• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc

    2023-03-13 09:19:54MeiLingLu盧美玲YaoWang王瑤HeZhiZhang張鶴之HaoLinChen陳昊林
    Chinese Physics B 2023年2期
    關(guān)鍵詞:王瑤美玲

    Mei-Ling Lu(盧美玲), Yao Wang(王瑤), He-Zhi Zhang(張鶴之), Hao-Lin Chen(陳昊林),

    Tian-Yuan Cui(崔天元)1, and Xi Luo(羅熙)1,2,?

    1College of Science,University of Shanghai for Science and Technology,Shanghai,China

    2Shanghai Key Laboratory of Modern Optical System,University of Shanghai for Science and Technology,Shanghai,China

    Keywords: superconducting topological surface states, chiral symmetry, topological nodal superconductor,Majorana Fermi arc

    1.Introduction

    Since the discovery of topological insulators and their material realization,[1-4]research on topological band structures has become one of the major topics in condensed matter physics.Starting from the pioneering works of Thouless,[5]Haldane,[6]Kane and Mele,[7,8]the “ten-fold way”classification[9,10]of topological insulators and topological superconductors has provided an elegant example of the interplay between symmetry and gapped band systems.The non-trivial topology can be characterized either by the total Chern number(or Z2if time reversal symmetry is present)of the occupied bands,[7,8]or through the bulk-edge correspondence;namely,there are gapless topological edge modes corresponding to the non-trivial topology of the bulk band when an open boundary condition is applied.[11]

    Besides the gapped band structure, the topology of gapless bands has also been studied.Weyl semimetals are the most well-known three-dimensional example with a nontrivial gapless band structure.[12]The Weyl node is a monopole of Berry’s phase, and is protected by its non-trivial winding number around the node.From the perspective of bulk-edge correspondence,there are surface Fermi arcs connecting Weyl nodes with opposite chiralities.[13,14]The existence of a Fermi arc is related to a two-dimensional Chern number; namely,if one considers a line connecting the Weyl nodes, and for a given momentum along the line, the Hamiltonian reduces to a quasi two-dimensional gapped system which has gapless edge modes when the bulk Chern number is non-zero,and the gapless edge modes correspond to the Fermi arcs.In other words, the Weyl semimetal is an intermediate state between a topological insulator and a trivial one.[15,16]After Weyl semimetals,the topological nodal-line semimetal has also been proposed.[17]A general relation between the topological classification of gapless systems and the gapped ones has been discussed.[18]

    A systematic way of predicting topological materials(including higher-order ones)is by comparing the possible band structures allowed by the lattice symmetry with their atomic limits,which are trivial band structures.[19-21]

    Furthermore, the concept of topological states of matter not only prospers in condensed matter physics, but also appears in classical systems and beyond, such as topological Weyl magnons,[22]topological phonons,[23-25]topological photonics,[26,27]and topological non-Hermitian systems.[28,29]Within topological systems, the topological superconductor has drawn much attention.One reason is that the Majorana zero modes and Majorana edge modes in the topological superconductor have potential applications in realizing topological quantum computation.[30-33]

    One famous scenario for realizing the Majorana zero mode is that proposed by Fu and Kane, using the proximity effect between a topological insulator and an s-wave superconductor.[34]Following this track, several possible cases of Majorana zero modes have been observed[35-42].In 2018, a 2e2/hconductance was observed in InSb nanowires,which was believed to be evidence of the Majorana zero mode,[43]but this result has been supplanted by the same authors’new data.[44]

    Recently discovered iron-based superconductors, such as FeTe0.55Se0.45,[45,46](Li0.84Fe0.16)OHFeSe,[47]LiFeAs,[48]and CaKFe4As4,[49]are new promising candidates for observing Majorana zero modes and Majorana edge modes.[50]One intriguing property of the iron-based superconductor is its endurance against a large in-plane magnetic field(e.g.,more than 20 T in thin film of FeTeSe[51,52]),which is one of the motivations of this paper.

    Since the normal state of an iron-based superconductor is a topological insulator,[53,54]we will focus on the superconductivity of the topological surface state(TSS)with an external in-plane magnetic field.We find a topological nodal phase protected by chiral symmetry (with a pseudo time-reversal symmetryT2p =1),and for open boundary conditions,a Majorana Fermi arc connects these two Majorana nodes, similar to the case of Weyl semimetal.[12]The Majorana Fermi arc is also known to be a flat band Andreev bound state[55]which can influence the interface properties drastically.[56-58]The Andreev flat band states have also been considered in two dimensions with p-wave superconductivity[59]or with inhomogeneous magnetic fields,[60]and in three dimensions with momentum dependent pairings[61]or odd-parity pairing.[62]Furthermore, we reveal that the topological nodal superconductor is an intermediate state between two different chiral superconductors, which is exactly a two-dimensional superconductor analogue of a Weyl semimetal.This nodal superconducting phase is also confirmed in a three-dimensional lattice model with thin film geometry,which is possible to realize in iron-based superconductors.The localizations of the Majorana nodes can be controlled by the in-plane magnetic field,which may introduce a non-trivial topological Berry phase between them,similar to the proposal of braiding the Weyl nodes in Weyl semimetals.[63]

    This paper is organized as follows.In Subsection 2.1,we construct an effective Bogoliubov-de Gennes(BdG)Hamiltonian for the superconducting TSSs.Although the time-reversal symmetry is broken by the external in-plane magnetic field,a pseudo time-reversal symmetryTpwithT2p =1 remains.Together with the particle-hole symmetry,a chiral symmetry can be defined,which protects the topological nodal superconducting phase.There will be a Majorana Fermi arc connecting the two nodes when open boundary conduction is applied.In Subsection 2.2,we show that the topological nodal superconductor can be viewed as an intermediate state between two chiral superconductors,which provides the topological stability of the nodal superconductor.We discuss the effects of substrates in Subsection 2.3.In Subsection 2.4, we consider a three-dimensional lattice model simulating the thin film of iron-based superconductors,[54]and the nodal superconducting phase is confirmed numerically.The last section is devoted to conclusions,and we provide more details on the band structures of the effective theory in Appendix A.

