• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Polysaccharides Based Random and Unidirectional Aerogels for Thermal and Mechanical Stability

    2022-05-09 06:47:52CHAUDARYAneebaCHUDHARYTaybaFAROOQAmjadZHANGMeiling張美玲PATOARYMohammedKayesLIULifang劉麗芳
    關(guān)鍵詞:美玲

    CHAUDARY Aneeba, CHUDHARY Tayba, FAROOQ Amjad, ZHANG Meiling(張美玲), PATOARY Mohammed Kayes, LIU Lifang(劉麗芳)*

    1 College of Textiles, Donghua University, Shanghai 201620, China2 Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China3 Department of Chemistry, Zhejiang University, Hangzhou 310027, China

    Abstract: Owing to the increasing energy demands and the environmental constraints, the need for bio-based materials has been on the rise due to their variety of favorable properties like biocompatibility, cost-effectiveness, large specific surface area, high porosity, and non-toxicity. Thermal stability and mechanical strength of aerogels are highly dependent on their micro-porous structures. A three-dimensional structure based on cellulose nanofiber/chitosan (CNF/CS) aerogels was built using two different freezing methodologies, namely random freezing, and unidirectional freezing techniques, by changing mold shapes. The unidirectional aerogels ultimately resulted in high-temperature stability and mechanical strength. The results show that the unidirectional CNF/CS(u-CNF/CS) aerogels contain controlled micro porous orientation relative to random-CNF/CS (r-CNF/CS) aerogels with the disordered porous distribution. The high-temperature stability with an increase of glass transition temperature Tg from 275 ℃ (CNF) to 283 ℃ (CNF/CS), the ultra-low thermal conductivity of 0.030 W/(m ·K), and mechanical robustness of u-CNF/CS aerogels make them quite favorable for practical applications.

    Key words: aerogel; cellulose nanofiber (CNF); chitosan (CS); thermal stability; mechanical robustness

    Introduction

    Increasing thermal insulation demand causes huge energy loss in greenhouse gas emissions. To address this thermal insulation need, many porous materials have been introduced because of their lowest thermal insulation behavior. Mineral wood and polymers with their best thermal conductivity about 0.030-0.040 W/(m ·K) have been commercially popular lately[1]. Vacuum insulation panels contain the lowest thermal insulation about 0.007-0.008 W/(m ·K), but they are costly with poor mechanical stability[1]. Aerogels with the best thermal and mechanical performance are well known in superinsulation fields because of their mesoporosity (≥ 90%) and the lowest density (about 0.1 g/cm3).

    Polysaccharides, as abundantly available renewable carbohydrate polymers, hold abundant characteristics, such as biodegradability, non-toxicity, environment friendliness, and presence of large functional groups for example carboxylic groups and amino groups which help to form polysaccharides derivatives[2-3]. Cellulose nanofiber (CNF) and chitosan (CS) are natural polysaccharides with abundant presence in plants, fungi, and bacteria-containing amorphous and crystalline domains. Polysaccharides are carbohydrates of polymers in which glycosidic bonds are present[4-6].

    Cellulose has gained significant interest in the past years due to holding outstanding properties: renewability, biocompatibility, the lowest density, surface reactivity[7], good thermal properties[8-11], and mechanical characteristics[12]. CNF suspension holds gel-like properties at low concentrations[13]. However, the rheological properties of CNF depend on CNF concentration and pH[14-15]. CS adds strength to the structure when mixed in an aqueous form with another polysaccharide, and gives good structure stability with minimizing structural defects within the geometry[9, 16-17].

    CS is a natural polysaccharide obtained from seafood surpluses like shrimps, lobster, and crab shells. It possesses great physiochemical characteristics and has been applicable in extensive fields of research such as water purification, thermal insulation, and biomedical applications[18-21]. CS can form gels easily based on its active functional groups in the aqueous form[22]. Due to such characteristics, it is used in various areas such as catalysts and drug delivery[23-28].

