蔣建蘭,陳 玉,單瀟瀟,孫 露,喬建軍,張桂山
特基拉芽孢桿菌WRN032對(duì)稻瘟病菌的生物防治潛力
蔣建蘭1, 2,陳 玉1, 2,單瀟瀟1, 2,孫 露1, 2,喬建軍1, 2,張桂山3, 4
(1. 天津大學(xué)系統(tǒng)生物工程教育部重點(diǎn)實(shí)驗(yàn)室,天津 300072;2. 天津大學(xué)化工學(xué)院,天津 300072;3. 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,北京 100081;4. 農(nóng)業(yè)部農(nóng)業(yè)微生物資源收集與保藏重點(diǎn)實(shí)驗(yàn)室,北京 100081)
植物病原真菌是農(nóng)作物病害的主要致病菌,導(dǎo)致作物減產(chǎn),嚴(yán)重阻礙農(nóng)業(yè)發(fā)展.病原真菌種類繁多,作用機(jī)制復(fù)雜,防治難度大,傳統(tǒng)化學(xué)防治手段無(wú)法滿足當(dāng)今發(fā)展需求,而生物防治是一種安全、綠色、高效的防控手段.以來(lái)源于土壤和植物根莖的多種細(xì)菌為研究對(duì)象,以菌種的抑菌活性為指標(biāo),采用牛津杯法,篩選出一株具有生物防治潛力的細(xì)菌WRN032,對(duì)黑腐皮殼菌()、禾谷鐮刀菌()和稻瘟病菌()的生長(zhǎng)均具有不同程度的拮抗作用,其中對(duì)稻瘟病菌的抑制作用較強(qiáng).使用石油醚、正丁醇和乙酸乙酯依次對(duì)菌株WRN032的發(fā)酵液進(jìn)行萃取,發(fā)現(xiàn)其乙酸乙酯提取物對(duì)稻瘟病菌有強(qiáng)拮抗作用.結(jié)合生理生化鑒定及16S rDNA序列分析對(duì)其菌種進(jìn)行鑒定,結(jié)果表明該細(xì)菌為特基拉芽孢桿菌().對(duì)特基拉芽孢桿菌WRN032代謝產(chǎn)物中的活性物質(zhì)進(jìn)行穩(wěn)定性試驗(yàn),表明其在高溫、強(qiáng)酸性、中性和弱堿性條件下均具有良好的穩(wěn)定性,且對(duì)紫外光不敏感.采用柱層析法和半制備層析法對(duì)特基拉芽孢桿菌WRN032發(fā)酵液中的活性物質(zhì)進(jìn)行分離純化,其純化物對(duì)稻瘟病菌的相對(duì)抑制率與相同濃度的75%三環(huán)唑可濕性粉劑相近.當(dāng)濃度為100.0μg/mL時(shí),相對(duì)抑制率為51.2%,與75%三環(huán)唑可濕性粉劑(56.4%)基本相同.研究表明,特基拉芽孢桿菌WRN032具有作為農(nóng)業(yè)生物防治劑的潛力.
特基拉芽孢桿菌;WRN032;稻瘟病菌;分離鑒定;抑菌活性;生物防治
由多種致病真菌引起的疾病給全球糧食安全帶來(lái)了嚴(yán)重威脅[1].水稻是全球重要的糧食作物[2],因此人們非常重視水稻的發(fā)展和產(chǎn)量的提高[3].稻瘟病菌()是一種絲狀子囊真菌,是稻瘟病的致病因子,也是水稻長(zhǎng)期減產(chǎn)的主要原因[4].目前,常用的稻瘟病防治劑是化學(xué)農(nóng)藥.然而,化學(xué)農(nóng)藥在控制病原真菌的同時(shí)也會(huì)造成嚴(yán)重的環(huán)境污染[5-6].因此,為了保證稻米品質(zhì),保護(hù)農(nóng)業(yè)生態(tài)環(huán)境,迫切需要尋找綠色無(wú)污染且高效的稻瘟病防治 措施.
