田文杰,趙 堃,張熙臨,王麗娜,張相鵬
基于RBF神經(jīng)網(wǎng)絡(luò)的3-US/S穩(wěn)定平臺(tái)運(yùn)動(dòng)學(xué)標(biāo)定
田文杰1,趙 堃1,張熙臨2,王麗娜2,張相鵬1
(1. 天津大學(xué)海洋科學(xué)與技術(shù)學(xué)院,天津 300072;2. 天津大學(xué)機(jī)械工程學(xué)院,天津 300350)
三自由度并聯(lián)構(gòu)型穩(wěn)定平臺(tái)常用作船載穩(wěn)定平臺(tái)對(duì)船舶擾動(dòng)進(jìn)行補(bǔ)償,姿態(tài)精度是并聯(lián)構(gòu)型姿態(tài)穩(wěn)定平臺(tái)的重要性能指標(biāo),由于機(jī)構(gòu)中各項(xiàng)幾何與非幾何誤差源之間具有強(qiáng)耦合、非線性等特點(diǎn),難以建立包含全部誤差源的誤差模型用于運(yùn)動(dòng)學(xué)標(biāo)定.針對(duì)該問題,本文提出了一種基于等效誤差模型以及RBF神經(jīng)網(wǎng)絡(luò)的關(guān)節(jié)空間誤差補(bǔ)償方法,該方法首先基于偽誤差理論將因幾何、非幾何誤差引起的機(jī)構(gòu)動(dòng)平臺(tái)姿態(tài)誤差等效視為僅由驅(qū)動(dòng)關(guān)節(jié)桿長(zhǎng)誤差所引起,進(jìn)而采用RBF神經(jīng)網(wǎng)絡(luò)建立了名義驅(qū)動(dòng)關(guān)節(jié)變量與驅(qū)動(dòng)關(guān)節(jié)桿長(zhǎng)偽誤差之間的非線性映射模型.此后,為提升網(wǎng)絡(luò)泛化性能與動(dòng)平臺(tái)姿態(tài)誤差預(yù)測(cè)精度,針對(duì)性地設(shè)計(jì)了一種二級(jí)分層網(wǎng)絡(luò)訓(xùn)練方法,下層構(gòu)建網(wǎng)絡(luò)線性結(jié)構(gòu),上層采用粒子群優(yōu)化(PSO)算法同步全局優(yōu)化網(wǎng)絡(luò)擴(kuò)展常數(shù)與正則化參數(shù).最后,采用PSO-RBF在3-US/S并聯(lián)姿態(tài)穩(wěn)定平臺(tái)上開展了關(guān)節(jié)空間等效誤差預(yù)測(cè)仿真和作業(yè)空間誤差補(bǔ)償實(shí)驗(yàn)研究,結(jié)果表明,本文所提方法具有高度的靈活性和適用性,可高精度刻畫名義驅(qū)動(dòng)變量與驅(qū)動(dòng)關(guān)節(jié)桿長(zhǎng)偽誤差之間的映射關(guān)系,且網(wǎng)絡(luò)輸出變量可直接用于運(yùn)動(dòng)學(xué)標(biāo)定,關(guān)節(jié)空間中的桿長(zhǎng)精度提升了93.6%,作業(yè)空間中的姿態(tài)精度提升了92.3%,有效提升了標(biāo)定效率與精度,驗(yàn)證了所提方法的正確性和有效性.
姿態(tài)穩(wěn)定平臺(tái);運(yùn)動(dòng)學(xué)標(biāo)定;偽誤差模型;RBF神經(jīng)網(wǎng)絡(luò);PSO算法
海上船舶由于受風(fēng)、浪、流等海洋環(huán)境擾動(dòng)的影響,會(huì)產(chǎn)生6個(gè)自由度的波動(dòng).對(duì)于搭載科學(xué)探測(cè)儀器進(jìn)行海洋觀測(cè)任務(wù)的海洋觀測(cè)船舶來說,橫搖、縱搖、艏搖3個(gè)自由度運(yùn)動(dòng)帶來的姿態(tài)角變動(dòng),會(huì)嚴(yán)重影響探測(cè)儀器的測(cè)量精度.采用三轉(zhuǎn)動(dòng)自由度機(jī)構(gòu)作為船載姿態(tài)穩(wěn)定平臺(tái)實(shí)時(shí)補(bǔ)償船體的姿態(tài)變動(dòng),是有效的工程解決方案之一.