    Aerogels as an ultra-porous material with the lowest density, large surface area, and mechanically robustness have been famous in recent years with plenty of applications. Composite aerogels based on nanotubes and graphene are used for thermal insulation[29-30]. However, the manufacturing of such aerogels is costly and complex, which restricts their practical usage. Therefore, researches are needed for fabricating cost-effective and low thermal insulated aerogels[31-32]. Many cellulose-based composite aerogels have already been reported for thermal insulation applications[33-34].

    Directional freezing affects the resulted characteristics of aerogels due to microstructure variation in anisotropic aerogels. Such anisotropic aerogels have been mentioned in Refs. [35-40]. Therefore, preparing nano-fibrillated aerogels with excellent performance is still a challenge. CS possesses superior biocompatibility and intrinsic antibacterial characteristics[41-43].

    Herein, a novel approach is ued to fabricate CNF/CS anisotropic aerogels employing random and unidirectional freezing. The structural behavior and its effect on resultant composite aerogels properties are observed. CS acts as a structural robustness material and provides mesoporosity within the geometry, whereas cellulose provides supportive bridges within the layers and results in good formability.

    1 Experiments

    1.1 Materials

    CNFs were provided by Liontec Biopharma Co., Ltd., Tianjin, China. CS was bought from Titan Technology Co., Ltd., Shanghai, China. Formaldehyde was purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. Acetic acid and sodium hydroxide were provided by Aladdin Reagent Co., Ltd., Shanghai, China. All chemicals were analytically pure.

    1.2 Preparation of CNF/CS hydrogel

    The CNF solution has been prepared by the addition of deionized water into suspension, which is dispersed at 11 000 r/min using a high-speed homogenizer for 45 min. Meanwhile, CS solutions have been prepared by mixing CS in CNF suspension and glacial acetic acid solution with subsequent magnetic stirring in 80 ℃ heated oil bath for 40 min to get a translucent and uniform suspension. CNF/CS suspensions were further mixed for an additional 30 min to obtain a viscous suspension.

    1.3 Fabrication of aerogels

    The CNF/CS hydrogel was poured into a flat surface mold and directly placed into a liquid nitrogen bath for freezing, following a lyophilizing process for 48 h at -50 ℃ using a freeze dryer at a pressure of 1 Pa. The prepared aerogels were generally named as random-CNF/CS (r-CNF/CS) aerogels.

    The unidirectional freeze-dried aerogels were prepared by transferring suspension into the polytetrafluoroethylene (PTFE) mold while being placed on a copper square bar in the liquid nitrogen-filled bath for 20 min and lyophilized for 60 h. The prepared aerogels were named as unidirectional CNF/CS (u-CNF/CS) aerogels.

    2 Characterization

    2.1 Morphology observation

    The microscopic architecture of CNF/CS-based aerogels was observed by using scanning electron microscopy (SEM) (Hitachi S-4800, Japan).

    2.2 Fourier transform infrared (FTIR) spectroscopy

    The chemical structures of CNF, CS, and CNF/CS aerogels were observed by conducting FTIR testing with spectra range from 4 000 cm-1to 400 cm-1in the transmission mode at the resolution of 4 cm-1.

    2.3 Thermogravimetric analysis (TGA)

    Thermal stability of aerogels was studied by a thermogravimetric analyzer (PerkinElmer Inc., USA) at a nitrogen flow rate of 20 mL/min, a temperature range from 30 ℃ to 600 ℃, and a heating rate of 10 ℃/min.

    2.4 Thermal conductivity

    Thermal conductivityλwas obtained by using a hot disk thermal analyzer (TPS-2500S, Hot Disk AB Co., Sweden) following the transient plane source (TPS) method.

    2.5 Compression testing

    The compression experiments were conducted by using an Instron 5944 universal machine (Instron,USA) with 500 N load cells at a strain rate of 2 mm/min and a strain of 60%.

    3 Results and Discussion

    3.1 Structural characterization

    The crosslinking and hydrogel formation mechanism of CNF/CS aerogels is shown in Fig.1. The random aerogels were prepared by pouring CNF/CS hydrogel in the flat surface plastic mold, and directly frozen in liquid nitrogen as shown in Fig. 1(b). Whereas for u-CNF/CS aerogel, the hydrogel was transferred into a PTFE mold by putting on the iron mold, and frozen. The resultant aerogels contain entirely different micro-structures as shown in Fig.1(c).