微生物是土壤肥力保持和生態(tài)系統(tǒng)循環(huán)的關(guān)鍵物質(zhì)基礎(chǔ)[7].利用自然界中發(fā)現(xiàn)的微生物對(duì)病原體進(jìn)行生物防治是農(nóng)業(yè)保護(hù)的一種有效手段[8-9].芽孢桿菌是一種革蘭氏陽(yáng)性菌,具有豐富的生物資源[10].近年來(lái),它已被引入植物病害生物防治領(lǐng)域[11],在防治植物病害、促進(jìn)植物生長(zhǎng)、提高作物產(chǎn)量等方面具有廣闊的應(yīng)用前景[12].解淀粉芽孢桿菌()G1可以產(chǎn)生表面蛋白作為殺蚜代謝 物[13].枯草芽孢桿菌()RC 218是禾谷鐮刀菌的有效拮抗劑,而禾谷鐮刀菌是赤霉病的主要病原體[14].蘇云金芽孢桿菌()黃粉蟲變種(Xd3)的次生代謝物具有較強(qiáng)的抗衰老活性[15].由短小芽孢桿菌()產(chǎn)生的茉莉酸、ABA和赤霉素可以明顯促進(jìn)植物的生長(zhǎng)[16-17].墨西哥的Gatson等[18]首先發(fā)現(xiàn)了特基拉芽孢桿菌,其形態(tài)和基因組序列與枯草芽孢桿菌相似.目前對(duì)特基拉芽孢桿菌的研究主要集中在菌株的分離和鑒定上,尚處于初步階段.從墨西哥谷地的小麥樣品中分離出一株菌株TE3(T),其16S rRNA序列與芽孢桿菌()相似,DNA雜交結(jié)果表明菌株TE3(T)為特基拉芽孢桿菌[19].隨著人們對(duì)特基拉芽孢桿菌的逐漸了解,發(fā)現(xiàn)該菌株在生物防治方面也具有很大的研究?jī)r(jià)值.特基拉芽孢桿菌可產(chǎn)生抑菌物質(zhì),如脂肽和生物表面活性劑[20],以抑制曲霉菌()[21]、土黃色葡萄球菌()和桃褐腐病菌()[22]的生長(zhǎng).然而,關(guān)于特基拉芽孢桿菌作為真菌病原體生物防治劑的研究還相對(duì)較少,對(duì)其活性代謝物也沒(méi)有深入的研究.
本文通過(guò)篩選試驗(yàn),研究了11種細(xì)菌的發(fā)酵提取物對(duì)11種常見(jiàn)作物病原菌的抑菌效果,獲得了具有拮抗作用的活性菌株及其抑菌譜.其中,特基拉芽孢桿菌WRN032對(duì)稻瘟病菌表現(xiàn)出強(qiáng)烈的抑制作用.并設(shè)計(jì)了一系列初步試驗(yàn),以評(píng)估其作為稻瘟病生物防治劑的潛在價(jià)值.
1.1.1 菌 株
11種試驗(yàn)菌株(見(jiàn)表1)來(lái)源于多個(gè)城市的植物根莖及土壤,主要為一些芽孢桿菌和嗜鹽單胞菌,由中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所分離保存;11種靶標(biāo)菌(見(jiàn)表1)為常見(jiàn)的植物病原真菌,由中國(guó)農(nóng)業(yè)微生物菌種保藏管理中心(Agricultural Culture Collection of China,ACCC)進(jìn)行保藏.
1.1.2 儀 器
UV6000 紫外可見(jiàn)分光光度計(jì),上海元析儀器有限公司;ZWY-211B 臥式恒溫?fù)u床,上海智城有限責(zé)任公司;ME204、ME802 電子分析天平,梅特勒-托利多儀器(上海)有限公司;MJB1-B001-Q3滅菌器,無(wú)錫益騰壓力容器有限公司;LRH-70恒溫生化培養(yǎng)箱、DZF-6050 真空干燥箱,上海一恒科學(xué)儀器有限公司;SW-CJ-2FD 潔凈工作臺(tái),蘇州安泰空氣技術(shù)有限公司;N-1100 旋轉(zhuǎn)蒸發(fā)儀,上海愛(ài)朗儀器有限公司;3K15 臺(tái)式冷凍離心機(jī),SIGMA公司;Personal thermal PCR儀,BIO-RAD;DYY-6C電泳儀,北京市六一儀器廠;DYCP-31DN電泳槽,北京市六一儀器廠;Waters e2695-2489高效液相色譜-紫外檢測(cè)系統(tǒng),美國(guó)沃特世有限公司.
