• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NuSTAR View of the R-Γ Correlation in the Hard State of Black Hole Lowmass X-Ray Binaries

    2023-09-03 15:24:14YantingDongZhuLiuandXinwuCao

    Yanting Dong ,Zhu Liu ,and Xinwu Cao

    1 Institute for astronomy,Zhejiang Institute of Modern Physics,Department of Physics,Zhejiang University,Hangzhou 310027,China;ytd@zju.edu.cn,xwcao@zju.edu.cn

    2 Max Planck Institute for Extraterrestrial Physics,Giessenbachstrasse 1,D-85748,Garching,Germany

    Abstract The power law and reflection emission have been observed in the X-ray spectra of both black hole X-ray binaries(BHXRBs) and active galactic nuclei (AGNs),indicating a common physical origin of the X-ray emission from these two types of sources.The relevant parameters describing the shape of both components and the potential correlation between these parameters can provide important clues on the geometric and physical properties of the disk and the corona in these sources.In this work,we present a positive correlation between the photon index Γ and the reflection strength R for the low-mass BHXRBs in the hard state by modeling NuSTAR data,which is qualitatively consistent with the previous studies.We compare our results with the predictions from different theoretical disk-corona models.We show that the R-Γ correlation found in this work seems to favor the moving corona model proposed by Beloborodov.Our results indicate that the coronal geometry varies significantly among BHXRBs.We further compare our results with that of AGNs.We find that the reflection strength R is smaller than unity in the hard state of BHXRBs,while it can be as large as~5 in AGNs,which implies that the variations of the disk-coronal geometry of AGNs are more vigorous than that of the BHXRBs in the hard state.

    Key words: accretion–accretion disks–black hole physics–X-rays: binaries

    1.Introduction

    Black hole X-ray binaries (BHXRBs) and active galactic nuclei(AGNs)are powered by the accretion of matter onto the central stellar-mass black holes and supermassive black holes,respectively.The accretion matter forms a disk around the black hole and liberates the gravitational energy,which is radiated in the form of electromagnetic waves (mostly thermal emission if the mass accretion rate is not very low,Shakura &Sunyaev 1973).The thermal emission from the disk is mainly in the optical and UV bands for AGNs and in the X-ray band for BHXRBs.In addition,a non-thermal component,which cannot be produced in thermal accretion disk accreting at?0.01 Eddington scaled rate (Meyer et al.2000b;Maccarone 2003;Dexter et al.2021),is also observed in both AGNs and BHXRBs.It is widely believed that the soft photons can be inverse Compton scattered in a region of hot electrons around the compact object,namely the corona,in BHXRBs and AGNs,which produces the non-thermal primary hard X-ray emission(e.g.,Galeev et al.1979;Haardt &Maraschi 1991,1993;Cao 2009;You et al.2012).However,the geometry of the corona is still under debate both observationally and theoretically(e.g.,Dauser et al.2013;Liu&Qiao 2022;Yang et al.2022).It has been proposed that the corona could be a radiatively inefficient hot accretion flow at the innermost region of the disk(Esin et al.1997;Poutanen et al.2018),a slab of hot plasma over the disk (Petrucci et al.2001;Wilkins &Fabian 2012),a compact hot plasma above the black hole (Miller et al.2013;Ghosh &Laha 2021),or even the base of jet (Markoff et al.2003;Shidatsu et al.2011;Wang et al.2021).The geometry of the corona could also change (e.g.,Kara et al.2019;Méndez et al.2022) during outburst.

    Except for the thermal emission and primary X-ray emission,a reflection component has also been observed in both stellar and supermassive black hole accretion systems,which is produced by the illumination of the cold material by the primary X-ray emission,including the fluorescent emission lines and a hump in~20–40 keV energy range (Fabian et al.1989;Young et al.1999;Ross &Fabian 2005;García et al.2020).The reflected emission produced at a region close to the black hole may also be affected by relativistic effects(Laor 1991;Fabian et al.2000;Reynolds &Nowak 2003;Dauser et al.2012).

    Generally speaking,the primary X-ray emission can be well described by a power law with a photon index Γ.A cutoff at the high energy band has also been reported in some sources with high-quality broad-band X-ray data(Fabian et al.2015;Molina et al.2019;Dong et al.2022).The reflection strengthR(R=Ω/2π,Ω is the solid angle covered by the reflector viewed from the corona) represents the fraction of the primary X-ray photons intercepted by the disk.Despite the great achievements in understanding the accretion processes from the study of BHXRBs,some fundamental questions have still remained unanswered.For instance,the evolution of the inner region of the accretion disk(e.g.,Plant et al.2014;Stiele &Kong 2017;Connors et al.2022),the geometric and physical properties of the corona (e.g.,Malzac et al.2001;Wilkins et al.2014;You et al.2021;Barua et al.2022;Méndez et al.2022),or the physical process triggering the accretion state transition (e.g.,Meyer et al.2000a;Dong et al.2022;Liu et al.2022).These questions can be investigated by the study of the evolution of specific parameters,e.g.,the inner radius of the accretion disk,electron temperature,and optical depth of the corona,or the correlations between these parameters,e.g.,Γ andR(Zdziarski et al.1999;Malzac et al.2001;Molina et al.2009;Zappacosta et al.2018;Ezhikode et al.2020),Γ and Eddington scaled luminosity (Shemmer et al.2006;Wu &Gu 2008;Gu &Cao 2009;Brightman et al.2013;Yan et al.2020),inner radius and Eddington scaled luminosity (Allured et al.2013;García et al.2015;Chainakun et al.2021).