由于并聯(lián)機(jī)器人在有效載荷、剛度、精度、響應(yīng)速度等方面的優(yōu)勢(shì)[1],非常適用于在船舶等局促空間內(nèi)搭載儀器設(shè)備,并對(duì)其動(dòng)態(tài)變化的姿態(tài)角進(jìn)行補(bǔ)償.船載穩(wěn)定平臺(tái)能否有效補(bǔ)償船舶運(yùn)動(dòng)對(duì)船載設(shè)備的影響,一方面在于對(duì)穩(wěn)定平臺(tái)的穩(wěn)定控制,但對(duì)于高精度補(bǔ)償,穩(wěn)定平臺(tái)自身的精度也是影響補(bǔ)償效果的重要因素.因此,對(duì)穩(wěn)定平臺(tái)進(jìn)行機(jī)構(gòu)誤差分析,并進(jìn)行相應(yīng)的誤差補(bǔ)償對(duì)提高穩(wěn)定平臺(tái)的運(yùn)動(dòng)精度及姿態(tài)補(bǔ)償效果具有重要意義.
影響并聯(lián)機(jī)器人精度的誤差來源主要包括幾何參數(shù)誤差和非幾何參數(shù)誤差[2-3].幾何參數(shù)誤差往往能夠通過基于誤差模型的傳統(tǒng)運(yùn)動(dòng)學(xué)標(biāo)定方法來標(biāo)定,標(biāo)定過程包括誤差建模、誤差測(cè)量、參數(shù)辨識(shí)、誤差補(bǔ)償.許多學(xué)者利用該方法針對(duì)不同機(jī)構(gòu)進(jìn)行了大量的研究工作[4-6].雖然傳統(tǒng)運(yùn)動(dòng)學(xué)標(biāo)定方法具有收斂速度快以及誤差源清晰的優(yōu)點(diǎn),但是往往需要建立復(fù)雜的數(shù)學(xué)模型,且參數(shù)辨識(shí)過程是一個(gè)復(fù)雜的數(shù)值過程,可能會(huì)遇到病態(tài)的數(shù)值問題,并且該標(biāo)定 方法忽略了非幾何誤差因素的影響.因此,一些學(xué) 者[7-9]研究了包含非幾何參數(shù)誤差的新誤差模型,采用模型參數(shù)辨識(shí)方法來標(biāo)定.但是由于非幾何誤差參數(shù)的高度非線性及強(qiáng)耦合性,僅針對(duì)單個(gè)類型的非幾何誤差源的誤差建模標(biāo)定方法不具備通用理論指導(dǎo)性.為此,有學(xué)者提出了無需解析式誤差模型和特定參數(shù)辨識(shí)方法的無模型標(biāo)定方法.
由于無模型標(biāo)定方法需要建立機(jī)構(gòu)參數(shù)與參數(shù)誤差之間復(fù)雜的非線性映射關(guān)系,人工神經(jīng)網(wǎng)絡(luò)因具有以任意精度逼近任意非線性函數(shù)的能力而逐漸被用于并聯(lián)機(jī)器人的運(yùn)動(dòng)學(xué)標(biāo)定中.徑向基(radial basis function,RBF)神經(jīng)網(wǎng)絡(luò)[10]是一種前饋型神經(jīng)網(wǎng)絡(luò),具有網(wǎng)絡(luò)結(jié)構(gòu)簡(jiǎn)單、學(xué)習(xí)速度快、非線性擬合能力強(qiáng)等優(yōu)點(diǎn),相較于反向傳播(back propagation,BP)神經(jīng)網(wǎng)絡(luò)以及多層感知機(jī)(multilayer perceptron,MLP)等神經(jīng)網(wǎng)絡(luò),RBF神經(jīng)網(wǎng)絡(luò)具有全局逼近能力,從根本上解決了局部最優(yōu)問題,已被廣泛應(yīng)用于機(jī)器人運(yùn)動(dòng)學(xué)標(biāo)定領(lǐng)域[11-13].Yang等[11]提出了一種基于RBF神經(jīng)網(wǎng)絡(luò)的位移測(cè)量幾何誤差補(bǔ)償方法,用于運(yùn)動(dòng)控制器中的誤差補(bǔ)償.Chen等[12]針對(duì)工業(yè)機(jī)器人存在的絕對(duì)位置精度低的問題,提出了一種誤差相似性和RBF神經(jīng)網(wǎng)絡(luò)相結(jié)合的位置誤差補(bǔ)償方法.Yu[13]針對(duì)并聯(lián)機(jī)器人非幾何參數(shù)誤差提出了一種由BP神經(jīng)網(wǎng)絡(luò)和RBF神經(jīng)網(wǎng)絡(luò)組成混合人工神經(jīng)網(wǎng)絡(luò)對(duì)并聯(lián)機(jī)構(gòu)進(jìn)行位姿精度的補(bǔ)償.