表1 供試菌株與靶標(biāo)病原真菌信息
Tab.1 Information of test strains and target pathogenic fungi
試驗(yàn)菌株均在Landy培養(yǎng)基(MgSO4·7H2O 0.500g/L、KH2PO41.000g/L、KCl 0.200g/L、MnSO4·H2O 0.010g/L、FeSO4·7H2O 0.005g/L、CuSO4·5H2O 0.002g/L、酵母提取物 1.000g/L、苯丙氨酸0.020g/L、谷氨酸5.000g/L、(NH4)2SO42.000g/L、檸檬酸鈉 0.010g/L、葡萄糖20g/L)中發(fā)酵培養(yǎng)48h[23],發(fā)酵溫度為37℃,轉(zhuǎn)速為180r/min,初始pH值為6.5;病原真菌在PDA培養(yǎng)基(馬鈴薯淀粉13%,葡萄糖44%,瓊脂43%)上進(jìn)行培養(yǎng),培養(yǎng)溫度為30℃.
1.3.1 發(fā)酵液預(yù)處理
每種試驗(yàn)菌株活化18h后,于Landy培養(yǎng)基中再培養(yǎng)48h得到發(fā)酵液.取不同試驗(yàn)菌株發(fā)酵液各1L,依次用等體積的石油醚、乙酸乙酯和正丁醇對(duì)發(fā)酵液進(jìn)行萃取,每種有機(jī)溶劑均萃取3次,得到相應(yīng)的石油醚萃取液、乙酸乙酯萃取液和正丁醇萃取液.將萃取液分別使用旋轉(zhuǎn)蒸發(fā)儀進(jìn)行減壓濃縮,然后在真空干燥箱中進(jìn)行干燥,最終得到33種干燥提取物.將提取物分別置于棕色瓶中,密封后于4℃遮光保存.
1.3.2 牛津杯法抑菌試驗(yàn)
采用牛津杯法對(duì)33種干燥提取物進(jìn)行抗病原真菌菌株的篩選.分別將5.0mg干浸膏溶解于0.1mL DMSO(二甲基亞砜)中,并用無(wú)菌水稀釋至藥液濃度1.0mg/mL.在PDA培養(yǎng)基上等距離邊緣放置3個(gè)直徑均為6mm的牛津杯,在培養(yǎng)基正中間接種病原真菌.每組試驗(yàn)重復(fù)3次.其中試驗(yàn)組:向牛津杯中滴加100μL 1mg/mL藥液;空白對(duì)照:滴加等體積DMSO溶液(DMSO與無(wú)菌水體積比為1∶49);陰性對(duì)照:滴加等體積無(wú)菌水.將培養(yǎng)基在30℃下培養(yǎng)7~14d,測(cè)量試驗(yàn)菌株對(duì)每種病原真菌的抑菌圈直徑,以篩選具有抗菌活性的拮抗菌株.
1.4.1 生理生化鑒定
參考東秀珠等[24]的方法,對(duì)菌株WRN032進(jìn)行革蘭氏染色試驗(yàn)、明膠液化試驗(yàn)、碳源利用試驗(yàn)、甲基紅試驗(yàn)、V-P試驗(yàn)、淀粉水解試驗(yàn)、過(guò)氧化氫酶試驗(yàn)、吲哚試驗(yàn)、耐鹽性試驗(yàn)共9項(xiàng)生理生化特征分析試驗(yàn).每組試驗(yàn)重復(fù)處理3次,觀察現(xiàn)象.
