陳澤潤, 李藝, 梁俁, 蘇金鳳, 高原, 歐濤, 李暉,徐金東, 方咸宏, 單志新,△
環(huán)狀RNA MYO9A_043通過下調(diào)表達發(fā)揮抑制小鼠心臟成纖維細胞纖維化表型的作用*
陳澤潤1, 李藝1, 梁俁2, 蘇金鳳3, 高原1, 歐濤3, 李暉4,徐金東4, 方咸宏2, 單志新1,4△
[1南方醫(yī)科大學第二臨床醫(yī)學院,廣東 廣州 510280;2南方醫(yī)科大學附屬廣東省人民醫(yī)院(廣東省醫(yī)學科學院)心內(nèi)科,廣東 廣州 510080;3華南理工大學醫(yī)學院,廣東 廣州 510006;4南方醫(yī)科大學附屬廣東省人民醫(yī)院(廣東省醫(yī)學科學院)醫(yī)學研究部,廣東 廣州 510080]
研究環(huán)狀RNA MYO9A_043(circular RNA MY09A_043, circMY09A_043)對小鼠心肌纖維化的調(diào)控作用和機制。利用重組腺病毒circMYO9A_043介導其在C57BL/6乳小鼠心臟成纖維細胞(mouse cardiac fibroblasts, mCFs)中過表達,通過RT-qPCR和Western blot實驗檢測纖維化相關基因I型膠原α1鏈(collagen type I alpha 1 chain,)、III型膠原α1鏈(collagen type III alpha 1 chain,)和平滑肌肌動蛋白α2(smooth muscle actin alpha 2,)的表達。利用劃痕實驗檢測mCFs的遷移能力。利用RNA測序分析和RT-qPCR驗證circMYO9A_043對mCFs中胞質(zhì)多腺苷酸化元件結(jié)合蛋白4(cytoplasmic polyadenylation element binding protein 4,)等基因的下調(diào)作用。利用腺病毒介導mCFs過表達,檢測對纖維化相關基因表達的影響。通過RNA結(jié)合蛋白免疫沉淀(RNA binding protein immunoprecipitation, RIP)實驗檢測與纖維化相關基因的結(jié)合作用。進一步通過放線菌素D處理實驗,檢測mCFs中對、和mRNA的穩(wěn)定作用。利用腺病毒可以有效介導circMYO9A_043在mCFs中過表達。circMYO9A_043可顯著下調(diào)、和表達,抑制mCFs的遷移能力(<0.05)。circMYO9A_043可顯著降低mCFs中的表達(<0.01),過表達可逆轉(zhuǎn)circMYO9A_043對纖維化相關基因表達的抑制作用。RIP實驗顯示與mCFs中纖維化相關基因的mRNA有顯著結(jié)合作用(<0.01),而放線菌素D處理實驗結(jié)果顯示可顯著增強上述基因mRNA的穩(wěn)定性(<0.05)。circMYO9A_043通過下調(diào)的表達而抑制mCFs纖維化表型。
心肌纖維化;心臟成纖維細胞;環(huán)狀RNA MYO9A_043;胞質(zhì)多腺苷酸化元件結(jié)合蛋白4
心肌纖維化是以細胞外基質(zhì)(extracellular matrix, ECM)的過度積累為主要特征的病理過程,其可導致心功能障礙并引起心力衰竭[1]。心臟成纖維細胞(cardiac fibroblasts)又稱作心肌間充質(zhì)細胞,是心肌細胞中最常見的細胞類型[2-3]。在生理狀態(tài)下,成纖維細胞可以通過分泌膠原等物質(zhì),調(diào)節(jié)細胞和非細胞成分之間的機械、化學和電信號,而疾病狀態(tài)下,成纖維細胞中平滑肌肌動蛋白α2(smooth muscle actin alpha 2,)等收縮基因表達增加,并通過增加膠原等物質(zhì)的分泌從而促進心肌纖維化[4-5]。盡管這些變化最初是一種重要的損傷修復,但從長期來看,成纖維細胞的過度活化,膠原的過度積累,最后將導致心功能障礙。
環(huán)狀RNA(circular RNA, circRNA)最開始是在20世紀70年代在植物類病毒發(fā)現(xiàn)的,而circRNA一詞是由桑格在1976年在描述類病毒的結(jié)構(gòu)時提出的,隨后幾年人們利用電子顯微鏡證實了環(huán)狀RNA的存在[6]。最初人們認為這種環(huán)狀RNA是異常的剪接產(chǎn)物[7],然而隨著科學的進步及測序技術的發(fā)展,circRNA逐漸受到人們的關注[8]。circRNA是由前體mRNA反向剪接而成,是閉合環(huán)狀的單鏈RNA[9]。circRNA的生成受到多種因素的影響,如套索驅(qū)動環(huán)化、內(nèi)含子配對和RNA結(jié)合蛋白驅(qū)動環(huán)化等[10-13]。circRNA有多種生物學功能,常見的生物學功能有參與親本基因的轉(zhuǎn)錄調(diào)控、吸附miRNA、與蛋白質(zhì)相互作用、翻譯多肽或者蛋白等[13-16]。