本文針對(duì)3-US/S并聯(lián)平臺(tái)的誤差補(bǔ)償問題,首先基于偽誤差理論將因幾何、非幾何誤差引起的末端姿態(tài)誤差等效視為僅由驅(qū)動(dòng)關(guān)節(jié)桿長(zhǎng)誤差所引起.進(jìn)而采用RBF神經(jīng)網(wǎng)絡(luò)建立名義驅(qū)動(dòng)關(guān)節(jié)變量與驅(qū)動(dòng)關(guān)節(jié)桿長(zhǎng)偽誤差之間的非線性映射模型,并著重研究基于PSO算法的擴(kuò)展參數(shù)和正則化參數(shù)的聯(lián)合優(yōu)化方法,以提升網(wǎng)絡(luò)的泛化性能.最后通過運(yùn)動(dòng)學(xué)標(biāo)定實(shí)驗(yàn)以及姿態(tài)穩(wěn)定補(bǔ)償實(shí)驗(yàn)驗(yàn)證了所提方法的正確性和有效性.
傳統(tǒng)的運(yùn)動(dòng)學(xué)標(biāo)定包括誤差建模、誤差測(cè)量、參數(shù)辨識(shí)、誤差補(bǔ)償4個(gè)環(huán)節(jié),其中誤差建模是機(jī)器人運(yùn)動(dòng)學(xué)標(biāo)定流程中的首要環(huán)節(jié).本節(jié)將以3-US/S并聯(lián)機(jī)構(gòu)為對(duì)象,在運(yùn)動(dòng)學(xué)分析的基礎(chǔ)上建立用于標(biāo)定的等效誤差模型.
3-US/S并聯(lián)穩(wěn)定平臺(tái)的結(jié)構(gòu)簡(jiǎn)圖如圖1所示,由靜平臺(tái)、動(dòng)平臺(tái)、3條US驅(qū)動(dòng)支鏈和中央球鉸約束支鏈組成.其中,US支鏈一端通過虎克鉸與靜平臺(tái)連接,另一端通過球鉸與動(dòng)平臺(tái)相連;中央立柱一端與靜平臺(tái)固定連接,另一端通過球鉸與動(dòng)平臺(tái)中心相連.中央立柱限制了動(dòng)平臺(tái)的三向平動(dòng),通過控制3條US支鏈的伸縮量,即可實(shí)現(xiàn)動(dòng)平臺(tái)3個(gè)轉(zhuǎn)動(dòng)自由度的運(yùn)動(dòng).
圖1 3-UPS/S機(jī)構(gòu)簡(jiǎn)圖
式中:表示方位角;表示傾斜角;表示扭轉(zhuǎn)角.
在已知?jiǎng)悠脚_(tái)姿態(tài)角的前提下,支鏈桿長(zhǎng)計(jì)算 式為
3-US/S并聯(lián)穩(wěn)定平臺(tái)機(jī)構(gòu)存在多閉環(huán)結(jié)構(gòu),誤差源種類和數(shù)量較多,且存在耦合效應(yīng),難于建立完備的誤差模型或準(zhǔn)確辨識(shí)全部誤差參數(shù).考慮到所述并聯(lián)機(jī)構(gòu)具有三轉(zhuǎn)動(dòng)自由度,3個(gè)驅(qū)動(dòng)關(guān)節(jié)為其運(yùn)動(dòng)生成元,因而動(dòng)平臺(tái)的姿態(tài)誤差可視為僅由驅(qū)動(dòng)關(guān)節(jié)的等效運(yùn)動(dòng)誤差所生成,且該等效運(yùn)動(dòng)誤差是機(jī)器人位形的函數(shù).這樣,基于機(jī)器人雅可比建立驅(qū)動(dòng)關(guān)節(jié)等效誤差與動(dòng)平臺(tái)姿態(tài)誤差之間的映射模型,并采用神經(jīng)網(wǎng)絡(luò)方法建立驅(qū)動(dòng)關(guān)節(jié)等效誤差與理想驅(qū)動(dòng)關(guān)節(jié)變量之間的非線性映射關(guān)系,即可實(shí)現(xiàn)全工作空間范圍內(nèi)動(dòng)平臺(tái)姿態(tài)誤差的預(yù)測(cè),并進(jìn)而實(shí)施誤差 補(bǔ)償.