1.4.2 分子生物學(xué)鑒定
利用商業(yè)試劑盒(TaKaRa MiniBEST Bacteria genomic DNA extraction 68試劑盒3.0版)提取基因組DNA.試驗(yàn)菌株16S rRNA基因組擴(kuò)增的引物為通用引物:27F:5′-AGAGTTTGATCMTGGCTCAG-3′和1492R:5′-TACGGYTACCTTGTTACGACTT-3′.以拮抗菌株WRN032的基因組為模板進(jìn)行PCR擴(kuò)增,擴(kuò)增產(chǎn)物經(jīng)回收后送至北京擎科生物科技有限公司(中國(guó)北京)進(jìn)行測(cè)序.將序列結(jié)果在NCBI網(wǎng)站(https://www.ncbi.nlm.nih.gov/)上進(jìn)行BLAST比對(duì),篩選近源物種的序列,并利用MEGA 6.0軟件繪制系統(tǒng)發(fā)育樹,根據(jù)親緣關(guān)系確定菌株WRN032的種屬.
1.5.1 酸堿穩(wěn)定性
將發(fā)酵提取物溶解于二甲基亞砜中,制備濃度為50.0mg/mL,pH值分別為1、3、5、7、9、11、13的7種樣品溶液,4℃保持24h后,將每種樣品溶液0.5mL與PDA培養(yǎng)基(1∶49,體積比)混合,以制備終濃度為1.0mg/mL的混合物藥液.將混合物倒入一次性培養(yǎng)皿中,并在培養(yǎng)皿中心接種稻瘟病菌.以不含提取物的DMSO溶液作為對(duì)照,每組試驗(yàn)重復(fù)3次.30℃恒溫培養(yǎng)7d后,測(cè)量稻瘟病菌菌落直徑,按照式(1)計(jì)算相對(duì)抑制率.
式中:1為對(duì)照組菌落直徑;2為試驗(yàn)組菌落直徑.
1.5.2 熱穩(wěn)定性
制備終濃度為1.0mg/mL的混合物藥液,分別在25℃、40℃、60℃、80℃、100℃和121℃下處理30min.冷卻至室溫后進(jìn)行熱穩(wěn)定性試驗(yàn)并計(jì)算相對(duì)抑制率.具體試驗(yàn)步驟與第1.5.1節(jié)相同.
1.5.3 紫外線穩(wěn)定性
制備終濃度為1.0mg/mL的混合物藥液,分別在紫外光(24W)照射下處理1h、2h、3h、4h、5h、6h、7h、8h、9h、10h后,進(jìn)行紫外線穩(wěn)定性試驗(yàn)并計(jì)算相對(duì)抑制率.具體試驗(yàn)步驟與第1.5.1節(jié)相同.
采用活性追蹤法從發(fā)酵液中分離活性物質(zhì).用乙酸乙酯提取菌株WRN032的無(wú)菌培養(yǎng)濾液,得到粗提物.粗提物通過(guò)硅膠(zcx-Ⅱ)柱層析分離,并分別使用比例為99∶1、99∶5、99∶10、99∶99、0∶99(體積比)的CH2Cl2/MeOH進(jìn)行梯度洗脫,得到5個(gè)組分(Fr.1~Fr.5).測(cè)量并比較5種組分對(duì)稻瘟病菌的抑菌活性.活性最高的Fr.5部分通過(guò)半制備液相色譜分離,流動(dòng)相為CH3CN/H2O(3∶7,體積比),收集分離出的化合物1、2和3.采用牛津杯法篩選3種化合物中對(duì)稻瘟病菌抑制作用最強(qiáng)的組分,以供進(jìn)一步研究.
三環(huán)唑是農(nóng)業(yè)上常用的抑制稻瘟病菌生長(zhǎng)的抗真菌藥物.因此選擇75%三環(huán)唑可濕性粉劑為陽(yáng)性對(duì)照,對(duì)純化后的活性物質(zhì)進(jìn)行抑菌效果的評(píng)估.將抑菌效果最強(qiáng)的化合物2以DMSO溶解后與PDA培養(yǎng)基混合,制備藥液終濃度分別為100.0μg/mL、50.0μg/mL、25.0μg/mL、12.5μg/mL、6.25μg/mL和3.125μg/mL的混合物培養(yǎng)基.將混合物培養(yǎng)基倒入培養(yǎng)皿中,并在培養(yǎng)皿中心接種稻瘟病菌.以75%三環(huán)唑可濕性粉劑為對(duì)照組,其處理方法與化合物2相同.每組試驗(yàn)重復(fù)3次.30℃恒溫培養(yǎng)7d后,測(cè)量稻瘟病菌菌落直徑,計(jì)算相對(duì)抑制率.