越來越多的研究顯示,circRNA在心血管疾病中發(fā)揮著重要作用[17-20]。我們檢測到來自宿主基因的circRNA MYO9A_043 (circMYO9A_043; hsa_circ_0036167)在心衰病人心肌中表達增加,但其對心肌纖維化的作用尚不清楚。本研究中,我們利用原代分離乳小鼠心臟成纖維細胞(mouse cardial fibroblasts,mCFs),通過體外實驗探討circMYO9A_043對心臟成纖維細胞纖維化表型的調(diào)節(jié)作用及可能機制。
乳小鼠購自廣州中醫(yī)藥大學,動物許可證號為SCXK(粵)2013-0034。
血清和細胞培養(yǎng)液(Bio Ind);胰酶(Gibco);Masson三色染色試劑盒(北京索萊寶生物科技有限公司);2× SYBR Green Mix和逆轉(zhuǎn)錄試劑盒(TaKaRa);Trizol(Invitrogen);蛋白裂解液(上海碧云天生物技術有限公司);蛋白緩沖液(Thermo);化學發(fā)光液(Millipore);PVDF膜(Whatman);RNA結(jié)合蛋白免疫沉淀(RNA binding protein immunoprecipitation, RIP)試劑盒(廣州伯信生物科技有限公司);抗胞質(zhì)多腺苷酸化元件結(jié)合蛋白4(cytoplasmic polyadenylation element binding protein 4, CPEB4)、GAPDH和III型膠原α1鏈(collagen type III alpha 1 chain, COL3A1)抗體(Proteintech);抗α-平滑肌肌動蛋白(α-smooth muscle actin, α-SMA;由基因編碼)和I型膠原α1鏈(collagen type I alpha 1 chain, COL1A1)抗體(Abcam);RT-qPCR引物由廣州睿博公司合成。
3.1mCFs的原代分離、傳代培養(yǎng)和處理將乳小鼠置于75%的乙醇中浸泡消毒,沿著乳鼠腋下輕輕剪開其皮膚暴露胸腔,用鑷子取出其完整的心臟,接著對取出的心臟進行修剪,修剪結(jié)束后轉(zhuǎn)移到15 mL的離心管中。然后用胰酶對組織塊進行消化,經(jīng)過數(shù)次消化后離心棄上清,重懸細胞沉淀后轉(zhuǎn)移到T75細胞培養(yǎng)瓶穩(wěn)定培養(yǎng)。分離得到的mCFs置于細胞培養(yǎng)箱,傳代培養(yǎng)到第2代,隨后進行鋪板和實驗處理。
3.2重組腺病毒的制備人circMYO9A_043由1 147個核苷酸組成,包含了來自宿主基因的第7~15外顯子序列。按我們報道的方法[20],構(gòu)建circMYO9A_043重組腺病毒載體,并在HEK293細胞中進行重組腺病毒包裝。
3.3mRNA表達譜芯片分析在mCFs進行腺病毒介導circMYO9A_043的過表達,利用Trizol法提取RNA后進行mRNA表達譜分析,芯片的雜交和結(jié)果分析由上??党晒緟f(xié)助完成。
3.4RT-qPCR檢測用PBS清洗mCFs細胞板,Trizol法提取RNA,取1 000 ng RNA逆轉(zhuǎn)錄得到cDNA。取1 μL cDNA,加入SYBR Grenn Mix及對應引物,于定量PCR儀上進行circMYO9A_043和相關基因的mRNA表達水平檢測(以GAPDH為內(nèi)參照),用2-ΔΔCt法計算mRNA相對表達水平。所用引物序列見表1。
表1 RT-qPCR引物序列
Col1a1: collagen type I alpha 1 chain; Col3a1: collagen type III alpha 1 chain; Acta2: smooth muscle actin alpha 2/α-smooth muscle actin; CPEB4: cytoplasmic polyadenylation element binding protein 4.