采用文獻(xiàn)[22]中所提誤差建模方法,可建立3-US/S機(jī)構(gòu)的等效驅(qū)動(dòng)關(guān)節(jié)誤差模型為
式(3)建立了機(jī)器人工作空間中姿態(tài)誤差與關(guān)節(jié)空間中等效誤差之間的映射關(guān)系,后序?qū)⑼ㄟ^該模型將仿真或?qū)崪y(cè)末端姿態(tài)誤差轉(zhuǎn)換為關(guān)節(jié)空間等效桿長(zhǎng)誤差,并作為神經(jīng)網(wǎng)絡(luò)的輸出,建立完整的誤差 模型.
在關(guān)節(jié)空間中,名義驅(qū)動(dòng)關(guān)節(jié)變量(理想桿長(zhǎng))與驅(qū)動(dòng)關(guān)節(jié)等效誤差之間的映射具有連續(xù)性,因此可將兩者分別作為RBF神經(jīng)網(wǎng)絡(luò)的輸入與輸出,利用網(wǎng)絡(luò)的非線性擬合能力實(shí)現(xiàn)驅(qū)動(dòng)關(guān)節(jié)等效誤差的預(yù)測(cè),并進(jìn)而通過修正驅(qū)動(dòng)關(guān)節(jié)變量的方式補(bǔ)償末端姿態(tài)誤差.
RBF神經(jīng)網(wǎng)絡(luò)是一種3層前饋型神經(jīng)網(wǎng)絡(luò),在數(shù)學(xué)上可以看作一組加權(quán)徑向基函數(shù)的線性組合,可以任意精度逼近任意連續(xù)函數(shù)[23],由輸入層、具有激活功能的隱藏層、輸出層構(gòu)成,其拓?fù)浣Y(jié)構(gòu)如圖3 所示.
圖3 RBF網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)
應(yīng)用于回歸問題時(shí),待擬合函數(shù)可直接用RBF神經(jīng)網(wǎng)絡(luò)近似為
RBF神經(jīng)網(wǎng)絡(luò)的相關(guān)計(jì)算與基函數(shù)的選擇有關(guān),其非線性映射能力主要體現(xiàn)在隱層基函數(shù)上.考慮到高斯函數(shù)具有光滑性和無限可微性等優(yōu)良特性,本文選取其作為網(wǎng)絡(luò)的基函數(shù).于是,網(wǎng)絡(luò)可描述為
基于神經(jīng)網(wǎng)絡(luò)的運(yùn)動(dòng)學(xué)標(biāo)定流程如圖4所示,可分為4個(gè)步驟:
圖4 神經(jīng)網(wǎng)絡(luò)標(biāo)定流程
在非奇異位形,利用關(guān)節(jié)空間等效誤差模型可以計(jì)算出驅(qū)動(dòng)關(guān)節(jié)的等效誤差為
為解決訓(xùn)練數(shù)據(jù)噪聲帶來的網(wǎng)絡(luò)過擬合問題,本文采用在損失函數(shù)中添加正則化項(xiàng)的方式改善網(wǎng)絡(luò)的泛化性能[24],相應(yīng)的正則化誤差準(zhǔn)則為
權(quán)重參數(shù)的表示方式為
在RBF神經(jīng)網(wǎng)絡(luò)中,高斯基函數(shù)的特征主要由基函數(shù)的中心及擴(kuò)展常數(shù)確定.隱層節(jié)點(diǎn)的選擇是決定網(wǎng)絡(luò)性能優(yōu)劣的關(guān)鍵因素,雖然節(jié)點(diǎn)個(gè)數(shù)越多,RBF神經(jīng)網(wǎng)絡(luò)對(duì)于復(fù)雜系統(tǒng)的擬合能力越強(qiáng),但是訓(xùn)練優(yōu)化過程的復(fù)雜性以及網(wǎng)絡(luò)過擬合的風(fēng)險(xiǎn)均會(huì)大幅增加[25].對(duì)于3-US/S并聯(lián)平臺(tái),經(jīng)搜索計(jì)算發(fā)現(xiàn),在工作空間均勻選取108個(gè)位姿點(diǎn),并將其所對(duì)應(yīng)的名義驅(qū)動(dòng)關(guān)節(jié)變量作為網(wǎng)絡(luò)中心點(diǎn)比較合適.繼續(xù)增加中心點(diǎn)個(gè)數(shù)對(duì)RBF神經(jīng)網(wǎng)絡(luò)性能基本上沒有幫助,且仿真研究表明,采用聚類算法對(duì)于中心位置進(jìn)行訓(xùn)練對(duì)網(wǎng)絡(luò)性能并無明顯改善效果.