    In this work,we investigate the correlation between the photon index Γ and reflection strengthRin the hard state of a sample of stellar-mass black hole systems by modeling their Nuclear Spectroscopic Telescope Array (NuSTAR,Harrison et al.2013) energy spectra and compare the correlation in BHXRBs with that in AGNs(Panagiotou&Walter 2019;Kang et al.2020;Hinkle &Mushotzky 2021).The correlation between Γ andRwas first found to be positive for the BHXRB GX 339-4 by fitting spectra using Ginga observations (Ueda et al.1994).Zdziarski et al.(1999) presented a similar correlation using a larger Ginga sample,including Seyfert AGNs,BHXRBs,and weakly magnetized neutron stars.TheR-Γ correlation was also investigated using RXTE/PCA for the BHXRBs GX 339-4 and Cyg X-1 (Revnivtsev et al.2001;Gilfanov et al.1999).A positiveR-Γ correlation has only been reported for X-ray binaries in the hard state,for instance,in Cyg X-1,GX 339-4,GS1354-64,Nova Muscae and GRS 1915+105 (Gilfanov et al.2000;Rau &Greiner 2003;Zdziarski et al.2003).

    NuSTAR covers the broad bandpass of 3-79 keV and has unprecedented sensitivity above 10 keV,making NuSTAR ideal for studies of the disk reflection and the primary emission(Diaz et al.2020;Draghis et al.2020;Connors et al.2021).Therefore,the launch of NuSTAR provided a new opportunity to studyR-Γ correlation.Using NuSTAR data,theR-Γ correlation has been recently confirmed for Seyfert galaxies(Ezhikode et al.2020;Panagiotou &Walter 2020) and radio galaxies (Kang et al.2020).Based on the disk-corona model,in which the hot electrons in the corona are cooled by the soft photons from the cold disk (Haardt &Maraschi 1993),this correlation might be caused by the perpendicular movement of the corona with respect to the black hole (Beloborodov 1999).If the corona is assumed to be moving away from the disk,both reflection and irradiation toward the disk are reduced while the reduction of the soft photons into the corona leads to the harder primary emission (a smaller photon index),and vice versa.In Qiao &Liu (2017),they proposed that this observed correlation found in Seyfert galaxies can be roughly explained within the framework of the condensation of the hot corona onto the cold accretion disk with the movement of the inner radius of the disk.

    In this paper,we present the sample of BHXRBs and AGNs in Section 2.Section 3 gives the spectral analysis.We present the best-fitting results and discussions in Section 4.Summaries are shown in Section 5.

    2.Sample

    We studied the NuSTAR energy spectra of the BHXRBs presented in Yan et al.(2020).Their sample includes 17 LMXRBs with 165 NuSTAR observations.The data were downloaded from HEASARC.3https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/w3browse.plThey performed data reduction using NUPIPELINE,a task of the NUSTARDAS included in the HEAsoft 6.25,with calibration files of version 20181030.Further,the source and background spectra were generated using NUPRODUCTS.The spectra were extracted from a circular region within 90″ at the source position.The background spectra were extracted from an annulus region with inner and outer radii of 180″ and 200″,respectively.

    In order to achieve the goals of this work,we selected data as follows.(1)We excluded observations in which the spectra are dominated by the backgrounds (background subtracted photon counts below zero).(2)Here,we define the hardness ratio(HR)as the 10–78 keV count rate divided by the 3–10 keV count rate.To select observations that are in the hard state,we also excluded observations with HR<0.3.4See in Table 2,there may be some observations(the photon index is~2.22 in obs_id 80401312002 and~2.1 in obs_id 90202045002 for GRS 1915+105)are not in the hard state,but most of the observations (more than 97% with photon index <2.1) are most likely in the hard state (Remillard &McClintock 2006).(3) The observations in which a reflection component is not required in the X-ray spectral fitting are also excluded.(4) We further excluded observations that cannot be well fittedwith our model (constant×TBabs(diskbb+Gauss+pexrav) or constant×TBabs(Gauss+pexrav),see the detail in Section 3).The final sample consists of 69 observations in total.We present the details of the observations in Table 2.

    In order to investigate the possible specific features appropriate for black holes of different scales,we will compare BHXRBs’ results with different types of AGNs’ in Section 4.AGN is classified as Seyfert1s (Seyfert 1–1.9) and Seyfert2s(Seyfert 2)based on the emergence of the broad emission lines in the optical spectrum,or the radio-quiet and radio-loud AGNs based on the ratio of the radio to optical luminosity.The Seyfert sample is from Hinkle&Mushotzky (2021),including 26 Seyfert1s and seven Seyfert2s,respectively.The radio-quiet AGN sample including 28 sources and the radio-loud AGN sample including 45 sources are from Kang et al.(2020) and Panagiotou &Walter (2019),respectively.We refer to these papers for detailed information on the observations of these AGNs.

    3.Data Analysis

    Spectral fitting is performed using XSPEC 12.11.1(Arnaud 1996) with χ2statistics.The errors are given with 90% confidence level.For each observation,the spectra of NuSTAR/FPMA and NuSTAR/FPMB in 3–78 keV are jointly fitted,accounting for a cross-normalization with a multiplicative constant.We use model TBabs to calculate the Galactic absorption.The Verner et al.(1996) photoelectric cross sections along with the Wilms et al.(2000) set of solar abundances are adopted.Because only fitting the energy band above 3 keV is not effective to well constrain the column densityNH,we fix theNHto the values in Table 1.

