欧美激情性bbbbbb| 国产成+人综合+亚洲专区| 高潮久久久久久久久久久不卡| 久久久国产一区二区| 人人妻人人澡人人看| 国产黄频视频在线观看| 国产福利在线免费观看视频| 啦啦啦 在线观看视频| 久久天堂一区二区三区四区| 国产在线观看jvid| 成人国产一区最新在线观看| 亚洲中文字幕日韩| 下体分泌物呈黄色| 国产免费一区二区三区四区乱码| 色视频在线一区二区三区| 欧美国产精品一级二级三级| 在线av久久热| 国产极品粉嫩免费观看在线| 国产精品偷伦视频观看了| 国产免费福利视频在线观看| 一进一出抽搐动态| 天天躁日日躁夜夜躁夜夜| 亚洲欧美色中文字幕在线| 视频在线观看一区二区三区| 欧美激情高清一区二区三区| av有码第一页| 中文字幕人妻丝袜一区二区| 搡老岳熟女国产| 91成人精品电影| 亚洲精品国产av蜜桃| 久久久久久免费高清国产稀缺| 日韩 亚洲 欧美在线| 无限看片的www在线观看| 丝袜美足系列| 一级毛片精品| 天堂8中文在线网| 精品一区在线观看国产| 国产亚洲欧美精品永久| 亚洲免费av在线视频| 女警被强在线播放| 最黄视频免费看| 亚洲天堂av无毛| 亚洲色图 男人天堂 中文字幕| 免费高清在线观看视频在线观看| 男女边摸边吃奶| 男女边摸边吃奶| 久久免费观看电影| 在线看a的网站| 亚洲七黄色美女视频| 99国产综合亚洲精品| 国产av精品麻豆| 国内毛片毛片毛片毛片毛片| 91成年电影在线观看| 亚洲精品国产精品久久久不卡| 十八禁网站网址无遮挡| 欧美老熟妇乱子伦牲交| 1024香蕉在线观看| 久久亚洲国产成人精品v| 欧美老熟妇乱子伦牲交| 欧美老熟妇乱子伦牲交| kizo精华| 久久中文看片网| 嫁个100分男人电影在线观看| 精品高清国产在线一区| 一级a爱视频在线免费观看| 涩涩av久久男人的天堂| 国产一区二区激情短视频 | 一区二区三区乱码不卡18| 亚洲伊人色综图| 国产真人三级小视频在线观看| 国产av一区二区精品久久| 精品乱码久久久久久99久播| 老汉色av国产亚洲站长工具| 亚洲av日韩精品久久久久久密| 免费高清在线观看日韩| 久久精品国产亚洲av高清一级| 欧美精品一区二区大全| 亚洲av国产av综合av卡| 欧美日韩成人在线一区二区| 欧美日韩成人在线一区二区| 成人黄色视频免费在线看| 视频区图区小说| 18禁裸乳无遮挡动漫免费视频| 一边摸一边抽搐一进一出视频| 国产欧美亚洲国产| 国产av又大| 久久综合国产亚洲精品| 国产视频一区二区在线看| 精品人妻在线不人妻| 交换朋友夫妻互换小说| 婷婷丁香在线五月| 欧美日韩国产mv在线观看视频| 欧美在线黄色| 欧美黑人欧美精品刺激| 黑丝袜美女国产一区| 满18在线观看网站| 欧美亚洲 丝袜 人妻 在线| 亚洲人成电影免费在线| 爱豆传媒免费全集在线观看| 国产精品国产三级国产专区5o| 欧美日韩亚洲高清精品| 日本91视频免费播放| 国产精品香港三级国产av潘金莲| 少妇被粗大的猛进出69影院| 一二三四社区在线视频社区8| 日韩视频一区二区在线观看| av片东京热男人的天堂| 建设人人有责人人尽责人人享有的| 欧美日韩亚洲高清精品| 一个人免费看片子| 国产不卡av网站在线观看| 国产在线免费精品| 满18在线观看网站| 中文欧美无线码| 亚洲免费av在线视频| 精品一区在线观看国产| 丁香六月欧美| 两性午夜刺激爽爽歪歪视频在线观看 | e午夜精品久久久久久久| 多毛熟女@视频| 91精品国产国语对白视频| 