    2.Results and discussion

    2.1.Superconducting TSS under an in-plane magnetic field and Majorana Fermi arc

    We start from a general effective BdG Hamiltonian describing the superconducting TSSs of a thin film of a topological insulator

    The BdG Hamiltonian(1)is time-reversal symmetric,i.e.,T h0(q)T-1=h?0(-q), withT= iσyχ0τ0K, whereKis the complex conjugation operator.The charge conjugation can also be defined byCh0(q)C-1=-h?0(-q)withC=σ0χ0τxK.Note that in the normal state,the TSSs in top and bottom surfaces have opposite helicities; therefore there is an emergent mirror symmetry of thexyplane.The superconducting TSS is believed to respect this mirror symmetry; namely, we find thatMxyh0(q)M-1xy=h0(q)withMxy=-iσzχxτ0.[66,67]From the mirror symmetryMxy,one can note that it commutes with the odd-parity pairing termΔσyχzτywhile it anti-commutes with the even-parity pairing term,say,Δeσyχ0τy;therefore the odd-parity pairing term is favored by the mirror symmetry.

    Now we consider adding an in-plane magnetic field.Because of the two-dimensional rotation symmetry, we can choose the in-plane magnetic field to be along thex-direction without loss of generality.By adding a Zeeman term toh0,the BdG Hamiltonian becomes

    whereλxis the in-plane Zeeman coupling strength.Although the time-reversal symmetry is broken by the external magnetic field, there remains a pseudo time-reversal symmetryTp=σxχxτ0K(which is the combination of time-reversal symmetryTand the mirror symmetry-iMxy) withTphx(q)T-1p =h?x(-q), andT2p =1.The particle-hole symmetry remains true with the in-plane magnetic field.Therefore the Hamiltonianhx(2)has a chiral symmetryΞhx(q)Ξ-1=-hx(q),withΞ=CTp=σxχxτx.Namely, the system belongs to BDI.[9]The BDI superconductor is also discussed in Refs.[60,68].By substituting the momentumqi →sinqiand the topping termt →t0+t1(2-cosqx-cosqy),we can construct a lattice model of the effective Hamiltonianhx(2).We plot the band structure of the lattice model in Fig.1.From the band structure, one observes that the system is a nodal superconductor(Fig.1(a)), and there is a Majorana Fermi arc connecting the two nodes when choosing open boundary conditions along they-direction(Fig.1(b)),which provides a two-dimensional superconductor analogue of a Weyl semimetal.A more detailed study on the phase diagram of the hopping termt0andt1is provided in Appendix A.

    Similar to the case of Weyl semimetal, where the Fermi arc is related to a two-dimensional Chern number,[12]one can find a non-trivial topological number of a one-dimensional system associated with the existence of Majorana Fermi arc.To be more specific, for a givenq0x(except for the Majorana nodes),the BDI Hamiltonianhx(qy,q0x)describes a quasi onedimensional system,and it is classified by Z in 1D.[9]In order to determine the characteristic topological number,we change into the basis that diagonalizes the chiral operatorΞwith the unitary transformationUΞ,

    where

    From bulk-edge correspondence, if one considers open boundary conditions along they-direction,then for a non-zeroW(q0x), there will beW(q0x) types of Majorana zero mode(s)localizing at each end of the open boundary.W(q0x)can only change in the case when the bulk gap closes.For the parameters chosen in Fig.1(a),W(qx=0)=1 andW(qx=π)=0,which is consistent with Fig.1(b),namely,the Majorana Fermi arc, which comes from the Majorana zero modes at the ends,connects two bulk Majorana nodes,and exists whenW(q0x)/=0 and disappears whenW(q0x)=0.The physics here is similar to that of a Weyl semimetal where the Fermi arc connects two Weyl points with opposite helicities.[12]

    Fig.1.The band structures of hx (2)with μ =0, Δ =λx =1,t0 =t =0.5,and t1 =1.(a)The bulk spectra with qy =0.(b)Open boundary condition along the y-direction with y=50.The two Majorana nodes are connected by

    2.2.Interpreting the nodal superconducting phase as an intermediate phase between two chiral superconductors

    Since Weyl semimetal can be viewed as an intermediate phase between a topological insulator and a trivial one,[16]one may ask whether the nodal superconducting phase could be interpreted as an intermediate state between two topological distinct phases.The answer is yes, which also provides the topological origin of the stability of the nodal superconducting phase.

