• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      一種求解非線性方程組的修正Levenberg-Marquardt算法

      2023-06-23 17:28:50韓揚(yáng)芮紹平
      關(guān)鍵詞:方程組

      韓揚(yáng) 芮紹平

      摘要:通過(guò)修改Levenberg-Marquardt (LM)參數(shù),結(jié)合信賴域方法給出一種新的求解方程組的LM算法。在局部誤差界條件下,證明了該算法具有局部快速收斂性。數(shù)值實(shí)驗(yàn)結(jié)果表明,此算法穩(wěn)定、有效。

      關(guān)鍵詞:Levenberg-Marquardt算法;方程組;LM參數(shù);局部快速收斂性

      中圖分類(lèi)號(hào):O221.1 文獻(xiàn)標(biāo)志碼:A

      從表1中的數(shù)值實(shí)驗(yàn)結(jié)果可以看出,ALLM算法相對(duì)穩(wěn)定,對(duì)于大部分測(cè)試的實(shí)驗(yàn)結(jié)果,ALLM算法的計(jì)算時(shí)間小于AELM算法的計(jì)算時(shí)間,并且當(dāng)選取的初始點(diǎn)遠(yuǎn)離解集時(shí),算例3在參數(shù)θ=05及δ=2、算例5在參數(shù)θ=05及δ=15,2和算例9在參數(shù)θ=05及δ=1,15,2時(shí),ALLM算法的計(jì)算量和計(jì)算時(shí)間均小于AELM算法。

      4 結(jié)論

      本文結(jié)合信賴域方法提出了一種求解非線性方程組的修正的LM算法(ALLM算法),在不必假設(shè)雅可比矩陣非奇異的局部誤差界條件下,證明了該算法具有局部快速收斂性。可根據(jù)實(shí)際應(yīng)用的需要,通過(guò)改變?chǔ)群挺闹狄詢?yōu)化λk的選取,數(shù)值實(shí)驗(yàn)結(jié)果表明,ALLM算法穩(wěn)定有效。然而雅可比矩陣的計(jì)算量和收斂速度還需繼續(xù)改善,如何節(jié)約雅可比矩陣的計(jì)算量和提升收斂速度是今后有待解決的問(wèn)題。

      參考文獻(xiàn)

      [1]LEONOV E A,POLBIN A V. Numerical search for a global solution in a two-mode economy model with an exhaustible resource of hydrocarbons[J]. Mathematical Models an Computer Simulations,2022,14(2): 213-223.

      [2]NOROUZI N,F(xiàn)ANI M,TALEBI S. Green tax as a path to greener economy: A game theory approach on energy and final goods in Iran[J]. Renewable and Sustainable Energy Reviews,2022,156:111968.

      [3]VU D T S,BEN GHARBIA I,HADDOU M,et al. A new approach for solving nonlinear algebraic systems with complementarity conditions. Application to compositional multiphase equilibrium problems[J]. Mathematics and Computers in Simulation,2021,190:1243-1274.

      [4]LUO X L,XIAO H,L J H. Continuation Newton methods with the residual trust-region time-stepping scheme for nonlinear equations[J]. Numerical Algorithms,2022,89(1):223-247.

      [5]WAZIRI M Y,AHMED K. Two descent Dai-Yuan conjugate gradient methods for systems of monotone nonlinear equations[J]. Journal of Scientific Computing,2022,90(1):36.

      [6]PES F,RODRIGUEZ G. A doubly relaxed minimal-norm Gauss-Newton method for underdetermined nonlinear least-squares problems[J]. Applied Numerical Mathematics,2022,171:233-248.

      [7]LEVENBERG K. A method for the solution of certain non-linear problems in least squares[J]. Quarterly of Applied Mathematics,1944,2(2):164-168.

      [8]MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J] Journal of the Society for Industrial and Applied Mathematics,1963,11(2):431-441.

      [9]YAMASHITA N,F(xiàn)UKUSHIMA M. On the rate of convergence of the Levenberg-Marquardt method[J]. Computing,2001,15:239-249.

      [10] FAN J Y,YUAN Y X. On the convergence of a new Levenberg-Marquardt method\[DB/OL\]. \[2022-09-09\]. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=dc7c189e9fdec273b26f3abcc292ee81d237c301.