3.5Western blot檢測用PBS清洗培養(yǎng)mCFs的孔板,棄PBS后加入蛋白裂解液。裂解結(jié)束后將裂解液轉(zhuǎn)移至EP管,置于離心機于13 000×的轉(zhuǎn)速下離心15 min,測各蛋白樣品的濃度并分裝。蛋白定量后變性,上樣,SDS-PAGE,脫脂牛奶封閉,相應的蛋白條帶分別用相應的Ⅰ抗(COL1A1抗體,1∶1 000;COL3A1抗體,1∶1 000;CPEB4抗體,1∶1 000;α-SMA抗體,1∶2 500;GAPDH抗體,1∶5 000)置于4 ℃冰箱孵育過夜。14~16 h后用對應種屬的Ⅱ抗(1∶2 500)室溫條件孵育55 min,最后進行曝光。
3.6細胞劃痕實驗將mCFs接種于細胞板,培養(yǎng)24 h后,取出細胞板并進行劃痕,劃痕時應盡量垂直。劃痕結(jié)束后,棄掉原培養(yǎng)液,PBS清洗后加入含1%胎牛血清的DMEM/F12培養(yǎng)液,分別于0 h和24 h進行拍照,用ImageJ軟件分析并計算細胞遷移率。
3.7RIP實驗用PBS清洗細胞,加入裂解液約30 min后收集細胞。利用RIP試劑盒去除DNA后將細胞裂解樣品分為CPEB4組、IgG組和Input組,分別加入5 μg的Flag抗體(CPEB4與Flag標簽融合表達)和IgG抗體,垂直混勻器4 ℃孵育16 h,隨后加入磁珠進行免疫沉淀(約3 h結(jié)束)。所得的洗脫液用苯酚-氯仿-異戊醇提取RNA,最后進行RT-qPCR檢測。
3.8放線菌素D處理mCFs實驗用2.5 mg/L放線菌素D處理mCFs不同時間(0、4、8、12和24 h)。處理結(jié)束后用PBS清洗細胞,提取其中的總RNA,用RT-qPCR檢測mCFs中和基因的mRNA水平。
數(shù)據(jù)的統(tǒng)計分析在GraphPad軟件上進行。計量資料以均數(shù)±標準差(mean±SD)表示。兩組間的數(shù)據(jù)比較用檢驗;多組間的數(shù)據(jù)比較用單因素方差分析,兩兩比較用Bonferroni校正的檢驗。以<0.05為差異有統(tǒng)計學意義。
人circMYO9A_043由1 147個核苷酸組成,包含了來自宿主基因的第7~15外顯子序列(圖1A)。RT-qPCR結(jié)果顯示,利用腺病毒可有效介導circMYO9A_043在mCFs中表達,同時能夠顯著下調(diào)纖維化相關基因和的mRNA表達(<0.05或<0.01),見圖1B。Western blot結(jié)果顯示,在過表達circMYO9A_043的成纖維細胞中,纖維化相關蛋白COL1A1、COL3A1和α-SMA的水平也一致下調(diào)(<0.01),見圖1C。細胞劃痕實驗顯示,在mCFs中過表達circMYO9A_043可顯著抑制細胞的遷移能力(<0.05),見圖1D。
Figure 1. Overexpression of circMYO9A_043 (OE-circMYO9A-043) inhibited the fibrotic phenotype of mouse cardial fibroblasts (mCFs). A: circMYO9A_043 sequence is derived from exon 7 to exon 15 of MYO9A gene; B: OE-circMYO9A_043 inhibited the mRNA expression of Col1a1, Col3a1 and Acta2 in mCFs; C: OE-circMYO9A_043 inhibited protein expression of COL1A1, COL3A1 and α-SMA in mCFs; D: OE-circMYO9A_043 inhibited the migration ability of mCFs (cell scratch assay). Mean±SD. n=3. *P<0.05, **P<0.01 vs vector group.