    Fig. 1 Mechanism of r-CNF/CS and u-CNF/CS aerogels formation: (a) CNF/CS hydrogel; (b) random and unidirectional freezings; (c) r-CNF/CS and u-CNF/CS aerogels

    The structural morphology of CNF/CS aerogels has been observed by using SEM. It can be seen in Figs. 2(a) and 2(b) that the r-CNF/CS aerogels show similar morphology along axial and radial directions because of random temperature gradient during liquid nitrogen freezing and random size of pores forming within the geometry of aerogels. This structure shows the isotropic behavior along both orientations. However, in u-CNF/CS aerogels, the structural orientation is different along the axial and radial directions as shown in Figs. 2(c) and 2(d). This anisotropic morphology of aerogels is formed because of different temperature gradients along both directions. This structure is suitable for the thermal conductivity of aerogels. Along the radial direction, the passage of heat is slow because of the Knudsen effect, while the thermal conductivity within axial geometry of u-CNF/CS aerogels is much faster because of a favorable lamellar structure.

    Fig. 2 Schematic illustration of CNF/CS aerogels: (a) axial view of r-CNF/CS aerogels; (b) radial view of r-CNF/CS aerogels; (c) axial view of u-CNF/CS aerogels; (d) radial view of u-CNF/CS aerogels

    The addition of CS to the assembly of CNF controls the microstructure alignment and lets the layers be formed in anisotropic aerogels. This microstructure then becomes favorable for heat insulation[31]. CNFs provide fibrous support to the porous assembly, and CS particles add strength to the structure by forming linking bonds within the geometry. With the addition of CS particles to the CNF hydrogel, the structure is changed significantly.

    3.2 FTIR spectra of CNF/CS aerogels

    Figure 3 shows the FTIR spectra of CNF, CS, and CNF/CS aerogels, respectively. CS particles are doped into cellulose with formaldehyde crosslinking, and resulted in characteristic peaks. CNF and CS share the common functional groups because they are both polysaccharides. The stretching vibrations at 3 200 cm-1and 2 893 cm-1conform to —OH and C—H bonds, respectively.The peak at about 3 200 cm-1is stretching vibrations of —OH and —NH. The peak of CS aerogels at 1 500 cm-1is assigned to the amide group. However, in composite aerogels, the new peak at 1 400 cm-1is formed after crosslinking reaction which corresponds to the amide bond formation between formaldehyde and CS. In composite aerogels, the sharp peak at about 1 600 cm-1is evidence of cross-linked aerogels which corresponds to aldehyde group formation. Formaldehyde addition to aerogels develops structural stability and enhances the mechanical strength of final aerogels by providing strengthening units within the micro-orientation of aerogels.

    Fig. 3 FTIR spectra: (a) CNF aerogels; (b) CS aerogels; (c) CNF/CS aerogels

    3.3 Thermal stability of composite aerogels

    The thermal stability of CNF/CS aerogels has been observed from TGA as shown in Fig. 4. The TGA curve of CNF/CS aerogels shows that the weight loss rate is reduced to 90% compared to that of pure CNF and CS aerogels, and the mass retention percentage also improves to 80% in composite aerogels (Fig. 4(b)).

    Fig. 4 Thermal behavior of CS, CNF and CNF/CS aerogels: (a)TGA curve; (b) derivative thermogravimetry (DTG) curve

    The addition of CS to CNF enhances the thermal stability of CNF/CS aerogels and gives a more stable structure by adding bridges and nanopores to the structure. The microstructure of final aerogels contains nano-sheets that restrain the CNF/CS aerogels from combustion at low temperatures of about 275 ℃ by enhancing its glass transition temperatureTgto 283 ℃. As it can be seen in the endothermic histogram of CNF/CS aerogels, the peak increases significantly which shows the increase ofTgof final aerogels.