    In order to show this scenario,we add a spin-triplet intersurface pairing term into the Hamiltonianhx(2),

    whereΔtis the spin-triplet pairing strength.This term preserves the mirror symmetryMxy, and breaks both the timereversal symmetryTand the pseudo oneTp; therefore, the chiral symmetry is broken byΔt.The spin-triplet pairing can arise from the Coulomb interaction,and has played an important role in topological superconductivity, such as CuxBi2Se3in 3D[69,70]and bilayer Rashba systems in 2D.[64]

    When there are no external magnetic fields, the band spectra nearΓpoint are

    whereα=±.The topological phase boundary can be determined by the band touching at theΓpoint;[67]namely, the phase boundaries are given by

    which are two circles centered at±Δwith radiustfor fixedΔandtin theΔt-μplane; see Fig.2.In addition, within each circle,there is a topological chiral superconducting phase with a non-zero Chern number.These topological non-trivial phase are protected by the mirror symmetryMxy, and because{Mxy,C}= 0, the topological phase is classified by Z⊕Z.[66,67]More interestingly,whent&gt;Δ,these two circles intersect.Although the total Chern-number is zero in the intersection,it remains non-trivial because of the mirror symmetry and the Z⊕Z classification.In particular, whenΔt=0, the two circles coincide, and because the system is time reversal symmetric, it is classified by Z2.[9]In addition, there will be topological helical edge states when the parameters are within the circles.

    Fig.2.(a)and(b)Topological phase diagrams of h(7)in the Δt-μ plane and Δt-λx plane with Δ =1,t=0.5,(a)λx=0,and(b)μ =0. N stands for the bulk Chern number.Along the Δt =0 line within the two circles is the topological nodal superconducting phase,as confirmed numerically in Fig.1(b),which is an intermediate state between two chiral superconductors.

    Now we add in the external in-plane magnetic field.Without loss of generality,we chooseμ=0 for simplicity(the effect ofμis shown in Fig.2(a)).Then the band spectra become

    The topological phase boundary is determined as before.We plot the phase diagram in Fig.2 (see Appendix A for more details).From Fig.2(a) one notes that there are two distinct topological non-trivial regions with opposite Chern numbers when the external magnetic field is absent.Furthermore, the non-zero Chern numberNindicates that time-reversal symmetry is broken when the spin-triplet pairing termΔtexists.By turning on the external in-plane magnetic fieldλx,the two topological non-trivial regions are connected without gap closing at theΓpoint (see Fig.2(b)).From the phase diagram Fig.2(b) we have two observations.One is that the topological chiral superconducting phase is protected by the mirror symmetryMxysince the in-plane magnetic fieldλxbreaks it and causes phase transition.The other one is that because of the phase transition between these two topological non-trivial phases, the bulk gap should be closed at a momentum away from theΓpoint; in particular, the gapless phase transition occurs whenΔt=0 and the nodal superconducting phase is protected by the chiral symmetry (see Fig.1).These results are also confirmed by the numerical calculations of the lattice model, which are presented in Appendix A.To sum up,in this section,we show that the nodal superconducting phase can be viewed as an intermediate phase between two different topological non-trivial phases;therefore the nodal structure is topologically stable and protected by the chiral symmetry.

    2.3.Effects of substrate

    The superconducting TSSs could be realized in the thin films of the iron-based superconductors through the molecular beam epitaxy method[71]or exfoliation;[72]in either method,the substrate will always be present.Then we shall consider if the topological nodal superconducting phase was stable in the presence of substrate.

    Fig.3.The topological phase diagram of hsub (11)in the ν-λx plane withμ =0, Δ =1, and t =0.5.The red shaded area is the topological nodal superconducting phase which remains stable when the substrate exists.

    A uniform substrate can be treated as a difference of chemical potential of the two surfaces;therefore we consider a termνσ0χzτzto simulate the effect of the substrate.By adding this term into the Hamiltonianhx(2),it becomes

    The substrate breaks mirror symmetryMxy,but preserves chiral symmetry.We plot the phase diagram in theν-λxplane in Fig.3 with the phase boundary determined by the gap closing at theΓpoint of the above Hamiltonian.From the phase diagram,we see that the topological nodal phase is stable against the substrate.

    2.4.Three-dimensional lattice model

    In order to confirm the existence of the topological nodal superconducting phase and the Majorana Fermi arcs,here we construct a three-dimensional lattice model to mimic a thin film of topological insulator with superconductivity.For the normal state of an iron-based superconductor, we consider a four-band lattice model with two orbital degrees of freedom(pzand dx2-y2),[53,54]and the magnetic field is applied alongxdirection with Zeeman couplingλx,

    whereσiandρiare Pauli matrices acting on spin and the orbital.vis the hopping constant which we set to unity,M(q)=M0-M1(cosqx+cosqy)-M2cosqz,withMibeing constants that control the topological phase of the normal state when the magnetic field is absent.For example,we chooseM0=-8.5,M1=-3,andM2=3,such that the normal state is a topological insulator with a band inversion atZ,and there will be one TSS on each open surface along thez-direction.[53,54]The low energy effective theory of the model Hamiltonianh3D0 (12)can also describe thek·ptheory near theΓpoint of a normal state of CuxBi2Se3where the orbital degrees of freedom come from the conduction and valence bands atΓpoint.[69]

    For the superconducting part, we introduce an interorbital spin-singlet pairing term ?Δ=Δ0iσyρxwhich is inversion-odd.The reason is that,in the effective theory(1)for the superconducting TSS, the pairing term is odd under mirror symmetryMxywhich is a remnant of the three-dimensional inversion symmetry.Then the BdG Hamiltonian reads

    which is possible to be realized in the iron-based superconductors.[54,69,73]For a thin film geometry, we consider four layers along thez-direction and add an on-site energy differenceVin the top and bottom layers to simulate the effects of substrates.[54]We plot the topological band structure in Fig.4.The bulk spectra is a nodal superconductor (Fig.5(a)) and the Majorana Fermi arc exists when we choose an open boundary alongy,which is also stable against substrate potential (Fig.5(b)).The behavior of the thin film of the three-dimensional lattice model is consistent with the effective theory of the superconducting TSSs discussed in Subsection 2.1.The rich structures of the lattice model, e.g.,the emergence ofΔandΔt,will be presented in future works.