基因表達譜分析結(jié)果顯示,在mCFs中過表達circMYO9A_043可引起基因表達譜的改變,其中分別有150和152個基因呈現(xiàn)2倍以上的降低或升高表達變化(圖2A)。RT-qPCR驗證結(jié)果顯示,在過表達circMYO9A_0434的mCFs中,與蛋白翻譯活性相關的CUGBP Elav樣家族成員4(CUGBP Elav-like family member 4,)、、Nanos C2HC型鋅指蛋白1(Nanos C2HC-type zinc finger 1,)和真核生物翻譯起始因子4E結(jié)合蛋白2(eukaryotic translation initiation factor 4E binding protein 2,)基因顯著下調(diào)(圖2B),與基因表達譜分析結(jié)果一致。Western blot結(jié)果顯示,在過表達circMYO9A_043的mCFs中,CPEB4蛋白表達水平顯著下調(diào)(<0.01),見圖2C。RT-qPCR和Western blot結(jié)果顯示,在mCFs中過表達能夠一致地增加纖維化相關基因和的mRNA和蛋白表達水平,見圖2D、E。細胞劃痕實驗顯示,過表達可顯著增加mCFs的遷移能力(<0.01),見圖2F。
Figure 2. Overexpression of CPEB4(OE-CPEB4) enhanced the fibrotic phenotype of mCFs. A: the scatter plot showed the representative dysregulated mRNAs in mCFs with OE-CPEB4 (red: the over 2-fold up-regulated mRNAs; green: the over 2-fold down-regulated mRNAs); B: circMYO9A_043 inhibited the mRNA expression of CELF4, CPEB4, NANOS1 and EIF4EBP2 in mCFs; C: circMYO9A_043 inhibited the protein expression of CPEB4 in mCFs; D and E : OE-CPEB4promoted the mRNA and protein expression of fibrosis-related genes in mCFs; F: OE-CPEB4 promoted the migration ability of mCFs (cell scratch assay). Mean±SD. n=3. *P<0.05, **P<0.01 vs vector group.
利用腺病毒在mCFs中分別介導過表達circMYO9A_043和,Western blot結(jié)果顯示,過表達可逆轉(zhuǎn)circMYO9A_043對纖維化相關蛋白COL1A1、COL3A1和α-SMA表達的抑制作用(<0.05或<0.01),見圖3。
Figure 3. Effects of circMYO9A_043 overexpression (OE-circMYO9A_043) and CPEB4 overexpression (OE-CPEB4) on the fibrosis-related protein expression in mCFs. OE-CPEB4 could reverse the inhibitory effect of circMYO9A_043 on the expression of fibrosis-related proteins in mCFs. Mean±SD. n=3. *P<0.05, **P<0.01 vs vector group; #P<0.05, ##P<0.01 vs OE-circMYO9A_043 group.