    The thermal conductivity values of aerogels were collected by using a hot disk apparatus. It was observed that CNF (0.034 W/(m ·K)) and CS (0.037 W/(m ·K)) with their less thermal conductivityλcombined in aerogel form, and resulted with the overall lowestλof composite aerogels (Fig. 5). The u-CNF/CS aerogels contain lowerλ(0.030 W/(m ·K)) as compared to r-CNF/CS aerogels (0.036 W/(m ·K)), because of micro-porous structural variation. The random pore orientation in randomly frozen aerogels results in a faster flow of heat through the assembly due to the fast heat conduction rate, as compared to the aligned lamellar structure of unidirectional frozen aerogels. The lamella in u-CNF/CS aerogels blocks heat conduction to pass through the geometry which results in the lowest thermal conductivity of the specific aerogels. It shows the thermal behavior of aerogels which makes CNF/CS aerogels promising in thermal insulation and flame retardancy applications.

    Fig. 5 Thermal conductivity of CNF, CS, r-CNF/CS and u-CNF/CS aerogels

    3.4 Mechanical properties of CNF/CS aerogels

    The stress-strain curves of CNF, CS and CNF/CS aerogels were collected at a strain of 60% as shown in Fig. 6. The stress-strain behavior of aerogels consists of three stages: the elastic stage at a low strain ratio, yield point, and final densification region. For r-CNF/CS aerogels as shown in Fig. 6(c), the curve is non-linear in the elastic region. However, there is an apparent linear regime in u-CNF/CS as shown in Fig. 6(d). When the stress is released, the strain reaches zero gradually, and the hysteresis loop area of unidirectional composite aerogels gets less relative to pure aerogels as shown in Figs. 6(a) and 6(b). The fast recovery rate of u-CNF/CS aerogels specifies their compressive strength and usability in stress sensors, shape memory alloys,etc.

    Fig. 6 Stress-strain curves: (a) CNF aerogels; (b) CS aerogels; (c) r-CNF/CS aerogels; (d) u-CNF/CS aerogels

    4 Conclusions

    In summary, the CNF/CS aerogels have been successfully fabricated by employing two different freeze-drying techniques: random freezing and unidirectional freezing. Aerogels behave differently on different microstructures. CS addition to CNF hydrogel is able to form the thermally resistant and mechanically robust aerogels. FTIR spectra show that CS can form hydrogen bonds with cellulose on the addition of formaldehyde, and reduce bending vibrations of —OH. TGA shows good thermal stability of CNF/CS aerogels because of strong intermolecular forces, andTgof CNF/CS aerogels increases to 283 ℃. The thermal conductivity test shows that the u-CNF/CS aerogels exhibit ultra-low thermal conductivity of around 0.030 W/(m ·K) compared to r-CNF/CS aerogels withλof 0.036 W/(m ·K). Whereas, the stress-strain curves display that u-CNF/CS aerogels are compressible because of the layered structure, and able to regain their original position on the removal of strain. The temperature stability, low thermal conductivity, and better mechanical strength make u-CNF/CS aerogels a safe choice for heat-resistant applications such as automobiles, aerospace, building, extreme environmental conditions, stress sensors, and shape memory alloys.