    To model the primary X-ray emission and the reflection component,we use the model pexrav,which consists of a power-law with ane-folded and a reflection component(Magdziarz &Zdziarski 1995).In this model,we assume that the abundance of heavy elements,including Fe,of the reflecting medium is unity.For the inclination angleiof the disk,there are only five sources with constraints oni(60°±5°in GRS 1915+105 (Reid et al.2014),≤79° in GS 1354-64(Casares et al.2009),37°–78°in GX 339-4(Heida et al.2017),63°±3° in MAXI J1820+070 (Atri et al.2020),and ≥40° in Swift J1753.5-0127 (Neustroev et al.2014)) in the sample of BHXRBs studied in this work.Theicannot either be well constrained for the majority of sources.Therefore,for simplicity,the inclination angleiis fixed at the model’s default value,i.e.,cosi=0.45 (i≈63°).The photon index Γ,reflection parameterR,high energy cutEcut,and normalization are free parameters.We also include a Gaussian line with centroid energy fixed at 6.4 keV to model the Fe kα line.Even if the centroid energy is allowed to vary between 6.4 and 6.7 keV,the best-fitting results are not further improved.The width and the normalization of the line are free.However,the width of the line could not be constrained by the data when it is not significant enough to be detected,and then,it is fixed at 0.05 keV.A possible disk component (diskbb) will be included if it can significantly improve the fitting.We note that the popular reflection model,e.g.,relxill (Dauser et al.2014;García et al.2014),can self-consistently model the continuum reflection component and the Fe line (Dong et al.2020a,2020b;García et al.2022b).However,the pexrav model is used in this work so that we can directly compare our results with previous studies of NuSTAR AGN samples,in which the pexrav model is widely adopted (Panagiotou &Walter 2019;Kang et al.2020;Hinkle &Mushotzky 2021).

    Deviations between FPMA and FPMB of NuSTAR data at the lowest energies in the observations for MAXI J1348-630(MJD 58515-58516,and MJD 58655-58672)and MAXI J1820+070 (MJD 58192-58397) are found.We let the temperaturekTand the normalization parameter of the diskbb untie between the two detectors for these observations.Note that the deviation at the low energy (E<~6.0 keV) between FPMA and FPMB in the observations of GX 339-4 on MJD 58060 is even worse.Therefore,for this observation,we fit the spectrum within 6.0–78.0 keV.The adopted model provides statistically accepted fits to our observationsWe list the temperature of the disk (kT),the photon index (Γ),the reflection parameter (R),and the width of the Gaussian line(Fe kα σ) of the best-fitting in Table 2.The spectra fits are insensitive to the Fe abundance,except for GX 339-4 and MAXI J1820+070.In order to check the effect of Fe abundance on GX 339-4 and MAXI J1820+070,we refit spectra of the two sources with Fe abundance allowed to be free.For GX 339-4,the value of the Fe abundance has a minor effect on the parametersRand Γ.Therefore,we only report the results with Fe abundance fixed at unity for GX 339-4.For MAXI J1820-070,a stronger negative correlation betweenRand Γ is shown when the Fe abundance is free,which is beyond the scope of this paper and will not be further discussed.

    4.Results and Discussions

    This work presents the first systematic study on NuSTAR X-ray spectra of BHXRBs to investigate theR-Γ correlation.In this sample,we only study the spectra obtained when the sources are in the hard state.The finally selected spectra consist of 69 observations in total.We modeled the continuum reflection component and the Fe line with pexrav and Gauss.The photon index Γ and reflection strengthRare well constrained.The values of Γ in most observations (more than 97%) are smaller than 2.1,which is consistent with the properties of hard state observation (Remillard &McClintock 2006).The Γ approximately equal to 2.2 and 2.1 in observations of GRS 1915+105 (Obs_id is 80401312002 and Obs_id is 90202045002,respectively),which may be associated with the model,will not affect the conclusion in this paper.For MAXI J1820+070,the Γ is in the narrow range of~1.6–1.8,while theRspans a wide range of~0.1–1.4.These two parameters in MAXI J1820+070 do not follow the positiveR-Γ correlation reported in previous works.We also note that the best-fitting parameter Γ is 0.9±0.03,andRisin the spectrum of GRS 1915+105 on MJD 58623 withWe consider these results as outliers of the regularR-Γ panel,which will not be further discussed in our work.For the remained observations,the values ofRobtained are roughly in the range of 0.1–1.0,and Γ ranges from~1.4 to~2.2.We present the points ofRand Γ in Figure 1.We test the correlation betweenRand Γ using the Spearman method.The Spearman’s coefficient is equal to 0.58 with apvalue of 1.13×10-5,which indicates a significant positiveR-Γ correlation.

    Figure 1.The best-fitting parameters Γ and R.The gray lines are calculated based on the model of moving corona(Beloborodov 1999).μs represents the geometry of the corona,which corresponds to μs=0,0.1,0.2,0.3,0.4,and 0.5.

    TheR-Γ correlation can provide important clues on the geometric and physical properties of the disk and the corona.Zdziarski et al.(1999) reported an extremely strong positive correlation betweenRand Γ in the sample of Seyfert galaxies,and the observations of their four X-ray binaries also satisfied this correlation.Zdziarski et al.(2003) further evaluated the reality of this correlation.In the work of Zdziarski et al.(1999),the obtained values ofRare smaller than 2 and the values of Γ are 1.4–2.2.The correlation is considered to provide evidence that the seed photons for the primary source come from the same medium that is responsible for the reflected emission.They found that the model with the inner radius movement failed to reproduce the data in the observed range of Γ andR,but only the data in the mid-range.On the other hand,the model proposed by Beloborodov (1999),in which the corona above the accretion disk moves toward or away from the black hole with relativistic bulk velocity,appears quantitatively to reproduce the correlation.This scenario is indeed consistent with the X-ray observations of an AGN sample,which provides evidence of the outflowing corona in AGNs (Liu et al.2014).Below,we calculate the correlation for a moving primary source using the equations of Beloborodov (1999).In their model,the reflection strengthRis computed as follows,

    where β=ν/cis the velocity of the primary source,andμ=cosi(iis the inclination of disk).We assumed cosi=0.45 as fitting the data using pexrav.The spectral index Γ is calculated as follows,

    where δ=1/6 and δ=1/10 are for BHXRBs and AGNs,respectively.Ais the amplification factor which can be estimated as follows,

    whereγ=(1 -β2)-12.a(a≈0.1–0.2) is the reflection albedo,and μsis the coronal geometry.The parameterawill be assumed to be 0.15 when we calculate.The case μs=0 represents a slab geometry of the corona,while μs=0.5 means the corona roughly to be a blob with a radius of order its height.