CPEB4能夠與靶mRNA 3'端非翻譯區(qū)(3'-untranslated region, 3'UTR)上的富含AU元件(AU-rich element, ARE;如UUUUAU)結(jié)合,通過促進mRNA的多聚腺苷酸化而發(fā)揮促進mRNA穩(wěn)定性和翻譯的作用,模式圖如圖4A所示。RIP和RT-qPCR檢測結(jié)果顯示,CPEB4可以特異性結(jié)合和的mRNA,見圖4B。進一步的放線菌素D處理實驗結(jié)果顯示,在mCFs中過表達可顯著增加和mRNA的穩(wěn)定性(<0.05),見圖4C。
Figure 4. Overexpression of CPEB4(OE-CPEB4) enhanced Col1a1, Col3a1 and Acta2 mRNA stability in mCFs. A: schematic representation of CPEB4 binding on AU-rich element (UUUUUAU) in mRNA 3'-untranslated region (UTR); B: RIP assay and RT-qPCR revealed the interaction between CPEB4 and Col1a1/Col3a1/Acta2 mRNA; C: the mRNA expression of Col1a1, Col3a1 and Acta2 measured after treatment with actinomycin D. Mean±SD. n=3. △P<0.05 vs IgG group;*P<0.05 vs vector group.
課題組以往的工作已經(jīng)證實,來自宿主基因以胞質(zhì)分布為主的circ_0036176在心肌纖維化時表達升高,體外實驗證實其具有抑制心臟成纖維細胞纖維化表型的作用[21]。本研究顯示,來自基因以胞核分布為主的circMYO9A_043同樣具有抑制mCFs纖維化表型的作用,這表明宿主基因來源相同的不同circRNA可能具有相同的生物學功能。
CPEB4屬于CPEB家族,其C端區(qū)域由2個含鋅指的序列特異性RNA結(jié)合蛋白和2個RNA識別基序組成[22-24]。CPEB4介導許多生理和病理過程,可以調(diào)節(jié)mRNA的翻譯,控制有絲分裂和減數(shù)分裂的細胞周期進程[25]。CPEB4參與多種疾病的發(fā)生,包括腫瘤、消化系統(tǒng)疾病、心血管疾病等[26]。研究顯示,CPEB4可以通過增加p21 mRNA的穩(wěn)定性進而調(diào)控腎癌的進展[27]。在一項肝臟纖維化的研究中顯示,CPEB4可增加PFKFB3的表達,誘導糖酵解從而發(fā)揮促進肝臟纖維化的過程[28]。但目前尚未見CPEB4參與心肌纖維化過程調(diào)控的研究報道。我們通過體外實驗證實CPEB4能夠促進mCFs中纖維化相關基因表達,提高細胞的遷移能力,而成纖維細胞的遷移能力參與心肌纖維化的過程[29],因此本研究證實了CPEB4具有促進纖維化的作用。
本研究通過對CPEB4的功能實驗研究,揭示了CPEB4促進mCFs中纖維化相關基因、和表達的調(diào)節(jié)機制。在mCFs中CPEB4通過特異與、和的mRNA結(jié)合,促進其多聚腺苷酸化,增加mRNA穩(wěn)定性,進而促進COL1A1、COL3A1和α-SMA蛋白表達,從而發(fā)揮促進mCFs纖維化表型的作用。
綜上所述,本研究明確了在體外實驗中circMYO9A_043可以下調(diào)mCFs中基因的表達,進而降低纖維化相關基因、和的mRNA穩(wěn)定性及COL1A1、COL3A1和α-SMA蛋白表達來發(fā)揮抑制成纖維細胞纖維化表型的作用。在后續(xù)的研究中,我們將進一步探究circMYO9A_043下調(diào)mCFs中CPEB4表達的分子機制,并在整體動物水平驗證circMYO9A_043通過下調(diào)CPEB4表達發(fā)揮抑制小鼠心肌纖維化的作用機制。
[1] Kemp CD, Conte JV. The pathophysiology of heart failure[J]. Cardiovasc Pathol, 2012, 21(5):365-371.