    猜你喜歡
    美玲
    長大以后做什么
    穿鐵馬甲的梁思成
    做人與處世(2022年2期)2022-05-26 22:34:53
    霜 降 蘇美玲
    My Childhood
    春天的早晨
    美玲:我的幸福是與萌貨親密接觸
    金色年華(2017年10期)2017-06-21 09:46:49
    我·小鳥·鈴鐺
    趙美玲
    春天的早晨
    日本一区二区免费在线视频| 淫妇啪啪啪对白视频 | 精品亚洲成a人片在线观看| 亚洲成人国产一区在线观看| 亚洲精品日韩在线中文字幕| 亚洲综合色网址| 亚洲 欧美一区二区三区| 黄网站色视频无遮挡免费观看| 91成人精品电影| 黄色视频不卡| 99久久国产精品久久久| 99国产精品99久久久久| 自线自在国产av| 久久久久精品人妻al黑| 日本一区二区免费在线视频| 亚洲欧美一区二区三区久久| 丁香六月天网| 久久中文字幕一级| 操美女的视频在线观看| 91精品国产国语对白视频| 亚洲精品中文字幕在线视频| 19禁男女啪啪无遮挡网站| 如日韩欧美国产精品一区二区三区| 欧美少妇被猛烈插入视频| 成年人午夜在线观看视频| 涩涩av久久男人的天堂| 久久精品国产亚洲av高清一级| 国产欧美日韩综合在线一区二区| 精品卡一卡二卡四卡免费| 久久久久久久大尺度免费视频| 午夜福利,免费看| 这个男人来自地球电影免费观看| 成人影院久久| 建设人人有责人人尽责人人享有的| 欧美黑人精品巨大| 桃红色精品国产亚洲av| 久久青草综合色| 婷婷色av中文字幕| 性高湖久久久久久久久免费观看| 老司机午夜十八禁免费视频| 精品久久久精品久久久| 日韩视频在线欧美| 亚洲国产欧美一区二区综合| 久久影院123| 又紧又爽又黄一区二区| 美女高潮喷水抽搐中文字幕| 精品熟女少妇八av免费久了| netflix在线观看网站| 嫩草影视91久久| 岛国毛片在线播放| 免费不卡黄色视频| 成年人午夜在线观看视频| 男人添女人高潮全过程视频| 丝袜人妻中文字幕| 脱女人内裤的视频| av在线app专区| 黑丝袜美女国产一区| 亚洲欧美成人综合另类久久久| 免费一级毛片在线播放高清视频 | 国产在线免费精品| 国产麻豆69| 中文字幕高清在线视频| 在线观看人妻少妇| 精品福利永久在线观看| 青青草视频在线视频观看| 丰满饥渴人妻一区二区三| 欧美激情 高清一区二区三区| 久久久久国内视频| 精品国内亚洲2022精品成人 | av在线播放精品| 少妇粗大呻吟视频| 亚洲中文av在线| 精品国产乱码久久久久久小说| 一级毛片精品| 丝瓜视频免费看黄片| 国产成人精品在线电影| 午夜激情久久久久久久| 老司机在亚洲福利影院| 在线精品无人区一区二区三| 少妇人妻久久综合中文| 在线 av 中文字幕| 亚洲男人天堂网一区| 日本av免费视频播放| av国产精品久久久久影院| 黄色 视频免费看| 亚洲国产日韩一区二区| 成人国产av品久久久| 黑人巨大精品欧美一区二区mp4| 久久天堂一区二区三区四区| 99香蕉大伊视频| 丁香六月欧美| 极品少妇高潮喷水抽搐| 久久免费观看电影| 脱女人内裤的视频| 国产在线观看jvid| 国产精品 国内视频| 精品一区在线观看国产| 999久久久国产精品视频| 老司机影院毛片| 亚洲免费av在线视频| 高清欧美精品videossex| 免费少妇av软件| 永久免费av网站大全| 久久久精品94久久精品| 999久久久国产精品视频| 天天添夜夜摸| 亚洲欧洲日产国产| 老司机靠b影院| 性高湖久久久久久久久免费观看| 人妻久久中文字幕网| 九色亚洲精品在线播放| 美女高潮到喷水免费观看| 亚洲熟女精品中文字幕| 一本综合久久免费| 亚洲成人国产一区在线观看| 