經(jīng)過(guò)363組篩選試驗(yàn),篩選出5種具有抑菌活性的發(fā)酵液提取物.活性發(fā)酵液提取物的抑菌圈直徑如表2所示.與孫露等[25]合作試驗(yàn)得到,樣品藥液濃度均為1.0mg/mL時(shí),菌株WRN032發(fā)酵液的乙酸乙酯萃取物對(duì)黑腐皮殼菌、禾谷鐮刀菌和稻瘟病菌的抑菌圈直徑分別為9.82mm、10.40mm和22.31mm,表明菌株WRN032的發(fā)酵產(chǎn)物對(duì)稻瘟病菌具有較強(qiáng)的拮抗作用.稻瘟病是水稻四大病害之一,對(duì)水稻產(chǎn)量影響很大.稻瘟病菌是稻瘟病的主要病原菌.因此,可以進(jìn)一步對(duì)菌株WRN032發(fā)酵產(chǎn)物進(jìn)行研究,以評(píng)估其作為稻瘟病生物防治劑的潛力.
表2 活性菌株發(fā)酵液萃取物的抑菌圈直徑
Tab.2 Inhibitory zone diameter of the fermentation broth extract of the active strain
注:表中數(shù)據(jù)為3次平行試驗(yàn)抑菌圈直徑的平均值,括號(hào)內(nèi)數(shù)據(jù)為對(duì)應(yīng)的3個(gè)誤差值;“—”表示牛津杯周圍無(wú)抑菌圈.
2.2.1 生理生化特性
將菌株WRN032染色后進(jìn)行鏡檢,細(xì)胞呈現(xiàn)紫色,表明該菌株為革蘭氏陽(yáng)性菌.菌株WRN032的生理生化試驗(yàn)結(jié)果見(jiàn)表3,顯示其能使淀粉水解及明膠液化,同時(shí)具有一定程度的耐鹽性.
2.2.2 分子生物學(xué)鑒定結(jié)果
菌株WRN032是從香菇廢蘑菇堆肥中分離得到的.根據(jù)NCBI上BLAST的16S rDNA比較,菌株WRN032與特基拉芽孢桿菌Y16的相似性約為99.93%.菌株WRN032的系統(tǒng)發(fā)育樹如圖1所示.根據(jù)16S rDNA測(cè)序和系統(tǒng)發(fā)育分析,菌株WRN032被鑒定為特基拉芽孢桿菌.
表3 菌株WRN032生理生化試驗(yàn)結(jié)果
Tab.3 Physiological and biochemical test results for strain WRN032
注:“+”表示陽(yáng)性;“-”表示陰性.
pH值在1~7范圍內(nèi),特基拉芽孢桿菌WRN032代謝物對(duì)稻瘟病菌的抑制效果隨pH值增加而增加;但隨著堿濃度的增加,抑菌效果明顯降低(圖2(a)).代謝產(chǎn)物的抑菌活性在25~100℃的溫度下保持穩(wěn)定,100℃下處理30min,抑菌率仍能達(dá)到41.7%.但當(dāng)溫度為121℃時(shí),抑菌率顯著降低(圖2(b)).代謝產(chǎn)物在紫外線處理0~10h內(nèi)都有顯著抑菌作用,處理10h時(shí)抑菌率仍能達(dá)到50%左右(圖2(c)).
圖1 菌株WRN032的系統(tǒng)發(fā)育樹
圖2 pH、溫度和紫外線處理對(duì)特基拉芽孢桿菌WRN032發(fā)酵液提取物抗真菌活性的影響
發(fā)酵液成分復(fù)雜,需要對(duì)其進(jìn)行分離純化,以獲得更好的應(yīng)用所需的活性物質(zhì).通過(guò)柱層析洗脫,得到5個(gè)組分.餾分5用100%甲醇洗脫,具有很強(qiáng)的抑制作用,并被選擇用于進(jìn)一步純化.如圖3所示,通過(guò)半制備液相色譜法從餾分5中收集了3種物質(zhì).化合物1、化合物2和化合物3的保留時(shí)間分別為18.8~21.5min、23.2~25.7min、28.8~32.3min.3種化合物抗真菌效果的比較如圖4所示.化合物2表現(xiàn)出較強(qiáng)的活性,保留時(shí)間為23.2~25.7min.因此,選擇化合物2作為最有效的物質(zhì),以進(jìn)一步評(píng)估其對(duì)稻瘟病菌的抗真菌活性.