利用PSO算法對(duì)RBF神經(jīng)網(wǎng)絡(luò)進(jìn)行全局優(yōu)化的基本方法可以概括為:將RBF網(wǎng)絡(luò)結(jié)構(gòu)以及參數(shù)包含在一組變量中,定義RBF神經(jīng)網(wǎng)絡(luò)在訓(xùn)練集上的均方誤差(mean square error,MSE)為優(yōu)化目標(biāo),其值越小則網(wǎng)絡(luò)的泛化性能越強(qiáng),從而將神經(jīng)網(wǎng)絡(luò)訓(xùn)練問題轉(zhuǎn)化為包含神經(jīng)網(wǎng)絡(luò)參數(shù)變量的目標(biāo)函數(shù)優(yōu)化問題.
結(jié)合粒子群算法和第2.2節(jié)提出的訓(xùn)練方法,本文提出一種二級(jí)分層訓(xùn)練方法,對(duì)這兩個(gè)參數(shù)進(jìn)行全局優(yōu)化.如圖5所示,在此過程中將網(wǎng)絡(luò)的泛化性能作為這兩個(gè)參數(shù)的適應(yīng)度函數(shù)來進(jìn)行檢驗(yàn),定義已知結(jié)構(gòu)的RBF模型在測(cè)試集上的MSE為PSO算法的適應(yīng)度函數(shù),即
圖5 擴(kuò)展常數(shù)s與正則參數(shù)l的優(yōu)化流程
由于PSO算法僅用于優(yōu)化下層集成的RBF神經(jīng)網(wǎng)絡(luò)的2個(gè)參數(shù),且下層為線性學(xué)習(xí)問題.因此相較于使用PSO對(duì)RBF所有參數(shù)進(jìn)行直接優(yōu)化,該方法能夠更加高效地實(shí)現(xiàn)全局優(yōu)化.
本節(jié)將通過計(jì)算機(jī)仿真來驗(yàn)證所提出的RBF神經(jīng)網(wǎng)絡(luò)模型構(gòu)造及訓(xùn)練方法的正確性及有效性,以及網(wǎng)絡(luò)對(duì)驅(qū)動(dòng)關(guān)節(jié)等效誤差的預(yù)測(cè)效果.
仿真過程可分為如下步驟.
在完成網(wǎng)絡(luò)模型結(jié)構(gòu)構(gòu)建與參數(shù)優(yōu)化后,將利用驗(yàn)證集數(shù)據(jù)檢驗(yàn)網(wǎng)絡(luò)模型在關(guān)節(jié)空間中的預(yù)測(cè)能力.在驗(yàn)證位形下,對(duì)比未經(jīng)PSO優(yōu)化的RBF模型以及經(jīng)PSO優(yōu)化的PSO-RBF模型對(duì)于驅(qū)動(dòng)桿誤差預(yù)測(cè)能力,預(yù)測(cè)效果如圖7所示,誤差預(yù)測(cè)精度如圖8所示.
圖6 PSO迭代收斂曲線
圖7 誤差預(yù)測(cè)效果對(duì)比
通過仿真結(jié)果可以看出,采用本文所提出的方法構(gòu)建的PSO-RBF神經(jīng)網(wǎng)絡(luò)模型在關(guān)節(jié)空間中所展示出的誤差預(yù)測(cè)規(guī)律與前述分析一致,證明了該方法的正確性與有效性.
圖8 誤差預(yù)測(cè)精度對(duì)比
本節(jié)首先利用三坐標(biāo)測(cè)量臂獲取3-US/S穩(wěn)定平臺(tái)姿態(tài)誤差信息,基于所提驅(qū)動(dòng)關(guān)節(jié)等效誤差模型實(shí)現(xiàn)穩(wěn)定平臺(tái)的運(yùn)動(dòng)學(xué)標(biāo)定.而后,結(jié)合穩(wěn)定平臺(tái)應(yīng)用場(chǎng)景,搭建姿態(tài)穩(wěn)定補(bǔ)償實(shí)驗(yàn)系統(tǒng),研究標(biāo)定前后的姿態(tài)穩(wěn)定補(bǔ)償效果,進(jìn)一步驗(yàn)證所提方法的有效性.