      [11] FISCHER A. Local behavior of an iterative framework for generalized equations with nonisolated solutions[J]. Mathematical Programming,2002,94(1):91-124.

      [12] MA C F,JIANG L H. Some research on Levenberg-Marquardt method for the nonlinear equations[J]. Applied Mathematics and Computation,2007,184(2):1032-1040.

      [13] FAN J Y. A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations[J]. Journal of Computational Mathematics,2003,21(5):625-636.

      [14] AMINI K,ROSTAMI F,CARISYI G. An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations[J]. Optimization,2018,67(5): 637-650.

      [15] AHOOKHOSH M,AMINI K. A nonmonotone trust region method with adaptive radius for unconstrained optimization problems[J]. Computers & Mathematics with Applications,2010,60(3): 411-422.

      [16] AHOOKHOSH M,AMINI K. An efficient nonmonotone trust-region method for unconstrained optimization[J]. Numerical Algorithms,2012,59(4):523-540.

      [17] WANG P,ZHU D T. A derivative-free affine scaling trust region methods based on probabilistic models with new nonmonotone line search technique for linear inequality constrained minimization without strict complementarity[J]. International Journal of Computer Mathematics,2019,96(4):663-691.

      [18] STEWART G W,SUN J G. Matrix perturbation theory[M]. Boston:Academic Press,1990.

      [19] MORE J J,GARBOW B S,HILLSTROM K E. Testing unconstrained optimization software[J]. ACM Transactions on Mathematical Software (TOMS),1981,7(1):17-41.

      [20] SCHNABEL R B,F(xiàn)RANK P D. Tensor methods for nonlinear equations[J]. SIAM Journal on Numerical Analysis,1984,21(5):815-843.

      Modified Levenberg-Marquardt Algorithm for Solving Systems of Nonlinear Equations

      HAN Yang,RUI Shao-ping

      (School of Mathematical Sciences, Huaibei Normal University, Huaibei 235000, China)

      Abstract: A new modified Levenberg-Marquardt (LM) algorithm for solving systems of equations was presented by modifying Levenberg-Marquardt (LM) parameters and combining trust region method. Under the local error bound condition, it was proved that the algorithm has local fast convergence. Numerical results show that this algorithm is stable and effective.

      Keywords: Levenberg-Marquardt algorithm; systems of equations; LM parameter; local fast convergence

      收稿日期:2022-09-24

      基金項(xiàng)目:安徽省高等學(xué)校自然科學(xué)研究項(xiàng)目(批準(zhǔn)號(hào):KJ2020A0024)資助;淮北師范大學(xué)實(shí)驗(yàn)室開(kāi)放項(xiàng)目(批準(zhǔn)號(hào):2022sykf016)資助。

      通信作者:芮紹平,男,博士,教授,主要研究方向?yàn)樽顑?yōu)化理論與算法。E-mail:rsp9999@163.com

      猜你喜歡
      方程組
      攻克“二元一次方程組”易錯(cuò)點(diǎn)
      “二元一次方程組”基礎(chǔ)鞏固
      深入學(xué)習(xí)“二元一次方程組”
      《二元一次方程組》鞏固練習(xí)
      “二元一次方程組”學(xué)習(xí)指導(dǎo)
      《二元一次方程組》鞏固練習(xí)
      一類(lèi)次臨界Bose-Einstein凝聚型方程組的漸近收斂行為和相位分離
      構(gòu)造方程組巧解拼圖題
      巧用方程組 妙解拼圖題
      “挖”出來(lái)的二元一次方程組
      西安市| 潞城市| 若羌县| 宜兰县| 万载县| 长沙县| 云安县| 合水县| 河东区| 左权县| 彰武县| 杭锦旗| 扬州市| 温州市| 鞍山市| 兴城市| 清水河县| 木兰县| 唐山市| 石泉县| 天峻县| 日喀则市| 旺苍县| 荣成市| 虎林市| 府谷县| 仁化县| 嵊泗县| 嘉义市| 玉环县| 凯里市| 丽水市| 锦屏县| 青田县| 资中县| 盘锦市| 光泽县| 崇左市| 石林| 余江县| 宜宾县|