圖3 餾分5的半制備色譜圖
圖4 通過(guò)半制備色譜分離的3種化合物對(duì)稻瘟病菌的抑菌作用
純化后的活性物質(zhì)對(duì)稻瘟病菌的生長(zhǎng)有明顯的抑制作用.由圖5可知,隨著濃度的增加,活性物質(zhì)的抑菌效果不斷增強(qiáng).在相同濃度下,化合物2和75%三環(huán)唑可濕性粉劑對(duì)于稻瘟病菌具有相似的抑菌活性.當(dāng)濃度為100.0μg/mL時(shí),化合物2的抑菌率為51.2%,與75%三環(huán)唑可濕性粉劑(56.4%)基本相同.由此可知,純化后的物質(zhì)對(duì)稻瘟病菌有較強(qiáng)的拮抗作用.因此,特基拉芽孢桿菌WRN032對(duì)稻瘟病菌有著較高的生防潛力.
圖5 純化后的活性物質(zhì)和75%三環(huán)唑可濕性粉劑在不同濃度下的相對(duì)抑制率
農(nóng)作物尤其是水稻,是與人類生存緊密相關(guān)的植物.稻瘟病菌、灰霉病菌等植物病原真菌給農(nóng)業(yè)經(jīng)濟(jì)帶來(lái)嚴(yán)重?fù)p失.因此,開發(fā)生物防治方法來(lái)控制病原真菌是一種有效手段.
本研究通過(guò)大量篩選試驗(yàn),獲得了一種具有生物防治潛力的細(xì)菌WRN032及其抗真菌譜,為其生物防治研究提供了理論依據(jù).菌株WRN032對(duì)黑腐皮殼菌、禾谷鐮刀菌和稻瘟病菌的生長(zhǎng)均具有不同程度的拮抗作用,其中對(duì)稻瘟病菌的抑制作用較強(qiáng).通過(guò)生理生化試驗(yàn)及16S rDNA序列分析,該菌株被鑒定為特基拉芽孢桿菌.穩(wěn)定性試驗(yàn)結(jié)果表明,菌株WRN032的代謝產(chǎn)物在高溫、強(qiáng)酸、中性、弱堿及紫外光照射條件下均能保持較高的活性,意味著其應(yīng)用范圍廣,不易因環(huán)境影響而失去活性,可以為開發(fā)高效穩(wěn)定的稻瘟病生物防治劑提供了研究基礎(chǔ).通過(guò)一系列分離操作,從菌株WRN032的發(fā)酵液中獲得了高活性的純物質(zhì),其對(duì)稻瘟病菌的抑制效果與相同濃度的75%三環(huán)唑可濕性粉劑相似.當(dāng)濃度為100.0μg/mL時(shí),該純化產(chǎn)物對(duì)稻瘟病菌的相對(duì)抑制率為51.2%,與同濃度的75%三環(huán)唑可濕性粉劑(56.4%)基本相同.綜上所述,特基拉芽孢桿菌WRN032對(duì)稻瘟病菌有較強(qiáng)的抑制作用,有望成為稻瘟病菌的生物防治劑.
[1] Li Guotian,Zhou Xiaoying,Xu Jinrong,et al. Genetic control of infection-related development in[J]. Current Opinion in Microbiology,2012,15(6):678-684.
[2] Zhang Qifa. Strategies for developing green super rice[J]. Proceedings of the National Academy of Science,2007,104(42):16402-16409.
[3] Miah G,Rafii M Y,Ismail M R,et al. Blast resistance in rice:A review of conventional breeding to molecular approaches[J]. Molecular Biology Reports,2013,40(3):2369-2388.
[4] Jiang Changjie,Shimono M,Sugano S,et al. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice—interaction[J]. Molecular Plant-Microbe Interactions,2010,23(6):791-798.
[5] Faria A T,Souza M F,Passos A B R D,et al. Tebuthiuron leaching in three Brazilian soils as affected by soil pH[J]. Environmental Earth Sciences,2018,77(5):1-12.