[2] Porter KE, Turner NA. Cardiac fibroblasts: at the heart of myocardial remodeling[J]. Pharmacol Ther, 2009, 123(2):255-278.
[3] Gourdie RG, Dimmeler S, Kohl P. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease[J]. Nat Rev Drug Discov, 2016, 15(9):620-638.
[4] Moore-Morris T, Guimar?es-Camboa N, Yutzey KE, et al. Cardiac fibroblasts: from development to heart failure[J]. J Mol Med (Berl), 2015, 93(8):823-830.
[5] Davis J, Molkentin JD. Myofibroblasts: trust your heart and let fate decide[J]. J Mol Cell Cardiol, 2014, 70:9-18.
[6] Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells[J]. Nature, 1979, 280(5720):339-340.
[7] Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci U S A,1976, 73(11):3852-3856.
[8] Lyu D, Huang S. The emerging role and clinical implication of human exonic circular RNA[J]. RNA Biol, 2017, 14(8):1000-1006.
[9] Liu CX, Chen LL. Circular RNAs: Characterization, cellular roles, and applications[J]. Cell, 2022, 185(12):2016-2034.
[10] Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11):675-691.
[11] Rybak-Wolf A, Stottmeister C, Gla?ar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Mol Cell, 2015, 58(5):870-885.
[12] Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs[J]. Cell, 2015, 160(6):1125-1134.
[13] Ivanov A, Memczak S, Wyler E, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals[J]. Cell Rep, 2015, 10(2):170-177.
[14] Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441):333-338.
[15] Luo J, Liu H, Luan S, Li Z. Guidance of circular RNAs to proteins' behavior as binding partners[J]. Cell Mol Life Sci, 2019, 76(21):4233-4243.
[16] Wilusz JE. Circular RNAs: unexpected outputs of many protein-coding genes[J]. RNA Biol, 2017, 14(8):1007-1017.
[17] Li H, Xu JD, Fang XH, et al. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4[J]. Cardiovasc Res, 2020, 116(7):1323-1334.
[18] Tang CM, Zhang M, Huang L, et al. CircRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts[J]. Sci Rep, 2017, 7:40342.
[19] Garikipati VNS, Verma SK, Cheng Z, et al. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis[J]. Nat Commun, 2019, 10(1):4317.
[20] 郭繼深,豐嘉欣,溫藝紅, 等. CircRNA_0000994 通過翻譯蛋白抑制心肌細胞肥大相關基因表達[J]. 中國病理生理雜志, 2022, 38(10):1756-1764.
Guo JS, Feng JX, Wen YH, et al. Circular RNA_0000994 inhibits hypertrophy-related gene expression in cardiomyocytes by translating protein[J]. Chin J Pathophysiol, 2022, 38(10):1756-1764.
[21] 黃智琪, 嚴鈺敏, 郭 晶, 等. 環(huán)狀RNA circ_0036176結(jié)合miR-218-5p發(fā)揮抑制心肌纖維化的作用[J]. 中山大學學報(醫(yī)學科學版), 2022, 43(1):61-69.
Huang ZQ, Yan YM, Guo J, et al. Circular RNA circ_0036176 inhibiting myocardial fibrosis via sponging miRNA-218-5p[J]. J Sun Yat-sen Univ (Med Sci), 2022, 43(1):61-69.
[22] Wang XP, Cooper NG. Comparative in silico analyses of cpeb1-4 with functional predictions[J]. Bioinform Biol Insights, 2010, 4:61-83.
[23] Schelhorn C, Gordon JM, Ruiz L, et al. RNA recognition and self-association of CPEB4 is mediated by its tandem RRM domains[J]. Nucleic Acids Res, 2014, 42(15):10185-10195.
[24] Richter JD. CPEB: a life in translation[J]. Trends Biochem Sci, 2007, 32(6):279-285.
[25] Giangarrà V, Igea A, Castellazzi CL, et al. Global analysis of CPEBs reveals sequential and non-redundant functions in mitotic cell cycle[J]. PLoS One, 2015, 10(9):e0138794.