    We note that the geometry of the corona is still under debate.Here,we plot the expected curve for μs=0,0.1,0.2,0.3,0.4,and 0.5 as gray lines in Figure 1.It can be seen that all lines fail to reproduce the observed range of Γ andR.Most of our data points fall into the area between the two lines with μs=0 and μs=0.5 which may indicate that the geometry of the corona changes.The case that the coronal geometry evolves has been reported in previous studies.The work of Kara et al.(2019)found that the reverberation lags between the corona and the accretion disk in the BHXRB MAXI J1820+070 shorten while the profile of the broad Fe line remained remarkably constant and explained this case with a reduction in the spatial extent of the corona.In the microquasar GRS 1915–105,it is also found that the initially extended X-ray corona can become more compact and turned into the jet (Karpouzas et al.2021;García et al.2022a;Méndez et al.2022)with the evidence that(1)the phase lags of the type-C QPO made a transition from hard to soft,(2)the two separate correlations are presented between the iron-line flux and the total flux,(3)and the QPO frequency and the ratio flares evolved in a systematic way.Note that in the model proposed by Beloborodov (1999),R=1 is given for a static corona and independent of the coronal geometry.The ranges of β used to estimate the theoretical lines are larger than 0 for all assuming values of μs,indicating that the corona is moving away from the black hole.When the corona moves away from the black hole,the beaming effect reduces the photons irradiating the disk and subsequently the reflection emission.Moreover,the cooling effect on the corona temperature by seed photons reduces,and then a harder spectrum is presented.

    In order to investigate the possible specific features appropriate for black holes of different scales,we compare BHXRBs’results with different types of AGNs’.In the work of Hinkle &Mushotzky (2021),they used XMM-Newton and NuSTAR data to analyze 33 AGNs,including 26 Seyfert1s and seven Seyfert2s.The authors presented the main fundamental parameters,such as the Γ,R,folding energy,black hole mass,and Eddington ratio for Seyfert AGNs,and looked for correlations between them.Seyfert2s tend to have lower Γ(harder spectra) than Seyfert1s,and the distributions ofRfor Seyfert1s and 2 s are consistent with each other.They recovered the positiveR-Γ correlation withp-value=2.6×10-3combining Seyfert1s and Seyfert2s.The work of Kang et al.(2020) measured Γ,R,folding energy,and Fe Kα EW for 28 radio-loud AGNs,and compared their results with 45 radio-quiet AGNs’ (Panagiotou &Walter 2019),in both of which NuSTAR observations were analyzed.They found that the radio-loud AGNs have harder spectra and weaker reflection emission compared with radio-quiet ones.Kang et al.(2020)reported a positiveR-Γ correlation with a very lowp-value(<10-4) combining radio-quiet and radio-loud,which contributed to the moving corona model.

    We compare the best-fittingRand Γ for the hard state of BHXRBs and the sample of Seyferts,and for the hard state of BHXRBs and the sample of radio-loud and radio-quiet in Figures 2 and 3,respectively.In both figures,the distributions ofRand Γ are given in the lower right and upper left panels.The significant feature is that the reflection strength of BHXRBs’ hard state is smaller than 1,but it can increase largely to 5 in the AGN sample.When we see the distributions ofRand Γ in Figure 2,there are no significant differences for the three populations,while in Figure 3,the hard state of BHXRBs tends to have flatter spectra than radio-quiet and radio-loud AGNs,weaker reflection than radio-quiet AGNs,but the distribution ofRis consistent with radio-loud AGNs.To check for the robustness of the differences in the hard state of BHXRBs and radio-quiet/loud AGNs,we perform two nonparametric statistical tests,i.e.,Mann-Whitney U test(hereafter referred to as the U-test).The U-test for two independent samples can be calculated without the requirement of normal distribution.The null hypothesis is that there is no difference between any two compared data sets,and it is rejected when thep-value is below 0.05.We find that the distributions of Γ andRin BHXRBs are clearly different from that in radio-quiet AGNs,wherep-value is 3.1×10-7and 2.1×10-4,respectively.But BHXRBs and radio-loud AGNs have similar Γ andRdistributions withp-value being larger than 0.05 and 0.86,respectively.The relationships betweenRand Γ are shown in the lower left panels in Figures 2 and 3.Except for the theoretical lines predicted by Beloborodov (1999) model for BHXRBs,we also calculate the expected lines with μs=0 and μs=0.9 for AGNs.It can be seen that the areas between these two predicted lines mostly cover the observational points of AGN ignoring its classification.It is likely that the BHXRBs need a narrower area than AGNs to reproduce the data ofRand Γ,which may imply that the corona in BHXRBs changes less vigorously than that in the AGNs.

    Figure 2.Distributions of photon index Γ and reflection strength R in the upper left and lower right panels,and R vs.Γ in the lower left panel.The results of Seyferts are from Hinkle &Mushotzky (2021).The orange,magenta,and black are for Seyfert1s,Seyfert2s,and BHXRBs,respectively.The gray solid and dotted lines correspond to μs=0 and μs=0.5 for BHXRBs,and the blue solid and dotted lines correspond to μs=0 and μs=0.9 for AGNs.

    Figure 3.Distributions of photon index Γ and reflection strength R in the upper left and lower right panels,and R vs.Γ in the lower left panel.The results of radio-loud are from Kang et al.(2020),and radio-quiet are from Panagiotou &Walter (2019).The orange,magenta,and black are for radio-loud,radio-quiet,and BHXRBs,respectively.The gray solid and dotted lines correspond to μs=0 and μs=0.5 for BHXRBs,and the blue solid and dotted lines correspond to μs=0 and μs=0.9 for AGNs.

