• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      小直徑雙圈圖的永久和

      2023-06-23 17:28:50蔚勇吳廷增
      關鍵詞:直徑

      蔚勇 吳廷增

      摘要:研究了小直徑雙圈圖永久和的性質,確定了直徑為2的雙圈圖永久和的界。特別地,確定了直徑為3的雙圈圖的永久和上界,并刻畫了其極圖。

      關鍵詞:積和式;積和多項式;永久和;直徑;雙圈圖

      中圖分類號:O157.5 文獻標志碼:A

      3 結論

      本文刻畫了直徑為2與3的雙圈圖的永久和的界,為小直徑圖永久和及其它拓撲指標的研究提供了一定的思路。

      參考文獻

      [1]BONDY J A,MURTY U S R. Graph theory with applications[M]. New York: North-Holland,1976.

      [2]VLIANT L G. The complexity of computing the permanent[J]. Theoretical Computer Science,1979, 8:189-201.

      [3]CASH G G. The permanental polynomial[J]. Journal of Chemical Information and Computer Sciences,2000,40:1203-1206.

      [4]CASH G G. Permanental polynomials of smaller fullerenes[J]. Journal of Chemical Information and Computer Sciences,2000,40:1207-1209.

      [5]LIANG H,TONG H. BAI F S. Computing the permanental polynomial of C60 in parallel[J]. Match-Communications in Mathematical and in Computer Chemistry,2008,60:349-358.

      [6]KASUM D,TRINAJSTI N,GUTMAN I. Chemical graph theory. III. On permanental polynomial[J]. Croatica Chemica acta, 1981, 54: 321-328.

      [7]SHI Y T, DEHMER M,LI X L,et al. Graph polynomials[M]. Florida: Crc Press,2016.

      [8]YAN W G, ZHANG F J. On the permanental polynomial of some graphs[J]. Journal of Mathematical Chemistry,2004,35:175-188.

      [9]ZHANG H P,LI W. Computing the permanental polynomials of bipartite graphs by Pfaffian orientation[J]. Discrete Applied Mathematics,2012,160: 2069-2074.

      [10] MERRIS R,REBMAN K R,WATKINS W. Permanental polynomials of graphs[J]. Linear Algebra and its Applications,1981,38: 273-288.

      [11] WU T Z, SO W. Unicyclic graphs with second largest and second smallest permantal sums[J]. Applied Mathematics and Computation, 2019, 351:168-175.

      [12] 仝輝.稀疏矩陣積和式與積和多項式的并行算法[D].北京:清華大學,2006.

      [13] XIE S Y, GAO F, LU X, et al. Capturing the labile fullerene[50] as C50Cl10[J]. Science, 2004, 304: 699.

      [14] WU T Z, LAI H J. On the permanental sum of graphs[J]. Applied Mathematics and Computation, 2018, 331: 334-340.

      [15] LI W,QIN Z M,ZHANG H P. Extremal hexagonal chains with respect to the coefficients sum of the perman-ental polynomial[J]. Applied Mathematics and Computation,2016,291:30-38.

      [16] SO W, WU T Z, L H Z. Sharp bounds on the permanental sum of a graph[J]. Graphs and Combinatorics, 2021, 37,6:2421-2437.

      [17] TANG K,LI Q,DENG H. On the permanental polynomial and permanental sum of signed graphs[J]. Discrete Mathematics Letters, 2022,10:14-20.

      [18] WAGNER S,GUTMAN I. Maxima and minima of the hosoya index and the merrifield-simmons index: A survey of results and techniques[J]. Acta Applicandae Mathematicae,2010,112:323-346.

      [19] WU T Z,YU Y. On the hosoya indices of bicyclic graphs with small diameter[J]. Journal of Chemistry,2021(4):5555700.

      On the Permanental Sums of Bicyclic Graphs with Small Diameter

      YU Yong,WU Ting-zeng

      (School of Mathematics and Statistics, Qinghai Minzu University, Xining 810007, China)

      Abstract:The properties of permanental sums of bicyclic graphs with small diameter were studied,and the bound of permanental sums of bicyclic graphs with diameter two were determined. In particular, the sharp upper bound of the permanental sums of bicyclic graphs with diameter three were determined, and the corresponding extremal bicyclic graphs were also characterized.

      Keywords:permanent; permanental polynomial; permanental sum; diameter; bicyclic graph

      收稿日期:2022-09-11

      基金項目:國家自然科學基金(批準號:12261071)資助;青海省自然科學基金(批準號:2020-ZJ-920)資助。

      通信作者:吳廷增,男,博士,教授,主要研究方向為圖論與組合優(yōu)化、復雜網絡與數(shù)據(jù)科學等。E-mail:mathtzwu@163.com

      猜你喜歡
      直徑
      《與·游》
      藝術家(2022年11期)2023-01-25 07:17:20
      各顯神通測直徑
      山水(直徑40cm)
      云南檔案(2019年7期)2019-08-06 03:40:50
      愛虛張聲勢的水
      預爆破法處理大直徑嵌巖樁樁底傾斜巖面問題
      大直徑擴底嵌巖樁豎向承載性能
      大直徑潛孔錘鉆機
      4m直徑均勻擴展定標光源
      中國光學(2015年5期)2015-12-09 09:00:46
      一類直徑為6的優(yōu)美樹
      一類特殊的擬幾乎Einstein度量直徑的下界估計
      洞头县| 襄樊市| 内乡县| 海伦市| 监利县| 介休市| 原平市| 淳安县| 固始县| 高碑店市| 睢宁县| 宁阳县| 岐山县| 石渠县| 宣威市| 奎屯市| 普格县| 高陵县| 三穗县| 伊通| 民乐县| 舟山市| 静海县| 西乡县| 镇雄县| 大渡口区| 湄潭县| 商城县| 乐都县| 涪陵区| 连州市| 洛扎县| 治县。| 新野县| 罗平县| 湖州市| 前郭尔| 自治县| 驻马店市| 海宁市| 闽侯县|