    Fig.4.The BdG band spectra of the three-dimensional lattice model h3DBdG (12) with four layers along the z-direction. M0 =-8.5, M1 =-3,M2 =3, Δ0 =1.5, V =0.5 and λx =0.5.(a) Bulk spectra with qy =0.(b)Open boundary condition along the y-direction with y=30.There is a Majorana Fermi arc connecting the Majorana nodes.

    3.Conclusion

    In summary, we study the superconducting TSSs under an external in-plane magnetic field.Due to a pseudo timereversal symmetry,the system belongs to BDI.There exists a topological nodal superconducting phase with Majorana Fermi arcs connecting the Majorana nodes,and it is an intermediate state between two different topological chiral superconductors, which fulfills a two-dimensional superconducting analogue of Weyl semimetals.This topological nodal superconducting phase is stable against substrates, and can be realized in a three-dimensional lattice model for the thin films of an iron-based superconductor[54]as well as a topological superconductor CuxBi2Se3,[69]which can endure large in-plane magnetic field.The Majorana nodes can be controlled through external in-plane magnetic field, which may introduce a nontrivial topological Berry phase between them.[63]

    Appendix A: More results on two-dimensional lattice model

    The effective BdG Hamiltonian we consider for the superconducting TSSs with an external in-plane magnetic field reads

    We plot the phase diagram in Fig.A1(a),and study the properties of different phases by numerics under open boundary conditions in Figs.A1(b)-A1(f).We fixt1=0.4 and varyt0.In Fig.A1(b),t0lies in the white regime of Fig.A1(a),which is a trivial gapped superconducting phase.In Fig.A1(c),t0lies in the pink regime,which is a topological nodal superconductor with a Majorana Fermi arc connecting the Majorana nodes.In Fig.A1(d),t0lies at the phase boundary between pink and blue regimes, where the Majorana Fermi arc remains and the bands touch atΓandX.In Fig.A1(e),t0lies in the blue regime,which shows the Majorana nodes atXevolve towardsΓand the ones atΓmove towardsX.In Fig.A1(f),t0lies in the orange regime,and the band gap has touched again atX.

    Furthermore,we plot the phase diagram inΔt-λxplane in Fig.A2(a).We also choose five typical points in Fig.A2(a)and plot their band structures(Figs.A2(b)-A2(f)).Away fromΔt=0 line, there are chiral Majorana edge modes, and their chiralities change side ifΔthas an opposite sign.In addition,alongΔt=0,the chiral Majorana edge modes evolve into the Majorana Fermi arcs that connect the Majorana nodes.

    Fig.A1.(a)The topological phase diagram of the nodal superconducting phase in t1-t0 plane withμ =0,Δ =λx=1,and Δt =0.From(b)to(f)are band structures of h2D (A1)with 50 sites along the y-direction, and we fix t1 =0.4.(b)t0 =2.2, in the white regime of(a).(c)t0 =1.6 in the pink regime.(d)t0=1.2,at the phase boundary.(e)t0=0.8,in the blue regime.(f)t0=0.4,in the orange regime.

    Fig.A2.(a)The topological phase diagram in the Δt-λx plane with t0 =t =0.5,t1 =1, μ =0 and Δ =1.From(b)to(f)are band structures of h2D (A1)with 50 sites along the y-direction.(b)Δt =1.2,λx=0,(c)Δt =0.2,λx=1,(d)Δt =0,λx=1,(e)Δt =-0.2,λx=1,(f)Δt =-1.2,λx=0.The red(blue)curve stands for the edge mode localizing at the left(right)edge.The chiralities of the chiral Majorana edge modes in(b)and(c)are opposite to those in(e)and(f),which is consistent with the bulk Chern number N in(a).

    Acknowledgments

    We thank Yue Yu and Ziqiang Wang for helpful discussions.Project supported by the National Natural Science Foundation of China(Grant Nos.11804223(MLL,YW,HZZ,HLC,TYC,XL),11474061(XL),and 12174067(XL)).