欧美激情久久久久久爽电影 | 国产伦理片在线播放av一区| 欧美日韩中文字幕国产精品一区二区三区 | 啦啦啦啦在线视频资源| 日韩制服丝袜自拍偷拍| 欧美97在线视频| 日本黄色日本黄色录像| 香蕉丝袜av| 91国产中文字幕| 久久久久视频综合| 91老司机精品| 99国产精品一区二区三区| 热re99久久精品国产66热6| 国产野战对白在线观看| 久久天堂一区二区三区四区| 老司机影院毛片| 男女边摸边吃奶| 性少妇av在线| 久久热在线av| 亚洲欧美清纯卡通| 丝袜在线中文字幕| 美女中出高潮动态图| av有码第一页| 亚洲精品自拍成人| 亚洲国产av影院在线观看| 黑人猛操日本美女一级片| 黑人操中国人逼视频| 韩国高清视频一区二区三区| 亚洲欧美色中文字幕在线| 精品人妻熟女毛片av久久网站| 男女之事视频高清在线观看| 欧美人与性动交α欧美精品济南到| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久精品精品| 高清欧美精品videossex| 中文字幕制服av| 欧美午夜高清在线| 久久人妻熟女aⅴ| 日韩有码中文字幕| 男女高潮啪啪啪动态图| 无限看片的www在线观看| 欧美 日韩 精品 国产| av视频免费观看在线观看| 国产精品av久久久久免费| 国产精品偷伦视频观看了| 亚洲综合色网址| 欧美日韩国产mv在线观看视频| 国产无遮挡羞羞视频在线观看| 国产淫语在线视频| 免费高清在线观看日韩| 国产欧美日韩一区二区精品| 亚洲av欧美aⅴ国产| 精品国产一区二区久久| 91老司机精品| 久热爱精品视频在线9| 国产又爽黄色视频| 国产在线免费精品| 青草久久国产| 亚洲欧洲精品一区二区精品久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美一区二区三区久久| 不卡一级毛片| 18禁国产床啪视频网站| 午夜福利在线免费观看网站| 欧美精品一区二区免费开放| 夫妻午夜视频| 亚洲午夜精品一区,二区,三区| 精品少妇黑人巨大在线播放| √禁漫天堂资源中文www| 新久久久久国产一级毛片| 中国美女看黄片| 精品高清国产在线一区| 日韩电影二区| 国产精品成人在线| 欧美乱码精品一区二区三区| 80岁老熟妇乱子伦牲交| av网站在线播放免费| 人人妻人人澡人人看| 午夜91福利影院| 精品久久久久久久毛片微露脸 | 亚洲av片天天在线观看| www.av在线官网国产| 伦理电影免费视频| 久久国产精品男人的天堂亚洲| 夜夜夜夜夜久久久久| 精品人妻1区二区| 精品一区二区三区四区五区乱码| 丝袜在线中文字幕| 免费看十八禁软件| 在线 av 中文字幕| 91av网站免费观看| 久久国产亚洲av麻豆专区| 精品人妻熟女毛片av久久网站| 亚洲情色 制服丝袜| 亚洲国产看品久久| 日本一区二区免费在线视频| 丝袜在线中文字幕| 国产精品 国内视频| 曰老女人黄片| 满18在线观看网站| 又黄又粗又硬又大视频| 免费在线观看完整版高清| 91大片在线观看| av视频免费观看在线观看| 久久久久精品国产欧美久久久 | 亚洲av国产av综合av卡| 精品少妇一区二区三区视频日本电影| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久大尺度免费视频| 亚洲av国产av综合av卡| 老司机深夜福利视频在线观看 | 曰老女人黄片| 69av精品久久久久久 | 