    In the low/hard state of the BHXRBs,an advectiondominated accretion flow (ADAF) is present in the inner region near the BH (Narayan &Yi 1994),extending out to connect a thin disk at a truncated radius(Esin et al.1997).The truncated radiusRtrof the thin disk(i.e.,the ADAF radial size)increases with the decrease in the mass accretion rate (e.g.,Yuan &Narayan 2014).Thus,the reflection strengthRmay decrease with increasing truncated radiusRtr.As only the observations in the hard state of the BHXRBs have been included in our present investigation,while the AGN samples employed in this work include some luminous AGNs,which roughly correspond to the BHXRBs in the high/soft state.The inner edge of the thin disk in those luminous AGNs may extend to the inner stable circulating orbit (ISCO),and therefore their reflection strengthRis higher than that of the BHXRBs.It is also worth noting that the outer radius of a thin disk may vary from several thousand to ?105Schwarzschild radii (You et al.2012;Cao 2016;Cao &Lai 2019;Cao &Zdziarski 2020),however,the affection of the outer disk radius to the reflection strengthRshould be much less important compared with that of the truncated radius of the thin disk.Thus,we think that it contributes little to the difference ofRbetween BHXRBs and AGNs.

    5.Summary

    We investigate the spectra of the hard state in black hole low-mass X-ray binaries using NuSTAR data.A positive correlation betweenRand Γ is tested by the Spearman method,with the Spearman’s coefficient equal to 0.54 and ap-value equal to 4.27×10-5,except for the source MAXI J1820+070.Rand Γ in MAXI J1820+070 seem to be the outlier in the regularR-Γ panel,which will be further explored in a future paper.TheR-Γ correlation presented here has been reported in GX339-4 and Cyg X-1,which is consistent with the previous report for AGNs.Our results support the moving corona model(Beloborodov 1999),in which the corona moves perpendicularly with respect to the black hole.To mostly cover the whole observational points,the geometry of the corona needs to be changed.When we compare the best-fittingRand Γ for the BHXRBs and the AGNs,we find that theRis smaller than 1 in BHXRBs while it can be as large as~5 in AGNs,which implies that the variations of the corona in AGNs are more vigorous than that of the BHXRBs in the hard state.We conjecture that the luminous AGNs with thin discs extending to the ISCOs may also be responsible for the systematically higherRin AGN samples.

    Acknowledgments

    We thank the referee for his/her helpful comments.We thank Dr.Bei You and Dr.Zhen Yan for very useful discussions.This work used data from the NuSTAR mission,a project led by the California Institute of Technology,managed by the Jet Propulsion Laboratory,and funded by the National Aeronautics and Space Administration.This work is supported by the National Natural Science Foundation of China (11833007,12073023,12233007,and 12147103),the science research grants from the China Manned Space Project with No.CMS-CSST-2021-A06,and the fundamental research fund for Chinese central universities (Zhejiang University).