    猜你喜歡
    王瑤美玲
    長(zhǎng)大以后做什么
    Polysaccharides Based Random and Unidirectional Aerogels for Thermal and Mechanical Stability
    發(fā)現(xiàn)腦垂體瘤壓迫視神經(jīng)一例
    美玲:我的幸福是與萌貨親密接觸
    金色年華(2017年10期)2017-06-21 09:46:49
    趙美玲
    A Pair of Resonance Stripe Solitons and Lump Solutions to a Reduced(3+1)-Dimensional Nonlinear Evolution Equation?
    “王瑤式”說法
    愛你(2017年10期)2017-04-14 11:21:51
    春天的早晨
    王瑤怎樣當(dāng)北大教授
    Clinical observation of Huatan Huoxue Formula in treating coronary heart disease with hyperlipidemia
    久久这里只有精品中国| 欧美日本亚洲视频在线播放| 久久久久国内视频| 91久久精品国产一区二区成人 | 欧美日韩黄片免| 久久6这里有精品| 国产精品综合久久久久久久免费| 看免费av毛片| 天天躁日日操中文字幕| 在线观看舔阴道视频| 国产高清三级在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲五月天丁香| 亚洲av熟女| 日韩欧美国产一区二区入口| 两个人看的免费小视频| 男人和女人高潮做爰伦理| 在线观看一区二区三区| 99热这里只有是精品50| 国产美女午夜福利| 久久6这里有精品| 久久国产乱子伦精品免费另类| 淫妇啪啪啪对白视频| x7x7x7水蜜桃| 男人舔奶头视频| 黄色女人牲交| 少妇熟女aⅴ在线视频| 老司机午夜十八禁免费视频| 久久久久久久精品吃奶| 午夜a级毛片| 精品国产超薄肉色丝袜足j| 亚洲一区二区三区不卡视频| 天堂影院成人在线观看| 免费搜索国产男女视频| 日韩欧美 国产精品| 中文字幕高清在线视频| 在线免费观看不下载黄p国产 | 97人妻精品一区二区三区麻豆| 日韩欧美国产在线观看| 国产精品 国内视频| 日韩中文字幕欧美一区二区| 国产av麻豆久久久久久久| e午夜精品久久久久久久| 天天躁日日操中文字幕| 偷拍熟女少妇极品色| 亚洲18禁久久av| av国产免费在线观看| 日本黄大片高清| 成人国产综合亚洲| xxx96com| 又爽又黄无遮挡网站| 青草久久国产| 国产黄色小视频在线观看| 18禁国产床啪视频网站| 亚洲精品日韩av片在线观看 | 老司机深夜福利视频在线观看| 在线免费观看不下载黄p国产 | 国内毛片毛片毛片毛片毛片| 丁香欧美五月| 1000部很黄的大片| 欧美乱码精品一区二区三区| 午夜久久久久精精品| 欧美色欧美亚洲另类二区| 日韩高清综合在线| 九色成人免费人妻av| 黄片小视频在线播放| 色在线成人网| 国产精品亚洲一级av第二区| 人人妻人人看人人澡| 国产v大片淫在线免费观看| 国产淫片久久久久久久久 | 亚洲人与动物交配视频| 舔av片在线| 九九久久精品国产亚洲av麻豆| 在线观看免费视频日本深夜| 91九色精品人成在线观看| 99热精品在线国产| 51国产日韩欧美| 亚洲五月婷婷丁香| 一夜夜www| 亚洲av电影在线进入| 男女做爰动态图高潮gif福利片| 国产一区二区三区视频了| 国产乱人伦免费视频| 免费看光身美女| 亚洲国产日韩欧美精品在线观看 | 免费在线观看成人毛片| 少妇人妻一区二区三区视频| 国产精品一区二区三区四区免费观看 | 国内精品久久久久久久电影| 18禁在线播放成人免费| 19禁男女啪啪无遮挡网站| 搡女人真爽免费视频火全软件 | 青草久久国产| 我要搜黄色片| av在线天堂中文字幕| 床上黄色一级片| 色吧在线观看| 熟女少妇亚洲综合色aaa.| 悠悠久久av| 全区人妻精品视频| 婷婷精品国产亚洲av| 99国产精品一区二区三区| 国产伦一二天堂av在线观看| 老司机深夜福利视频在线观看| 精品99又大又爽又粗少妇毛片 | 国产精品电影一区二区三区| 特大巨黑吊av在线直播| av片东京热男人的天堂| 国产亚洲欧美98| 国产69精品久久久久777片| 女警被强在线播放| 亚洲av免费高清在线观看| 亚洲人成电影免费在线| 在线观看日韩欧美| 18美女黄网站色大片免费观看| 久久久国产精品麻豆| 中文字幕人妻丝袜一区二区| 国内揄拍国产精品人妻在线| 久久精品夜夜夜夜夜久久蜜豆| 欧美又色又爽又黄视频| 欧美日本亚洲视频在线播放| 身体一侧抽搐| 婷婷精品国产亚洲av在线| 大型黄色视频在线免费观看| 久久久久久人人人人人| 成人国产一区最新在线观看| 国产野战对白在线观看| 神马国产精品三级电影在线观看| 麻豆成人av在线观看| 亚洲一区二区三区色噜噜| 亚洲专区国产一区二区| 国产精品1区2区在线观看.