亚洲成人免费电影在线观看| 这个男人来自地球电影免费观看| 又紧又爽又黄一区二区| 国产黄色免费在线视频| 国产精品免费视频内射| 99国产精品一区二区蜜桃av | 后天国语完整版免费观看| 侵犯人妻中文字幕一二三四区| 男女边摸边吃奶| 欧美日韩精品网址| 99国产精品一区二区蜜桃av | 在线观看免费午夜福利视频| 飞空精品影院首页| 欧美日韩视频精品一区| 另类精品久久| 后天国语完整版免费观看| 亚洲精品在线美女| 国产国语露脸激情在线看| 久久久国产欧美日韩av| 久久ye,这里只有精品| 亚洲av电影在线进入| 狂野欧美激情性bbbbbb| 国产麻豆69| 精品一品国产午夜福利视频| 久久 成人 亚洲| 人成视频在线观看免费观看| 不卡一级毛片| 大码成人一级视频| 日本精品一区二区三区蜜桃| av电影中文网址| 国产黄色免费在线视频| 97在线人人人人妻| 亚洲欧洲精品一区二区精品久久久| 久久女婷五月综合色啪小说| 亚洲精品第二区| 性少妇av在线| 亚洲第一青青草原| 又黄又粗又硬又大视频| 制服诱惑二区| 日韩视频在线欧美| 中文字幕av电影在线播放| 精品福利永久在线观看| 伊人久久大香线蕉亚洲五| 日本猛色少妇xxxxx猛交久久| 岛国毛片在线播放| 老熟妇乱子伦视频在线观看 | 在线观看www视频免费| 一本—道久久a久久精品蜜桃钙片| 国产伦理片在线播放av一区| 两性午夜刺激爽爽歪歪视频在线观看 | 美女国产高潮福利片在线看| 欧美日韩福利视频一区二区| 久热这里只有精品99| 99久久综合免费| 丝袜人妻中文字幕| 日本91视频免费播放| 淫妇啪啪啪对白视频 | 国产成人精品久久二区二区免费| 母亲3免费完整高清在线观看| 久久人人97超碰香蕉20202| 欧美另类一区| 99国产综合亚洲精品| 精品国产超薄肉色丝袜足j| 亚洲成国产人片在线观看| 亚洲精品美女久久久久99蜜臀| 美女大奶头黄色视频| 丰满饥渴人妻一区二区三| 成人国语在线视频| 国产在线视频一区二区| 精品福利观看| 精品国产一区二区久久| 亚洲第一青青草原| 国产精品熟女久久久久浪| 欧美日韩一级在线毛片| 久热这里只有精品99| 99九九在线精品视频| 国产精品成人在线| 青春草视频在线免费观看| 美女福利国产在线| 欧美亚洲 丝袜 人妻 在线| 亚洲国产毛片av蜜桃av| 一级毛片精品| 久久久久国内视频| 欧美精品高潮呻吟av久久| 色视频在线一区二区三区| 纵有疾风起免费观看全集完整版| 狠狠精品人妻久久久久久综合| 法律面前人人平等表现在哪些方面 | 亚洲av电影在线观看一区二区三区| 国产伦人伦偷精品视频| 中文字幕制服av| 人妻久久中文字幕网| 岛国毛片在线播放| 久久人人爽人人片av| 国产97色在线日韩免费| 欧美日本中文国产一区发布| 欧美日韩精品网址| e午夜精品久久久久久久| 十八禁网站免费在线| 欧美精品亚洲一区二区| 亚洲免费av在线视频| 日韩,欧美,国产一区二区三区| 9热在线视频观看99| e午夜精品久久久久久久| 老汉色av国产亚洲站长工具| 一二三四在线观看免费中文在| 久久久久久亚洲精品国产蜜桃av| 亚洲精品美女久久av网站| 在线观看舔阴道视频| 久9热在线精品视频| 一区二区日韩欧美中文字幕| 一本久久精品| 操出白浆在线播放| 欧美午夜高清在线| 色婷婷久久久亚洲欧美| 一进一出抽搐动态| 亚洲国产精品999| 女性被躁到高潮视频| 国产一区二区在线观看av| www.999成人在线观看|