    免费观看av网站的网址| 大片免费播放器 马上看| 国产精品嫩草影院av在线观看| 亚洲av综合色区一区| 精品99又大又爽又粗少妇毛片| 18禁动态无遮挡网站| 免费观看无遮挡的男女| 丰满迷人的少妇在线观看| 又粗又硬又长又爽又黄的视频| 免费播放大片免费观看视频在线观看| 国产精品无大码| 久久久久精品久久久久真实原创| 亚洲怡红院男人天堂| 国产亚洲欧美精品永久| 色婷婷久久久亚洲欧美| 秋霞伦理黄片| 91午夜精品亚洲一区二区三区| 18禁裸乳无遮挡动漫免费视频| 亚洲成人手机| 日本91视频免费播放| 国产免费现黄频在线看| 欧美人与性动交α欧美精品济南到 | 亚洲综合色惰| 国产精品一区二区在线不卡| 免费黄色在线免费观看| 久久狼人影院| 亚洲激情五月婷婷啪啪| 在线观看国产h片| 少妇人妻精品综合一区二区| 国产成人一区二区在线| 欧美人与性动交α欧美精品济南到 | 亚洲国产日韩一区二区| 久久久久精品久久久久真实原创| 能在线免费看毛片的网站| 国产一级毛片在线| 日本欧美视频一区| 免费日韩欧美在线观看| 69精品国产乱码久久久| 十分钟在线观看高清视频www| 久久久国产一区二区| av免费在线看不卡| 亚洲内射少妇av| 国产精品女同一区二区软件| 国语对白做爰xxxⅹ性视频网站| 香蕉精品网在线| 精品人妻熟女毛片av久久网站| 国产精品国产三级专区第一集| 国产精品欧美亚洲77777| 久久久久精品性色| 热99久久久久精品小说推荐| 欧美精品一区二区免费开放| 91精品伊人久久大香线蕉| 国产精品久久久久久久久免| 欧美激情 高清一区二区三区| 精品国产露脸久久av麻豆| 国产片特级美女逼逼视频| 视频中文字幕在线观看| 91在线精品国自产拍蜜月| 91精品伊人久久大香线蕉| 国产精品久久久久久精品电影小说| 欧美精品一区二区大全| 久久久久视频综合| 日本欧美国产在线视频| h视频一区二区三区| 纵有疾风起免费观看全集完整版| 国产国拍精品亚洲av在线观看| 在线 av 中文字幕| 国产精品不卡视频一区二区| 日韩伦理黄色片| 高清不卡的av网站| 国产高清三级在线| 久久99一区二区三区| 午夜激情久久久久久久| 久久精品国产亚洲网站| 伦理电影大哥的女人| 亚洲怡红院男人天堂| 丰满少妇做爰视频| 日韩精品免费视频一区二区三区 | 伦理电影大哥的女人| 亚洲国产av影院在线观看| 黄色怎么调成土黄色| 欧美亚洲日本最大视频资源| 国产男女超爽视频在线观看| 有码 亚洲区| 美女国产高潮福利片在线看| 麻豆成人av视频| 日本色播在线视频| 春色校园在线视频观看| 另类亚洲欧美激情| 国产一区二区在线观看日韩| 夜夜骑夜夜射夜夜干| 日本欧美视频一区| 亚洲美女黄色视频免费看| 午夜免费鲁丝| 久久精品国产亚洲av天美| 色网站视频免费| 久久久久视频综合| 国产精品一二三区在线看| 人妻一区二区av| 亚洲天堂av无毛| 卡戴珊不雅视频在线播放| 黑人巨大精品欧美一区二区蜜桃 | 少妇人妻久久综合中文| 午夜激情av网站| 日韩在线高清观看一区二区三区| 一区二区av电影网| 亚洲欧美一区二区三区国产| 日日摸夜夜添夜夜添av毛片| 成人黄色视频免费在线看| 中文字幕av电影在线播放| 免费黄网站久久成人精品| 91精品一卡2卡3卡4卡| 满18在线观看网站| 黄片播放在线免费| 国产亚洲av片在线观看秒播厂| 日本黄大片高清| 精品久久国产蜜桃| 18禁观看日本| 三级国产精品欧美在线观看| 色视频在线一区二区三区| 在线亚洲精品国产二区图片欧美 | 亚洲精品日本国产第一区| 少妇的逼水好多| 制服诱惑二区| 插阴视频在线观看视频| 久久毛片免费看一区二区三区| 如日韩欧美国产精品一区二区三区 | 青春草国产在线视频| 国产在线视频一区二区| 人人妻人人澡人人看| 少妇人妻久久综合中文| 欧美激情国产日韩精品一区| 在线天堂最新版资源| 亚洲成色77777| 纵有疾风起免费观看全集完整版| 草草在线视频免费看| 97在线视频观看| 日韩免费高清中文字幕av| 美女视频免费永久观看网站| 男女无遮挡免费网站观看| av有码第一页| 黄片无遮挡物在线观看| 少妇的逼好多水| 大香蕉97超碰在线| 高清在线视频一区二区三区| 亚洲中文av在线| 一本—道久久a久久精品蜜桃钙片| a级毛片黄视频| 久久av网站| 国产国语露脸激情在线看| 春色校园在线视频观看| 久久这里有精品视频免费| 成人手机av| 亚洲成人手机| 熟女av电影| 99热国产这里只有精品6| 一区二区三区乱码不卡18| 美女中出高潮动态图| 欧美亚洲 丝袜 人妻 在线| 国产av国产精品国产| 一个人免费看片子| 最新的欧美精品一区二区| 一区二区三区四区激情视频| 男人添女人高潮全过程视频| 一区在线观看完整版| 99九九在线精品视频| 夜夜爽夜夜爽视频| 看非洲黑人一级黄片| 国内精品宾馆在线| 国产精品一区二区三区四区免费观看| 又粗又硬又长又爽又黄的视频| 久久精品久久久久久久性| 久久精品人人爽人人爽视色| 久久久久人妻精品一区果冻| 国产在线一区二区三区精| 成人毛片60女人毛片免费| 欧美日韩视频高清一区二区三区二| 免费黄网站久久成人精品| 永久免费av网站大全| 在线观看国产h片| 亚洲精品一区蜜桃| 大香蕉久久成人网| 9色porny在线观看| 欧美3d第一页| 中国美白少妇内射xxxbb| 亚洲av二区三区四区| av.