极品人妻少妇av视频| 又黄又粗又硬又大视频| 亚洲第一青青草原| 国产一区二区在线观看av| 中文字幕精品免费在线观看视频| avwww免费| 最新的欧美精品一区二区| 午夜免费鲁丝| 国产亚洲av片在线观看秒播厂| 亚洲欧美精品自产自拍| 天堂8中文在线网| 在线亚洲精品国产二区图片欧美| 免费女性裸体啪啪无遮挡网站| 欧美中文综合在线视频| 纯流量卡能插随身wifi吗| 亚洲性夜色夜夜综合| 老司机午夜福利在线观看视频 | 欧美 日韩 精品 国产| 国产免费现黄频在线看| 国产男女内射视频| 亚洲国产成人一精品久久久| 在线看a的网站| 久久久久精品国产欧美久久久 | 视频在线观看一区二区三区| av国产精品久久久久影院| 亚洲少妇的诱惑av| 欧美日韩成人在线一区二区| 搡老熟女国产l中国老女人| 日韩 欧美 亚洲 中文字幕| 超色免费av| 免费一级毛片在线播放高清视频 | 满18在线观看网站| 中文字幕最新亚洲高清| 91成人精品电影| 国产精品久久久久久人妻精品电影 | 亚洲欧洲日产国产| 伊人久久大香线蕉亚洲五| 免费观看人在逋| 国产男女内射视频| 99久久人妻综合| 永久免费av网站大全| 久久热在线av| 国产成人系列免费观看| 一区在线观看完整版| 国产免费一区二区三区四区乱码| 国产精品久久久人人做人人爽| 国产av又大| 国产免费一区二区三区四区乱码| 久久中文看片网| 18禁黄网站禁片午夜丰满| 高清欧美精品videossex| 欧美变态另类bdsm刘玥| 日本vs欧美在线观看视频| 一边摸一边抽搐一进一出视频| 久久亚洲国产成人精品v| 免费在线观看黄色视频的| 国产精品久久久久成人av| 日韩欧美一区二区三区在线观看 | 国产在线免费精品| av一本久久久久| 亚洲国产成人一精品久久久| 麻豆av在线久日| 精品国产乱子伦一区二区三区 | av一本久久久久| 狠狠精品人妻久久久久久综合| 免费女性裸体啪啪无遮挡网站| av天堂久久9| 国产在线一区二区三区精| 一级片免费观看大全| 久久99热这里只频精品6学生| 波多野结衣av一区二区av| 亚洲人成电影观看| 亚洲va日本ⅴa欧美va伊人久久 | 欧美久久黑人一区二区| 午夜影院在线不卡| 在线观看免费午夜福利视频| 亚洲精品成人av观看孕妇| 欧美日韩中文字幕国产精品一区二区三区 | 欧美日韩一级在线毛片| 水蜜桃什么品种好| 精品国产乱码久久久久久男人| 搡老乐熟女国产| 黑人巨大精品欧美一区二区蜜桃| 亚洲激情五月婷婷啪啪| 国产亚洲精品一区二区www | 亚洲精品久久成人aⅴ小说| 欧美人与性动交α欧美精品济南到| 亚洲精品国产av成人精品| 1024香蕉在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 天堂俺去俺来也www色官网| 老司机影院毛片| 亚洲精品国产色婷婷电影| 丝瓜视频免费看黄片| 亚洲激情五月婷婷啪啪| 王馨瑶露胸无遮挡在线观看| 一本一本久久a久久精品综合妖精| 女人精品久久久久毛片| 国产成人欧美| 男女边摸边吃奶| netflix在线观看网站| 91麻豆精品激情在线观看国产 | 两个人免费观看高清视频| 欧美日韩一级在线毛片| 一区二区三区激情视频| 男女下面插进去视频免费观看| 国产99久久九九免费精品| 国产真人三级小视频在线观看| 欧美人与性动交α欧美精品济南到| 国产老妇伦熟女老妇高清| 亚洲国产日韩一区二区| 久久热在线av| 80岁老熟妇乱子伦牲交| 首页视频小说图片口味搜索| 午夜精品国产一区二区电影| 欧美日韩成人在线一区二区| 97人妻天天添夜夜摸| 美女高潮到喷水免费观看| 欧美另类一区| 午夜福利视频在线观看免费| 国产欧美日韩一区二区精品| 国产精品国产三级国产专区5o| 久久中文字幕一级| 