| h日本视频在线播放| 又黄又爽又免费观看的视频| 欧美不卡视频在线免费观看| 老司机深夜福利视频在线观看| 亚洲中文日韩欧美视频| 国产在线精品亚洲第一网站| 亚洲国产精品久久男人天堂| 高清在线国产一区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 少妇人妻一区二区三区视频| 亚洲国产精品999在线| 18禁黄网站禁片免费观看直播| 亚洲自拍偷在线| 男人舔女人下体高潮全视频| 久久久久久久久久黄片| 国产黄a三级三级三级人| 中文字幕熟女人妻在线| av在线天堂中文字幕| 制服丝袜大香蕉在线| 日日干狠狠操夜夜爽| 亚洲精品久久国产高清桃花| 色精品久久人妻99蜜桃| 嫩草影院精品99| 制服丝袜大香蕉在线| 九九热线精品视视频播放| 香蕉丝袜av| 制服丝袜大香蕉在线| 亚洲av第一区精品v没综合| 超碰av人人做人人爽久久 | 女生性感内裤真人,穿戴方法视频| 欧美黄色片欧美黄色片| 老汉色av国产亚洲站长工具| 国产成年人精品一区二区| 亚洲美女视频黄频| 日韩欧美一区二区三区在线观看| 国产av在哪里看| 婷婷精品国产亚洲av在线| 午夜a级毛片| 变态另类丝袜制服| 一个人免费在线观看的高清视频| 日韩欧美免费精品| 女生性感内裤真人,穿戴方法视频| 日本 av在线| 国产欧美日韩一区二区三| 免费电影在线观看免费观看| 88av欧美| 国产一区二区亚洲精品在线观看| 国产91精品成人一区二区三区| 人人妻人人澡欧美一区二区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av成人精品一区久久| 99热这里只有精品一区| 欧美色欧美亚洲另类二区| 亚洲人成伊人成综合网2020| 久久亚洲真实| 两个人视频免费观看高清| 亚洲精品影视一区二区三区av| 琪琪午夜伦伦电影理论片6080| 丰满人妻一区二区三区视频av | 亚洲欧美精品综合久久99| 久久午夜亚洲精品久久| 女警被强在线播放| 熟女少妇亚洲综合色aaa.| a级一级毛片免费在线观看| 搞女人的毛片| 又黄又爽又免费观看的视频| 免费无遮挡裸体视频| 老汉色∧v一级毛片| 成年女人看的毛片在线观看| 国产亚洲精品久久久久久毛片| 中文亚洲av片在线观看爽| 久久久久亚洲av毛片大全| 国内揄拍国产精品人妻在线| 免费高清视频大片| 少妇裸体淫交视频免费看高清| 超碰av人人做人人爽久久 | 可以在线观看的亚洲视频| 欧美极品一区二区三区四区| 亚洲人成网站高清观看| 国产av麻豆久久久久久久| 成人国产综合亚洲| 悠悠久久av| 男女做爰动态图高潮gif福利片| 亚洲av免费在线观看| 天美传媒精品一区二区| 桃红色精品国产亚洲av| 男人和女人高潮做爰伦理| 18禁黄网站禁片午夜丰满| 久久久久精品国产欧美久久久| 亚洲在线自拍视频| 欧美绝顶高潮抽搐喷水| 黄色日韩在线| 波多野结衣高清无吗| 黄色女人牲交| 国产精品三级大全| 色精品久久人妻99蜜桃| 91久久精品国产一区二区成人 | 在线观看一区二区三区| 国产一级毛片七仙女欲春2| 午夜日韩欧美国产| 99热这里只有精品一区| 麻豆国产av国片精品| 欧美在线一区亚洲| 午夜福利免费观看在线| 久久精品国产清高在天天线| 伊人久久大香线蕉亚洲五| 欧美日韩瑟瑟在线播放| 最近最新中文字幕大全电影3| 日本 欧美在线| 国产一区二区激情短视频| 国内少妇人妻偷人精品xxx网站| 真实男女啪啪啪动态图| 中文字幕精品亚洲无线码一区| 黄色视频,在线免费观看| 久久精品国产清高在天天线| 欧美av亚洲av综合av国产av| 国内精品美女久久久久久| 国产伦在线观看视频一区| 熟女电影av网| 亚洲国产精品999在线| 亚洲精品色激情综合| 一个人免费在线观看电影| 国产成人影院久久av| 一进一出抽搐动态| 高清在线国产一区| 久久久精品大字幕| 亚洲国产精品合色在线| 女同久久另类99精品国产91| 男人舔奶头视频| 免费av毛片视频| 欧美一区二区亚洲| 久久亚洲真实| 99精品欧美一区二区三区四区| 久久久精品欧美日韩精品| 男女视频在线观看网站免费| 叶爱在线成人免费视频播放| 国产精品久久电影中文字幕| 午夜福利高清视频| 观看免费一级毛片| 色综合婷婷激情| 久久精品亚洲精品国产色婷小说| 亚洲va日本ⅴa欧美va伊人久久| 欧美不卡视频在线免费观看| 大型黄色视频在线免费观看| 美女黄网站色视频| 观看美女的网站| 狂野欧美白嫩少妇大欣赏| 尤物成人国产欧美一区二区三区| 久久伊人香网站| 国产午夜精品论理片| 老熟妇仑乱视频hdxx| 精品乱码久久久久久99久播| 性色av乱码一区二区三区2| 成人av在线播放网站| 国产在视频线在精品| 又黄又爽又免费观看的视频| 国产激情偷乱视频一区二区| 欧美精品啪啪一区二区三区| 国产免费一级a男人的天堂| 男女做爰动态图高潮gif福利片| 美女高潮喷水抽搐中文字幕| 日本a在线网址| 麻豆成人午夜福利视频| 熟女少妇亚洲综合色aaa.