在线天堂| 午夜福利网站1000一区二区三区| 日本色播在线视频| 国产成人精品婷婷| 综合色丁香网| 一本大道久久a久久精品| 黄色视频在线播放观看不卡| 午夜福利视频在线观看免费| 国产国拍精品亚洲av在线观看| 成人无遮挡网站| 飞空精品影院首页| 亚洲无线观看免费| 午夜福利在线观看免费完整高清在| 99热网站在线观看| 色视频在线一区二区三区| 久久99热6这里只有精品| 精品国产一区二区三区久久久樱花| a级毛片免费高清观看在线播放| 亚洲av不卡在线观看| 男女免费视频国产| 国产成人免费无遮挡视频| 久久精品熟女亚洲av麻豆精品| 制服诱惑二区| 少妇人妻精品综合一区二区| 午夜福利在线观看免费完整高清在| 国产成人av激情在线播放 | 精品国产一区二区三区久久久樱花| 激情五月婷婷亚洲| 精品久久久噜噜| 精品久久久久久久久亚洲| 久久久久网色| 亚洲人成77777在线视频| 久久久精品94久久精品| 午夜福利视频在线观看免费| 久久精品久久久久久噜噜老黄| 美女国产高潮福利片在线看| 熟女电影av网| 美女福利国产在线| 国产成人一区二区在线| 免费av中文字幕在线| 久久久久久人妻| 天天躁夜夜躁狠狠久久av| 热re99久久国产66热| 赤兔流量卡办理| 亚洲美女视频黄频| 国产一级毛片在线| 蜜臀久久99精品久久宅男| 丰满少妇做爰视频| 伦理电影大哥的女人| 丰满乱子伦码专区| 精品人妻一区二区三区麻豆| 国产一区二区在线观看日韩| 欧美丝袜亚洲另类| 永久免费av网站大全| 在线观看免费高清a一片| 久久这里有精品视频免费| 亚洲国产av影院在线观看| 麻豆乱淫一区二区| 日韩人妻高清精品专区| 热99国产精品久久久久久7| 不卡视频在线观看欧美| 成人漫画全彩无遮挡| 老女人水多毛片| 如日韩欧美国产精品一区二区三区 | av黄色大香蕉| 免费播放大片免费观看视频在线观看| 少妇人妻精品综合一区二区| 交换朋友夫妻互换小说| 国产精品久久久久成人av| 成年人免费黄色播放视频| 国产亚洲午夜精品一区二区久久| 欧美精品高潮呻吟av久久| 母亲3免费完整高清在线观看 | 男女边摸边吃奶| 免费不卡的大黄色大毛片视频在线观看| 91在线精品国自产拍蜜月| 婷婷成人精品国产| 国产免费一级a男人的天堂| 中文字幕av电影在线播放| 国产不卡av网站在线观看| 一本—道久久a久久精品蜜桃钙片| 晚上一个人看的免费电影| a级毛片在线看网站| 一区二区三区乱码不卡18| 国产一区二区三区综合在线观看 | 国产成人aa在线观看| 国产av码专区亚洲av| 精品少妇久久久久久888优播| 一级毛片aaaaaa免费看小| 色婷婷av一区二区三区视频| 国产爽快片一区二区三区| 日产精品乱码卡一卡2卡三| 久久国内精品自在自线图片| 插逼视频在线观看| 18禁在线无遮挡免费观看视频| 人人妻人人爽人人添夜夜欢视频| 国产片内射在线| 亚洲欧美色中文字幕在线| 亚洲av成人精品一二三区| 日本黄色片子视频| 久久99精品国语久久久| 99热6这里只有精品| 我的老师免费观看完整版| 18禁在线无遮挡免费观看视频| 亚洲在久久综合| 夫妻午夜视频| 在线观看免费视频网站a站| 国产成人免费观看mmmm| 国产精品蜜桃在线观看| 国产 一区精品| 久久精品国产亚洲网站| 这个男人来自地球电影免费观看 | av免费观看日本| 人妻系列 视频| 成人毛片a级毛片在线播放| 午夜福利影视在线免费观看| 九九在线视频观看精品| 久久97久久精品| 亚洲性久久影院| 精品一区在线观看国产| 99久久精品一区二区三区| 爱豆传媒免费全集在线观看| 精品亚洲成国产av| 一本—道久久a久久精品蜜桃钙片| 免费黄网站久久成人精品| 国产 一区精品| 青春草国产在线视频| 日韩一本色道免费dvd| 一本一本综合久久| 熟女电影av网| 久久国产亚洲av麻豆专区| 日韩成人伦理影院| 国产男女内射视频| 伊人久久国产一区二区| 99热国产这里只有精品6| 一级黄片播放器| 亚洲欧美精品自产自拍| 国产免费一区二区三区四区乱码| 不卡视频在线观看欧美| 制服人妻中文乱码| 精品人妻在线不人妻| 色吧在线观看| 午夜精品国产一区二区电影| 亚洲精品日韩av片在线观看| 丰满饥渴人妻一区二区三| 人妻夜夜爽99麻豆av| 99久久综合免费| 免费看光身美女| 国产精品欧美亚洲77777| 精品亚洲成国产av| 精品一区二区免费观看| 中文字幕免费在线视频6| 只有这里有精品99| 少妇 在线观看| 精品熟女少妇av免费看| 亚洲欧美清纯卡通| 国产男女超爽视频在线观看| 国产成人a∨麻豆精品| 日韩成人伦理影院| 中文字幕最新亚洲高清| 欧美变态另类bdsm刘玥| 多毛熟女@视频| 国产精品麻豆人妻色哟哟久久| 26uuu在线亚洲综合色| 建设人人有责人人尽责人人享有的| 三级国产精品欧美在线观看| 久久国内精品自在自线图片| 一级毛片黄色毛片免费观看视频| 亚洲精品国产av成人精品| 日产精品乱码卡一卡2卡三| 最近的中文字幕免费完整| 伊人亚洲综合成人网| 久久久久精品性色| 亚洲精品乱码久久久久久按摩| 精品一区二区三区视频在线| 母亲3免费完整高清在线观看 | 国国产精品蜜臀av免费| 蜜桃在线观看..| 久久ye,这里只有精品| 少妇被粗大的猛进出69影院 | 啦啦啦视频在线资源免费观看| 不卡视频在线观看欧美| 国产免费视频播放在线视频| 亚洲成人av在线免费| 王馨瑶露胸无遮挡在线观看| 肉色欧美久久久久久久蜜桃| 五月天丁香电影| 三级国产精品欧美在线观看| 亚洲欧美一区二区三区国产| 一区二区三区精品91| 国产亚洲一区二区精品| 日本与韩国留学比较| 丰满饥渴人妻一区二区三| av播播在线观看一区| 妹子高潮喷水视频| 婷婷色综合大香蕉| 久久精品国产亚洲av天美| 菩萨蛮人人尽说江南好唐韦庄| 丝瓜视频免费看黄片| 亚洲国产精品专区欧美| 国产爽快片一区二区三区| 亚洲精品自拍成人| 日日摸夜夜添夜夜爱| 天天影视国产精品| freevideosex欧美| 一区二区三区四区激情视频| 国产在线一区二区三区精| 男的添女的下面高潮视频| 高清不卡的av网站| 中文字幕人妻熟人妻熟丝袜美| 男的添女的下面高潮视频| 国产高清有码在线观看视频| 中文字幕亚洲精品专区| 一级毛片黄色毛片免费观看视频| 又粗又硬又长又爽又黄的视频| 欧美 日韩 精品 国产| 纵有疾风起免费观看全集完整版| 尾随美女入室| 亚洲欧美成人综合另类久久久| 最近的中文字幕免费完整| 国产精品.