[6] Marín-Benito J M,Sánchez-Martín M J,Ordax J M,et al. Organic sorbents as barriers to decrease the mobility of herbicides in soils[J]. Modelling of the Leaching Process,2018,313:205-216.
[7] 趙德天,翟恩昱,趙嘯宇,等. 設(shè)施農(nóng)業(yè)中微生物農(nóng)藥施用情況及發(fā)展前景[J]. 生物資源,2019,41(3):195-203.
Zhao Detian,Zhai Enyu,Zhao Xiaoyu,et al. Application and development prospect of microbial pesticides in facility agriculture[J]. Biological Resources,2019,41(3):195-203(in Chinese).
[8] Nagayama K,Watanabe S,Kumakura K,et al. Development and commercialization ofSKT-1(Ecohope?),a microbial pesticide[J]. Journal of Pesticide Science,2007,32(2):141-142.
[9] Xia Yanfei,Li Shen,Liu Xueting,et al.strain LYSX1-induced systemic resistance against the root-knot nematodein tomato[J]. Annals of Microbiology,2019,69(12):1227-1233.
[10] Toymentseva A A,Pudova D S,Sharipova M R. Identification of secondary metabolite gene clusters in the genome ofstrains 7P and 3-19[J]. Bionanoscience,2019,9(2):313-316.
[11] Azizoglu U.as a biofertilizer and biostimulator:A mini-review of the little-known plant growth-promoting properties of Bt[J]. Current Microbiology,2019,76(11):1379-1385.
[12] Ren Jahong,Li Hao,Wang Yanfang,et al. Biocontrol potential of an endophyticJK-SX001 against poplar canker[J]. Biological Control,2013,67(3):421-430.
[13] Yun D C,Yang S Y,Kim Y C,et al. Identification of surfactin as an aphicidal metabolite produced byG1[J]. Journal of the Korean Society for Applied Biological Chemistry,2013,56(6):751-753.
[14] Palazzini J M,Dunlap C A,Bowman M J,et al.RC218 as a biocontrol agent to reducehead blight and deoxynivalenol accumulation:Genome sequencing and secondary metabolite cluster profiles[J]. Microbiological Research,2016,192:30-36.
[15] Eski A,Demir I,Sezen K,et al. A new biopesticide from a localvar.(Xd3) against alder leaf beetle(Coleoptera:Chrysomeli-dae)[J]. World Journal of Microbiology & Biotechnology,2017,33:95-1-95-9.
[16] Joo G J,Kim Y M,Kim J T,et al. Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers[J]. Journal of Microbiology,2005,43(6):510-515.
[17] Forchetti G,Masciarelli O,Alemano S,et al. Endophytic bacteria in sunflower (L. ):Isolation,characterization,and production of jasmonates and abscisic acid in culture medium[J]. Applied Microbiology and Biotechnology,2007,76(5):1145-1152.
[18] Gatson J W,Benz B F,Chandrasekaran C.sp. nov. ,isolated from a 2000-year-old Mexican shafttomb,is closely related to[J]. International Journal of Systematic and Evolutionary Microbiology,2006,56(7):1475-1484.
[19] Villalobos S D,Robles R I,Cota F I P,et al.sp. nov.,an endophytic plant growth promoting bacterium isolated from wheat(subsp.)in the Yaqui Valley,Mexico[J]. International Journal of Systematic and Evolutionary Microbiology,2019,69(12):3939-3945.
[20] Pradhan A K,Pradhan N,Mall G,et al. Application of lipopeptide biosurfactant isolated from a halophile:CH for inhibition of biofilm[J]. Applied Biochemistry and Biotechnology,2013,171(6):1362-1375.
[21] Wang Kai,Yan Peisheng,Ding Qinglong,et al. Diversity of cuhurable root-associated endophytie bacteria and their chitinolytic and aflatoxin inhibition activity of peanut plant in China[J]. World Journal of Microbiology and Biotechnology,2013,29(1):1-10.
[22] 袁 雪,侯 旭,胡 曉,等. 桃褐腐病拮抗細(xì)菌的篩選、鑒定及生防作用[J]. 北京農(nóng)學(xué)院學(xué)報(bào),2018,33(4):7-13.