| 午夜日韩欧美国产| 1000部很黄的大片| 国内揄拍国产精品人妻在线| 久久精品综合一区二区三区| 嫁个100分男人电影在线观看| 欧美乱妇无乱码| 日韩亚洲欧美综合| 色精品久久人妻99蜜桃| 午夜福利在线观看吧| 丝袜美腿在线中文| 国产伦人伦偷精品视频| 嫩草影院精品99| 成人特级av手机在线观看| 99在线人妻在线中文字幕| 90打野战视频偷拍视频| 国产精品日韩av在线免费观看| 男女做爰动态图高潮gif福利片| 亚洲乱码一区二区免费版| 国产av在哪里看| 精品人妻1区二区| 最好的美女福利视频网| 国产三级在线视频| 成人三级黄色视频| 搡女人真爽免费视频火全软件 | 最后的刺客免费高清国语| 成人av在线播放网站| 脱女人内裤的视频| 色哟哟哟哟哟哟| 国产高清视频在线观看网站| 午夜免费激情av| 夜夜夜夜夜久久久久| 好看av亚洲va欧美ⅴa在| 精品久久久久久,| 久久久久久久午夜电影| 热99re8久久精品国产| 免费一级毛片在线播放高清视频| 国产黄片美女视频| 精品国产三级普通话版| 黄片大片在线免费观看| 午夜久久久久精精品| 网址你懂的国产日韩在线| 日本 av在线| 国产精品 国内视频| 色综合欧美亚洲国产小说| 婷婷精品国产亚洲av| www.色视频.com| 母亲3免费完整高清在线观看| 日韩有码中文字幕| 午夜视频国产福利| 亚洲专区中文字幕在线| 中文字幕熟女人妻在线| 97超级碰碰碰精品色视频在线观看| 黑人欧美特级aaaaaa片| 中文亚洲av片在线观看爽| 久久99热这里只有精品18| 亚洲国产精品成人综合色| 欧美中文综合在线视频| 亚洲色图av天堂| 日韩欧美三级三区| 亚洲av免费高清在线观看| 精品久久久久久久人妻蜜臀av| 欧美乱色亚洲激情| 啦啦啦免费观看视频1| 性色av乱码一区二区三区2| 狂野欧美激情性xxxx| 国产精品一区二区三区四区免费观看 | 非洲黑人性xxxx精品又粗又长| 中文在线观看免费www的网站| 国内精品一区二区在线观看| 亚洲国产精品999在线| 国产精品女同一区二区软件 | 成人精品一区二区免费| 免费av不卡在线播放| 在线观看一区二区三区| 天美传媒精品一区二区| 成年免费大片在线观看| 天堂av国产一区二区熟女人妻| 成人av一区二区三区在线看| 观看美女的网站| 精品日产1卡2卡| 国产老妇女一区| 99热只有精品国产| 国产成人影院久久av| av专区在线播放| 精品人妻偷拍中文字幕| 99国产综合亚洲精品| 黄色片一级片一级黄色片| 无限看片的www在线观看| 国产精品久久久人人做人人爽| 少妇裸体淫交视频免费看高清| 首页视频小说图片口味搜索| 国内精品一区二区在线观看| 精品国产美女av久久久久小说| 18美女黄网站色大片免费观看| 久久久久精品国产欧美久久久| 国产视频一区二区在线看| 色吧在线观看| 亚洲成人久久爱视频| 欧美日韩国产亚洲二区| 久久亚洲精品不卡| 一本一本综合久久| 一区二区三区国产精品乱码| 18禁黄网站禁片免费观看直播| 精品免费久久久久久久清纯| 高清在线国产一区| 国产一级毛片七仙女欲春2| 欧美性猛交╳xxx乱大交人| 日本在线视频免费播放| 国产黄色小视频在线观看| 日本三级黄在线观看| 悠悠久久av| av视频在线观看入口| 国产 一区 欧美 日韩| 在线观看av片永久免费下载| 亚洲国产精品成人综合色| 久久久精品大字幕| 国产精品久久久久久亚洲av鲁大| 99国产综合亚洲精品| 日本在线视频免费播放| 国产精品综合久久久久久久免费| 亚洲精品粉嫩美女一区| 一进一出抽搐动态| 成年版毛片免费区| 国产av不卡久久| 成人鲁丝片一二三区免费| 午夜两性在线视频| 久久久久久久午夜电影| 校园春色视频在线观看| 日本黄色视频三级网站网址| 精品久久久久久久毛片微露脸| x7x7x7水蜜桃| 一个人看的www免费观看视频| 天堂动漫精品| 国产中年淑女户外野战色| 欧美绝顶高潮抽搐喷水| 一进一出好大好爽视频| 99在线视频只有这里精品首页| 免费av观看视频| 亚洲精品成人久久久久久| 欧美成狂野欧美在线观看| 亚洲午夜理论影院| 一级作爱视频免费观看| 亚洲av电影不卡..