久久久| 国产片内射在线| 黄色欧美视频在线观看| 亚洲人成网站在线播| 亚洲av欧美aⅴ国产| 亚洲国产最新在线播放| 97超碰精品成人国产| 日产精品乱码卡一卡2卡三| 午夜福利视频精品| 国产又色又爽无遮挡免| 最新中文字幕久久久久| av电影中文网址| 久久久欧美国产精品| 日韩中字成人| 久久午夜福利片| 成人综合一区亚洲| 街头女战士在线观看网站| 在现免费观看毛片| av有码第一页| 美女xxoo啪啪120秒动态图| 男女无遮挡免费网站观看| 亚洲综合色惰| 99久久人妻综合| 国产精品无大码| 亚洲人与动物交配视频| 国产av精品麻豆| 国产成人av激情在线播放 | 国产精品不卡视频一区二区| 亚洲综合色网址| 日日啪夜夜爽| 日本色播在线视频| 丰满饥渴人妻一区二区三| 边亲边吃奶的免费视频| 国产日韩欧美视频二区| 久久精品国产自在天天线| 乱人伦中国视频| 五月玫瑰六月丁香| 亚洲精品一二三| 最近中文字幕高清免费大全6| .国产精品久久| 久久国内精品自在自线图片| 久久久午夜欧美精品| 婷婷色av中文字幕| 久久久久久久久大av| 成人综合一区亚洲| 国产精品女同一区二区软件| 波野结衣二区三区在线| 国产片特级美女逼逼视频| 国产精品国产三级专区第一集| 免费av不卡在线播放| 一本久久精品| 亚洲精品乱码久久久久久按摩| 婷婷色av中文字幕| av免费在线看不卡| 另类亚洲欧美激情| 高清不卡的av网站| 亚洲av日韩在线播放| 日韩一区二区三区影片| 亚洲av成人精品一二三区| 国产成人精品一,二区| 又粗又硬又长又爽又黄的视频| a级片在线免费高清观看视频| 一区二区三区四区激情视频| 成年美女黄网站色视频大全免费 | 少妇丰满av| 乱码一卡2卡4卡精品| 国产精品三级大全| 亚洲久久久国产精品| 国产免费一区二区三区四区乱码| 欧美精品人与动牲交sv欧美| 国产精品蜜桃在线观看| 精品久久蜜臀av无| 亚洲性久久影院| 久久午夜福利片| 伊人亚洲综合成人网| 蜜桃国产av成人99| av免费在线看不卡| 亚洲精华国产精华液的使用体验| 高清不卡的av网站| 欧美xxⅹ黑人| 超碰97精品在线观看| 亚洲国产av新网站| 欧美变态另类bdsm刘玥| 国产成人免费无遮挡视频| 寂寞人妻少妇视频99o| 韩国高清视频一区二区三区| 日日撸夜夜添| 在线播放无遮挡| 国产av国产精品国产| 成年美女黄网站色视频大全免费 | 精品一区二区免费观看| 午夜视频国产福利| 男男h啪啪无遮挡| 人成视频在线观看免费观看| 国产精品蜜桃在线观看| 午夜激情久久久久久久| 免费看光身美女| 国产亚洲精品久久久com| 婷婷色麻豆天堂久久| 高清毛片免费看| 九色成人免费人妻av| 日本黄色日本黄色录像| 五月天丁香电影| 日本色播在线视频| 夜夜爽夜夜爽视频| 亚洲色图综合在线观看| 飞空精品影院首页| 大片电影免费在线观看免费| 人妻制服诱惑在线中文字幕| 中文乱码字字幕精品一区二区三区| 日韩人妻高清精品专区| 亚洲美女搞黄在线观看| 亚洲av福利一区| 亚洲在久久综合| 国产精品熟女久久久久浪| 制服诱惑二区| 黄色欧美视频在线观看| 一区二区三区四区激情视频| 天天操日日干夜夜撸| 欧美日韩亚洲高清精品| 大片电影免费在线观看免费| 欧美激情极品国产一区二区三区 | 日韩电影二区| 一二三四中文在线观看免费高清| 人成视频在线观看免费观看| 国产爽快片一区二区三区| 一级a做视频免费观看| 少妇高潮的动态图| 丝袜脚勾引网站| 最新中文字幕久久久久| 精品久久久久久久久av| 少妇高潮的动态图| 51国产日韩欧美| 男人操女人黄网站| 黄色欧美视频在线观看| 日日爽夜夜爽网站| 亚洲av欧美aⅴ国产| 国产爽快片一区二区三区| 国产精品欧美亚洲77777| 国产免费现黄频在线看| 少妇熟女欧美另类| 久久久久久久久大av| 中国美白少妇内射xxxbb| 婷婷色综合www| 国产精品成人在线| 亚洲第一av免费看| 高清不卡的av网站| 男女边摸边吃奶| 精品人妻一区二区三区麻豆| 18禁在线播放成人免费| 国产成人精品久久久久久| 亚洲av综合色区一区| 亚洲综合色网址| 精品酒店卫生间| 九色亚洲精品在线播放| 日本vs欧美在线观看视频| 91精品一卡2卡3卡4卡| 春色校园在线视频观看| 免费观看a级毛片全部| 一级毛片aaaaaa免费看小| 国产精品久久久久久av不卡| 视频在线观看一区二区三区| 涩涩av久久男人的天堂| 国产综合精华液| 男女免费视频国产| 熟妇人妻不卡中文字幕| 激情五月婷婷亚洲| 夜夜看夜夜爽夜夜摸| 香蕉精品网在线| 欧美国产精品一级二级三级| 亚洲成色77777| 国产精品一二三区在线看| 亚洲国产欧美在线一区| 黄色一级大片看看| 在线免费观看不下载黄p国产| av免费在线看不卡| 国产一区二区三区综合在线观看 | 国产精品国产av在线观看| 人妻人人澡人人爽人人| 欧美日韩视频精品一区| 极品少妇高潮喷水抽搐| 2018国产大陆天天弄谢| 国产成人一区二区在线| 18禁在线播放成人免费| 九色亚洲精品在线播放| 18在线观看网站| 亚洲精品中文字幕在线视频| 一区二区av电影网| 夜夜爽夜夜爽视频| 一级毛片电影观看| 高清视频免费观看一区二区| 亚洲精品av麻豆狂野| 美女脱内裤让男人舔精品视频| 热re99久久国产66热| 国产有黄有色有爽视频| 51国产日韩欧美| 亚洲色图 男人天堂 中文字幕 | 在线观看国产h片| 久久精品国产亚洲av涩爱| 亚洲高清免费不卡视频| 天堂中文最新版在线下载| 国产精品99久久99久久久不卡 | 久久影院123| 女性生殖器流出的白浆| 亚洲四区av| 蜜臀久久99精品久久宅男| 内地一区二区视频在线| 久久人人爽人人爽人人片va| 高清视频免费观看一区二区|