亚洲欧美日韩高清在线视频 | cao死你这个sao货| 一本综合久久免费| 90打野战视频偷拍视频| 啦啦啦中文免费视频观看日本| 日韩精品免费视频一区二区三区| 亚洲精品乱久久久久久| 人人妻,人人澡人人爽秒播| a在线观看视频网站| 亚洲专区字幕在线| 国产精品一区二区在线观看99| 久久ye,这里只有精品| 国产亚洲精品第一综合不卡| 久久精品久久久久久噜噜老黄| 午夜激情av网站| 日韩视频一区二区在线观看| 又紧又爽又黄一区二区| 交换朋友夫妻互换小说| 午夜福利影视在线免费观看| 精品久久久久久久毛片微露脸 | 一区二区日韩欧美中文字幕| 亚洲第一欧美日韩一区二区三区 | 日韩视频在线欧美| 18禁裸乳无遮挡动漫免费视频| 黄色 视频免费看| av超薄肉色丝袜交足视频| 久久精品国产综合久久久| 深夜精品福利| 高清在线国产一区| 成年动漫av网址| 日本vs欧美在线观看视频| 妹子高潮喷水视频| 这个男人来自地球电影免费观看| 欧美性长视频在线观看| 欧美日韩亚洲综合一区二区三区_| 淫妇啪啪啪对白视频 | 亚洲成国产人片在线观看| 精品国产超薄肉色丝袜足j| 在线看a的网站| 亚洲av片天天在线观看| 五月开心婷婷网| 久久ye,这里只有精品| 美女视频免费永久观看网站| 五月开心婷婷网| 亚洲国产精品一区三区| 人人妻,人人澡人人爽秒播| 丝袜美腿诱惑在线| 久久精品国产综合久久久| 捣出白浆h1v1| 精品一区二区三区av网在线观看 | 人人妻人人爽人人添夜夜欢视频| 日韩中文字幕视频在线看片| 无遮挡黄片免费观看| 操出白浆在线播放| 久久久久久人人人人人| 别揉我奶头~嗯~啊~动态视频 | 日韩制服骚丝袜av| 国产一级毛片在线| 两性夫妻黄色片| 国产精品1区2区在线观看. | 少妇被粗大的猛进出69影院| 高清av免费在线| 新久久久久国产一级毛片| 欧美日韩福利视频一区二区| 12—13女人毛片做爰片一| 丝袜人妻中文字幕| 秋霞在线观看毛片| 免费看十八禁软件| 国产精品99久久99久久久不卡| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利影视在线免费观看| 黄色视频,在线免费观看| 久久国产亚洲av麻豆专区| 亚洲久久久国产精品| 亚洲欧洲精品一区二区精品久久久| 欧美97在线视频| av片东京热男人的天堂| 女人高潮潮喷娇喘18禁视频| 色婷婷av一区二区三区视频| 久久精品国产a三级三级三级| 99香蕉大伊视频| 国产无遮挡羞羞视频在线观看| 亚洲国产精品一区二区三区在线| 久久综合国产亚洲精品| 国产欧美日韩一区二区三区在线| 久久国产精品大桥未久av| 日韩一卡2卡3卡4卡2021年| 97人妻天天添夜夜摸| 久久亚洲精品不卡| 大香蕉久久成人网| 中文字幕精品免费在线观看视频| 日韩视频在线欧美| 91国产中文字幕| 国产亚洲精品一区二区www | 多毛熟女@视频| 国产无遮挡羞羞视频在线观看| 狠狠狠狠99中文字幕| 看免费av毛片| 纯流量卡能插随身wifi吗| 欧美精品一区二区大全| 窝窝影院91人妻| 国产成人系列免费观看| 国产色视频综合| 亚洲专区字幕在线| h视频一区二区三区| 中文欧美无线码| 美女福利国产在线| 美女中出高潮动态图| 欧美人与性动交α欧美精品济南到| 国产在视频线精品| 久久亚洲国产成人精品v| 亚洲免费av在线视频| 激情视频va一区二区三区| 中文字幕人妻丝袜制服| 久久热在线av| tube8黄色片| 成年人黄色毛片网站| av不卡在线播放| 国产在线视频一区二区| 中文精品一卡2卡3卡4更新| 久久久久久免费高清国产稀缺| 久久中文字幕一级| 久久久久久久久免费视频了| 国产精品麻豆人妻色哟哟久久| 成人手机av| 