[26] Fernández-Miranda G, Méndez R. The CPEB-family of proteins, translational control in senescence and cancer[J]. Ageing Res Rev, 2012, 11(4):460-472.
[27] Di J, Wang H, Zhao Z, et al. CPEB4 inhibit cell proliferation via upregulating p21 mRNA stability in renal cell carcinoma[J]. Front Cell Dev Biol, 2021, 9:687253.
[28] Mejias M, Gallego J, Naranjo-Suarez S, et al. CPEB4 increases expression of PFKFB3 to induce glycolysis and activate mouse and human hepatic stellate cells, promoting liver fibrosis[J]. Gastroenterology, 2020, 159(1):273-288.
[29] Tao H,Shi KH,Yang JJ,et al. Epigenetic regulation of cardiac fibrosis[J]. Cell Signal, 2013, 25(9):1932-1938.
circMYO9A_043 inhibits fibrotic phenotype of mouse cardiac fibroblasts by down-regulatingexpression
CHEN Zerun1, LI Yi1, LIANG Yu2, SU Jinfeng3, GAO Yuan1, OU Tao3, LI Hui4, XU Jindong4, FANG Xianhong2, SHAN Zhixin1,4△
(1,,510280,;2,,,,510080,;3,,510006,;4,,,,510080,)
To study the effect of circular RNA MYO9A-043 (circMYO9A_043) on the fibrotic phenotype of mouse cardiac fibroblasts (mCFs), and to explore the potential mechanism.The recombinant circMYO9A_043 adenovirus was prepared for overexpressing circMYO9A_043 in neonatal C57BL/6 mCFs. The expression levels of myocardial fibrosis-related genes, collagen type I alpha 1 chain (), collagen type III alpha 1 chain () and smooth muscle actin alpha 2 (), were determined by RT-qPCR and Western blot. Wound-healing assay was conducted to evaluate the migration ability of mCFs. The down-regulation of cytoplasmic polyadenylation element binding protein 4 () by circMYO9A_043 in mCFs was identified through RNA sequencing analysis and RT-qPCR. After the overexpression of, the mRNA and protein expression levels of,andwere determined in mCFs. The interactions betweenand//mRNA were detected by RNA binding protein immunoprecipitation (RIP) assay and RT-qPCR. Additionally, an actinomycin D treatment was performed to identify the effect ofon the stability of,andmRNA.Efficient adenovirus-mediated overexpression of circMYO9A_043 was achieved in mCFs. The overexpression of circMYO9A_043 significantly inhibited the expression of,andgenes in mCFs and the migration ability of mCFs (<0.05). However, overexpression ofcould reverse the inhibitory effect of circMYO9A_043 on the expression of fibrosis-related genes in mCFs. The RIP assay revealed specific interactions betweenand//Acta2 mRNA (<0.01). Results from the actinomycin D treatment showed thatcould enhance the mRNA stability of,andin mCFs (<0.05).The circMYO9A_043 inhibits the fibrotic phenotype of mCFs by down-regulating the expression of.
myocardial fibrosis; cardiac fibroblasts; circular RNA MYO9A_043; cytoplasmic polyadenylation element binding protein 4
1000-4718(2023)07-1225-08
2023-05-04
2023-06-26
020-83827812-51157; E-mail: shanzhixin@gdph.org.cn
R363; R542.2
A
10.3969/j.issn.1000-4718.2023.07.009
[基金項目]國家自然科學基金資助項目(No. 82070254; No. 82200325);廣東省自然科學基金資助項目(No. 2022A1515012522; No. 2022A1515012175; No. 2021A1515220122; No. 2023A1515010201; No. 2021A1515111173);廣州市基礎與應用基礎研究項目(No. 202201011627);廣東省人民醫(yī)院心血管專項(No. 2020XXG003);廣東省人民醫(yī)院國自然培育項目(No. KY0120220028)
(責任編輯:余小慧,李淑媛)