圖9 測(cè)量系統(tǒng)
圖10 三坐標(biāo)測(cè)量臂測(cè)量原理
Fig.10 Measuring principle of coordinate measuring ma-chine
圖11 工作空間測(cè)量位形分布
Fig.11 Configuration map of workspace measurement
圖12 關(guān)節(jié)空間誤差預(yù)測(cè)效果對(duì)比
3-US/S并聯(lián)穩(wěn)定平臺(tái)作為船載穩(wěn)定平臺(tái)用于補(bǔ)償風(fēng)浪流造成的船舶擾動(dòng),使穩(wěn)定平臺(tái)保持平穩(wěn).由于在船舶上進(jìn)行實(shí)驗(yàn)成本較高,本文使用船舶模擬平臺(tái)模擬海浪造成的船舶運(yùn)動(dòng).實(shí)驗(yàn)裝置如圖14所示,穩(wěn)定平臺(tái)安裝于船舶模擬平臺(tái)之上,船舶模擬平臺(tái)根據(jù)預(yù)設(shè)的指令曲線而動(dòng)作,穩(wěn)定平臺(tái)根據(jù)傾角傳感器測(cè)得的數(shù)據(jù)控制動(dòng)平臺(tái)姿態(tài),使其相對(duì)地面的姿態(tài)保持水平.
穩(wěn)定平臺(tái)實(shí)驗(yàn)系統(tǒng)工作時(shí),船舶模擬平臺(tái)安裝一個(gè)傾角傳感器傳輸給穩(wěn)定平臺(tái)控制系統(tǒng),解算出需要補(bǔ)償?shù)淖藨B(tài)角度,然后利用運(yùn)動(dòng)學(xué)逆解求出相應(yīng)的驅(qū)動(dòng)桿移動(dòng)量,控制穩(wěn)定平臺(tái)進(jìn)行實(shí)時(shí)的補(bǔ)償運(yùn)動(dòng).3個(gè)驅(qū)動(dòng)桿的控制方法是基于位移傳感器的位置反饋控制.同時(shí),穩(wěn)定平臺(tái)上也安裝一個(gè)傾角傳感器,用于檢測(cè)穩(wěn)定平臺(tái)補(bǔ)償效果.
圖13 關(guān)節(jié)空間誤差預(yù)測(cè)精度對(duì)比
圖14 穩(wěn)定補(bǔ)償實(shí)驗(yàn)系統(tǒng)
圖15 穩(wěn)定補(bǔ)償實(shí)驗(yàn)效果
從測(cè)試結(jié)果可以看出,船舶模擬平臺(tái)在125種固定姿態(tài)下,穩(wěn)定補(bǔ)償系統(tǒng)達(dá)到預(yù)定補(bǔ)償效果,并且補(bǔ)償后的結(jié)果穩(wěn)定、波動(dòng)較?。褂帽疚乃岢龅腜SO-RBF方法在關(guān)節(jié)空間進(jìn)行桿長(zhǎng)誤差補(bǔ)償之后,可以實(shí)現(xiàn)該機(jī)構(gòu)的精度提升,并提高姿態(tài)補(bǔ)償效果.
圖16 標(biāo)定前后轉(zhuǎn)角精度對(duì)比
圖17 標(biāo)定前后驗(yàn)證位形姿態(tài)誤差對(duì)比
針對(duì)傳統(tǒng)運(yùn)動(dòng)學(xué)標(biāo)定難以考慮非幾何誤差源的問題,本文基于等效誤差模型并采用RBF神經(jīng)網(wǎng)絡(luò)方法研究了3-US/S并聯(lián)機(jī)器人的標(biāo)定方法,研究結(jié)論如下.
(1) 考慮各類非時(shí)變誤差源對(duì)并聯(lián)機(jī)構(gòu)精度的影響,本文基于偽誤差理論將因幾何、非幾何誤差引起的末端姿態(tài)誤差等效視為僅由驅(qū)動(dòng)關(guān)節(jié)桿長(zhǎng)誤差所引起,進(jìn)而采用RBF神經(jīng)網(wǎng)絡(luò)建立了名義驅(qū)動(dòng)關(guān)節(jié)變量與驅(qū)動(dòng)關(guān)節(jié)桿長(zhǎng)偽誤差之間的非線性映射模型.仿真及實(shí)驗(yàn)結(jié)果表明,所提方法具有高度的靈活性和適用性,可高精度刻畫名義驅(qū)動(dòng)關(guān)節(jié)變量與驅(qū)動(dòng)關(guān)節(jié)桿長(zhǎng)偽誤差之間的映射關(guān)系,且網(wǎng)絡(luò)輸出變量可直接用于運(yùn)動(dòng)學(xué)標(biāo)定,有效提升了標(biāo)定效率與精度.