Yuan Xue,Hou Xu,Hu Xiao,et al. Screening and identification of antagonistic bacteria and its control effect against the peach brown rot[J]. Journal of Beijing University of Agriculture,2018,33(4):7-13(in Chinese).
[23] Landy M,Warren G H,Rosenman S B,et al. Bacillomyci:An antibiotic fromactive against pathogenic fungi[J]. Proceedings of the Society for Experimental Biology and Medicine,1948,67(4):539-541.
[24] 東秀珠,蔡妙英. 常見(jiàn)細(xì)菌系統(tǒng)鑒定手冊(cè)[M]. 北京:科學(xué)出版社,2001.
Dong Xiuzhu,Cai Miaoying. Manual of Systematic Methods of Determinative Bacteria[M]. Beijing:Science Press,2001(in Chinese).
[25] 孫 露,單瀟瀟,蔣建蘭,等. 一株對(duì)稻瘟病菌有抗菌活性的特基拉芽孢桿菌 WRN032的篩選及發(fā)酵條件優(yōu)化[J]. 天然產(chǎn)物研究與開發(fā),2020,32(5):860-866,881.
Sun Lu,Shan Xiaoxiao,Jiang Jianlan,et al. Screening ofWRN032 withand its optimization of fermentation conditions[J]. Natural Product Research and Development,2020,32(5):860-866,881(in Chinese).
Biological Control Potential ofWRN032 Against
Jiang Jianlan1, 2,Chen Yu1, 2,Shan Xiaoxiao1, 2,Sun Lu1, 2,Qiao Jianjun1, 2,Zhang Guishan3, 4
(1. Key Laboratory of Systems Bioengineering(Ministry of Education),Tianjin University,Tianjin 300072,China;2. School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China;3. Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences,Beijing 100081,China;4. Key Laboratory of Microbial Resources Collection and Preservation,Ministry of Agriculture,Beijing 100081,China)
Plant pathogenic fungi are the main pathogens of crops that reduce crop yield and hinder agricultural development. Many kinds of pathogenic fungi have been identified with complex mechanisms of action leading to prevention and control difficulties. Traditional chemical control methods do not meet the needs of agriculture today,but biological control is a safe,green,and efficient means of prevention and control. We selected a variety of bacteria from soil and plant rhizomes as research objects and used the antibacterial activity of the bacteria as an index. The bacterial strain WRN032 with biological control potential was screened using the Oxford cup method. WRN032 has antagonistic effects on the growth of,,and,among which the inhibitory effect onwas strong. The fermentation broth of strain WRN032 was extracted with petroleum ether,n-butanol,and ethyl acetate,in turn. The ethyl acetate extract of strain WRN032 had strong activity against. The strain was identified using physiological and biochemical methods and 16S rDNA sequence analysis. The results showed that the bacterium was. A stability test of the active substance in the metabolites ofWRN032 revealed good stability under high temperature,strong acid,neutral,and weak alkali conditions and was not sensitive to ultraviolet light. The active substance in theWRN032 fermentation broth was isolated and purified by column chromatography and semi-preparative chromatography. The relative inhibition rate of the purified products against rice blast was similar to that of 75% tricyclazole wettable powder at the same concentration. When the concentration was 100.0μg/mL,the relative inhibition rate was 51.2%,which was similar to the 75% for tricyclazole wettable powder(56.4%). This study shows thatWRN032 has potential as an agricultural biological control agent.
;WRN032;;isolation and identification;antibacterial activity;biological control
10.11784/tdxbz202205014
Q939.9
A
0493-2137(2023)09-0935-07
2022-05-10;
2022-09-19.
蔣建蘭(1972— ),女,博士,研究員,jljiang@tju.edu.cn.Email:m_bigm@tju.edu.cn
張桂山,zhangguishan@caas.cn.
國(guó)家自然科學(xué)基金資助項(xiàng)目(31670113);國(guó)家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2017YFD0201401).
the National Natural Science Foundation of China(No. 31670113),the National Key Research and Development Program of China(No. 2017YFD0201401).
(責(zé)任編輯:田 軍)
天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版)2023年9期