在线观看| 1000部很黄的大片| 日本a在线网址| 国产成人a区在线观看| 精品久久久久久,| 性色avwww在线观看| 亚洲一区二区三区不卡视频| eeuss影院久久| 精品一区二区三区视频在线 | 日本 av在线| 欧美日韩福利视频一区二区| 成人高潮视频无遮挡免费网站| 精品国产美女av久久久久小说| 国产真实乱freesex| 成人高潮视频无遮挡免费网站| 国产精品香港三级国产av潘金莲| 午夜老司机福利剧场| 中文资源天堂在线| 在线免费观看的www视频| 免费在线观看亚洲国产| 九九在线视频观看精品| 国产精品爽爽va在线观看网站| 国产成人欧美在线观看| 日本黄色视频三级网站网址| 亚洲av一区综合| 日韩大尺度精品在线看网址| 国产一区在线观看成人免费| 日韩亚洲欧美综合| www日本在线高清视频| 变态另类丝袜制服| 欧美中文综合在线视频| 亚洲 国产 在线| 午夜免费激情av| 免费看光身美女| 国产精品三级大全| 精品人妻一区二区三区麻豆 | 欧美一级a爱片免费观看看| 婷婷精品国产亚洲av在线| 最近最新免费中文字幕在线| 小蜜桃在线观看免费完整版高清| 精品久久久久久,| 国产精华一区二区三区| 亚洲欧美日韩东京热| 国产一区二区亚洲精品在线观看| 欧美3d第一页| 村上凉子中文字幕在线| 欧美色欧美亚洲另类二区| 伊人久久大香线蕉亚洲五| 久久久国产成人免费| 精品一区二区三区人妻视频| 性色avwww在线观看| 欧美高清成人免费视频www| 欧美黑人欧美精品刺激| 老司机午夜福利在线观看视频| 一进一出抽搐gif免费好疼| av视频在线观看入口| 亚洲无线观看免费| 国产精品一区二区三区四区久久| 国产亚洲欧美98| 大型黄色视频在线免费观看| 亚洲精华国产精华精| 特级一级黄色大片| 亚洲无线在线观看| 最新美女视频免费是黄的| 国产一区在线观看成人免费| 国产日本99.免费观看| 我的老师免费观看完整版| 国模一区二区三区四区视频| 亚洲最大成人中文| 欧美性猛交黑人性爽| 九色国产91popny在线| 欧美日本亚洲视频在线播放| 在线免费观看不下载黄p国产 | 久久精品91无色码中文字幕| 国产精品1区2区在线观看.| 欧美性感艳星| 精品国内亚洲2022精品成人| 国产精品香港三级国产av潘金莲| 久久久久国内视频| 欧美日韩国产亚洲二区| 床上黄色一级片| 国产高清videossex| 一a级毛片在线观看| 午夜激情欧美在线| 不卡一级毛片| 国产精品久久久久久人妻精品电影| 亚洲人成网站高清观看| 最新中文字幕久久久久| 成年免费大片在线观看| 午夜福利高清视频| 十八禁人妻一区二区| 亚洲国产精品合色在线| 中文字幕熟女人妻在线| 日韩大尺度精品在线看网址| 国产精品av视频在线免费观看| 三级毛片av免费| 国内精品美女久久久久久| 欧美xxxx黑人xx丫x性爽| 久久精品国产亚洲av涩爱 | 国产av一区在线观看免费| 少妇人妻一区二区三区视频| 99热6这里只有精品| 中文字幕人妻熟人妻熟丝袜美 | 69av精品久久久久久| 国产亚洲精品av在线| 国产黄a三级三级三级人| 国产aⅴ精品一区二区三区波| 国产午夜精品久久久久久一区二区三区 | 午夜免费男女啪啪视频观看 | 97超视频在线观看视频| 亚洲不卡免费看| 国产一区二区在线观看日韩 | 国内精品久久久久精免费| 日韩欧美一区二区三区在线观看| 国产日本99.免费观看| 男人舔奶头视频| 熟女人妻精品中文字幕| 成人av一区二区三区在线看| 亚洲精华国产精华精| 国内精品一区二区在线观看| 国产高清有码在线观看视频| 日韩国内少妇激情av| 俄罗斯特黄特色一大片| 18+在线观看网站| 淫秽高清视频在线观看| 99久久精品一区二区三区| 变态另类丝袜制服| 成人一区二区视频在线观看| 国产欧美日韩精品亚洲av| 国产av一区在线观看免费| 色综合亚洲欧美另类图片| 色尼玛亚洲综合影院| 国产主播在线观看一区二区| 99久国产av精品| 啦啦啦免费观看视频1| 欧美色欧美亚洲另类二区| 久久欧美精品欧美久久欧美| 少妇人妻精品综合一区二区 | 久久久久久国产a免费观看| 国产激情偷乱视频一区二区| 亚洲国产欧洲综合997久久,| 亚洲av成人精品一区久久| 国产91精品成人一区二区三区| 欧美成人免费av一区二区三区| 午夜免费成人在线视频| 97超级碰碰碰精品色视频在线观看| 中文字幕av成人在线电影| 一级黄片播放器| 男女午夜视频在线观看| 国产69精品久久久久777片| 婷婷精品国产亚洲av在线| 日本撒尿小便嘘嘘汇集6| 男女午夜视频在线观看| 少妇的丰满在线观看| 亚洲精品成人久久久久久| 亚洲欧美精品综合久久99| 久久精品国产自在天天线| 精品久久久久久成人av| 搡女人真爽免费视频火全软件 | 免费大片18禁| 特级一级黄色大片| 69人妻影院| 欧美日韩精品网址| 中亚洲国语对白在线视频| 久久国产精品影院| 免费观看的影片在线观看| 三级国产精品欧美在线观看| 麻豆国产av国片精品| 精品人妻偷拍中文字幕| 99热6这里只有精品| 日本与韩国留学比较| 久久草成人影院| 国产一区二区在线观看日韩 | 在线观看舔阴道视频| 免费观看人在逋| 日本熟妇午夜|