[1] 王攀峰,王 星,郭 璠,等. 絲傳動(dòng)3-SPR并聯(lián)機(jī)構(gòu)運(yùn)動(dòng)學(xué)分析與力反饋控制[J]. 天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版),2022,55(2):184-190.
Wang Panfeng,Wang Xing,Guo Fan,et al. Kinematics analysis and force feedback control of wire-driven 3-SPR mechanism[J]. Journal of Tianjin University(Sci-ence and Technology),2022,55(2):184-190(in Chinese).
[2] Nguyen H N,Le P N,Kang H J. A new calibration method for enhancing robot position accuracy by combining a robot model-based identification approach and an artificial neural network-based error compensation technique[J]. Advances in Mechanical Engineering,2019,11(1):1-11.
[3] Jang J H,Kim S H,Kwak Y K. Calibration of geometric and non-geometric errors of an industrial robot[J]. Robotica:International Journal of Information,Education and Research in Robotics and Artificial Intelligence,2001,19(3):311-321.
[4] Cong D,Yu D,Han J. Kinematic calibration of parallel robots using CMM[C]//2006 6th World Congress on Intelligent Control and Automation. Dalian,China,2006:8514-8518.
[5] Lee S,Qiang Z,Ehmann K F. Error modeling for sensitivity analysis and calibration of the tri-pyramid parallel robot[J]. The International Journal of Advanced Manufacturing Technology,2017,93(5):1319-1332.
[6] Tian W,Yin F,Liu H,et al. Kinematic calibration of a 3-DOF spindle head using a double ball bar[J]. Mechanism & Machine Theory,2016,102:167-178.
[7] Nubiola A,Bonev I A. Absolute calibration of an ABB IRB 1600 robot using a laser tracker[J]. Robotics and Computer-Integrated Manufacturing,2013,29(1):236-245.
[8] 張憲民,曾 磊. 考慮減速機(jī)背隙的3-RRR并聯(lián)機(jī)構(gòu)的運(yùn)動(dòng)學(xué)標(biāo)定[J]. 華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,44(7):47-54.
Zhang Xianmin,Zeng Lei. Kinematic calibration of 3-RRR parallel mechanism considering reducer backlash [J]. Journal of South China University of Technology (Natural Science Edition),2016,44(7):47-54(in Chinese).
[9] Li T,Li F,Jiang Y,et al. Kinematic calibration of a 3-P(Pa)S parallel-type spindle head considering the thermal error[J]. Mechatronics,2017,43:86-98.
[10] Broomhead D S,Lowe D. Multivariable functional interpolation and adaptative networks[J]. Complex Systems,1988,2:321-355.
[11] Yang R,Tan K K,Tay A,et al. An RBF neural network approach to geometric error compensation with displacement measurements only[J]. Neural Computing and Applications,2017,28(6):1235-1248.
[12] Chen D,Wang T,Yuan P,et al. A positional error compensation method for industrial robots combining error similarity and radial basis function neural network[J]. Measurement Science and Technology,2019,30(12):125010.
[13] Yu D. A new pose accuracy compensation method for parallel manipulators based on hybrid artificial neural network[J]. Neural Computing and Applications,2021,33(3):909-923.
[14] Schwenker F,Kestler H A,Palm G. Three learning phases for radial-basis-function networks[J]. Neural Networks,2001,14(4/5):439-458.
[15] Wang W,Xu Z,Lu W,et al. Determination of the spread parameter in the Gaussian kernel for classification and regression[J]. Neurocomputing,2003,55(3/4):643-663.
[16] Niros A D,Tsekouras G E. A novel training algorithm for RBF neural network using a hybrid fuzzy clustering approach[J]. Fuzzy Sets and Systems,2012,193:62-84.
[17] Ren Z,Li R,Chen B,et al. EEG-based driving fatigue detection using a two-level learning hierarchy radial basis function[J]. Frontiers in Neurorobotics,2021,15:618408.
[18] Schwenker F,Kestler H A,Palm G. Three learning phases for radial-basis-function networks[J]. Neural Networks,2001,14(4/5):439-458.
[19] Niros A D,Tsekouras G E. A novel training algorithm for RBF neural network using a hybrid fuzzy clustering approach[J]. Fuzzy Sets and Systems,2012,193:62-84.
[20] Kennedy J,Eberhart R. Particle swarm optimization[C]// Proceedings of International Conference on Neural Networks. Perth,Australia,1995:1942-1948.
[21] 孫立軍,劉 悅,童杰林,等. 基于科氏流量計(jì)和PSO-SVM的氣液兩相流測(cè)相研究[J]. 天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版),2022,55(10):1034-1044.
Sun Lijun,Liu Yue,Tong Jielin,et al. Gas-liquid two-phase flow measurement based on coriolis flowmeters and PSO-SVM[J]. Journal of Tianjin University(Science and Technology),2022,55(10):1034-1044(in Chinese).
[22] Mohanta J K,Mohan S,Huesing M,et al. Error modelling and sensitivity analysis of a planar 3-PRP parallel manipulator[C]//Computational Kinematics. Poitiers,F(xiàn)rance,2018:315-322.
[23] Park J,Sandberg I W. Universal approximation using radial-basis-function networks[J]. Neural Computation,1991,3(2):246-257.
[24] Huang T,Zhao D,Yin F,et al. Kinematic calibration of a 6-DOF hybrid robot by considering multicollinearity in the identification Jacobian[J]. Mechanism and Machine Theory,2019,131:371-384.
[25] Chen S,Chng E S,Alkadhimi K. Orthogonal least squares learning algorithm for radial basis function networks[J]. IEEE Transactions on Neural Networks,1991,64(5):829-837.
[26] Song Y,Wang P,Yang B. An improved RBF neural network with the adaptive spread coefficient[C]// Proceedings 7th International Conference on Signal Processing. Beijing,China,2004:1526-1529.
Kinematics Calibration of 3-US/S Stabilized Platform Based on RBF Neural Network
Tian Wenjie1,Zhao Kun1,Zhang Xilin2,Wang Lina2,Zhang Xiangpeng1
(1. School of Marine Science and Technology,Tianjin University,Tianjin 300072,China;2. School of Mechanical Engineering,Tianjin University,Tianjin 300350,China)
The three-degree-of-freedom parallel configuration stability platform is used as a ship stability platform to compensate for ship disturbances. Attitude accuracy is one of the important performance indexes in parallel configuration attitude stabilization platforms. Due to the strong coupling and nonlinear between geometric and non-geometric error sources in the mechanism,it is difficult to establish an error model containing all error sources for kinematics calibration. To solve this problem,this paper proposed a joint space error compensation method based on the equivalent error model and RBF neural network. First,according to the pseudo-error theory,we considered the attitude error of the mechanism moving platform caused by geometric and non-geometric errors as the equivalent error only caused by the length error of the driving joint. Then,the RBF neural network was used to establish a nonlinear mapping model between the nominal driving joint variables and the pseudo-errors of the driving joint length. Furthermore,we designed a two-level hierarchical network training method to improve the generalization performance of the network and the prediction accuracy of the attitude error of the moving platform. The lower layer constructed the network linear structure,and the upper layer used the particle swarm optimization(PSO)algorithm to globally optimize the network expansion constant and regularization parameters. Finally,PSO-RBF was used to conduct the simulation of joint space equivalent error prediction and the experimental study of operating space error compensation on the 3-US/S parallel attitude stabilization platform. The results show that the proposed method has high flexibility and applicability and can accurately describe the mapping relationship between nominal driving variables and driving joint length pseudoerrors. Moreover,the network output variables can be directly used for kinematics calibration. The bar length accuracy in the joint space is increased by 93.6%,and the posture accuracy in the operating space is increased by 92.3%,which effectively improves the calibration efficiency and accuracy and verifies the correctness and effectiveness of the proposed method.
attitude stabilized platform;kinematics calibration;pseudo-error model;RBF neural network;PSO algorithm
10.11784/tdxbz202206006
TP242
A
0493-2137(2023)09-0985-13
2022-06-05;
2022-09-10.
田文杰(1986— ),男,博士,副教授.Email:m_bigm@tju.edu.cn
田文杰,wenjietian@tju.edu.cn.
天津市企業(yè)科技特派員項(xiàng)目(20YDTPJC01010);國(guó)家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2022YFC3006000).
the Enterprise Science and Technology Specialists Project of Tianjin,China(No. 20YDTPJC01010),the National Key Research and Development Program of China(No. 2022YFC3006000).
(責(zé)任編輯:王曉燕)
天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版)2023年9期