九色亚洲精品在线播放| 久久精品人人爽人人爽视色| 黄色a级毛片大全视频| 亚洲av美国av| 脱女人内裤的视频| 视频区欧美日本亚洲| 真人做人爱边吃奶动态| 国产精品一区二区在线观看99| 亚洲国产欧美网| 国产免费现黄频在线看| 一本综合久久免费| 永久免费av网站大全| 美女国产高潮福利片在线看| 美女大奶头黄色视频| 777久久人妻少妇嫩草av网站| 亚洲国产欧美一区二区综合| 亚洲中文字幕日韩| tocl精华| 丝瓜视频免费看黄片| 国产一区二区在线观看av| 精品人妻1区二区| 99久久精品国产亚洲精品| 精品人妻一区二区三区麻豆| 777米奇影视久久| 欧美97在线视频| 亚洲国产中文字幕在线视频| 另类亚洲欧美激情| 亚洲欧美日韩高清在线视频 | 欧美人与性动交α欧美精品济南到| 国产成人欧美| 日韩制服骚丝袜av| 日本欧美视频一区| 夫妻午夜视频| 久久亚洲国产成人精品v| 青青草视频在线视频观看| 国产欧美日韩精品亚洲av| 啦啦啦中文免费视频观看日本| 女人久久www免费人成看片| 少妇猛男粗大的猛烈进出视频| 久久女婷五月综合色啪小说| av不卡在线播放| 69av精品久久久久久 | 少妇被粗大的猛进出69影院| 青青草视频在线视频观看| 日韩,欧美,国产一区二区三区| 国产免费视频播放在线视频| 少妇裸体淫交视频免费看高清 | 老司机影院毛片| 美国免费a级毛片| 亚洲欧美一区二区三区黑人| 国产精品免费视频内射| 亚洲熟女精品中文字幕| 99国产极品粉嫩在线观看| 最新在线观看一区二区三区| 欧美97在线视频| 老司机影院毛片| 一区二区三区乱码不卡18| 亚洲欧美一区二区三区黑人| 精品少妇一区二区三区视频日本电影| 波多野结衣一区麻豆| 久久人人97超碰香蕉20202| 日本wwww免费看| 97在线人人人人妻| 免费久久久久久久精品成人欧美视频| 亚洲成人国产一区在线观看| 国产1区2区3区精品| 国产精品av久久久久免费| 老司机深夜福利视频在线观看 | 亚洲精品国产区一区二| 久久久精品国产亚洲av高清涩受| 国产又爽黄色视频| 男女高潮啪啪啪动态图| 老汉色av国产亚洲站长工具| 午夜91福利影院| 性色av乱码一区二区三区2| 黄色视频在线播放观看不卡| 两性夫妻黄色片| 91字幕亚洲| 国产区一区二久久| 在线观看免费视频网站a站| 久久ye,这里只有精品| 老汉色av国产亚洲站长工具| 女人爽到高潮嗷嗷叫在线视频| 天天添夜夜摸| 成年人午夜在线观看视频| 最新的欧美精品一区二区| 欧美 日韩 精品 国产| 国产一区二区 视频在线| 宅男免费午夜| 精品国内亚洲2022精品成人 | 涩涩av久久男人的天堂| 国产男女内射视频| 欧美黑人欧美精品刺激| 热re99久久国产66热| 51午夜福利影视在线观看| 欧美精品亚洲一区二区| 日本av免费视频播放| 99久久人妻综合| 777米奇影视久久| 蜜桃在线观看..| 啦啦啦在线免费观看视频4| 99精国产麻豆久久婷婷| 黄色视频在线播放观看不卡| 香蕉国产在线看| 人人妻,人人澡人人爽秒播| 午夜激情久久久久久久| 人妻一区二区av| 91精品伊人久久大香线蕉| 亚洲欧美精品自产自拍| 国产日韩欧美视频二区| 亚洲欧美成人综合另类久久久| 国产日韩欧美在线精品| 亚洲av电影在线观看一区二区三区| 国产在线免费精品| 在线十欧美十亚洲十日本专区| 最新的欧美精品一区二区| 国产欧美日韩一区二区三区在线| 少妇的丰满在线观看| 在线永久观看黄色视频| 黄色毛片三级朝国网站| 日本a在线网址| 亚洲三区欧美一区| 极品人妻少妇av视频| av欧美777| 精品国产乱子伦一区二区三区 | 黑人巨大精品欧美一区二区mp4| 99香蕉大伊视频| 少妇精品久久久久久久| 青春草亚洲视频在线观看| 欧美激情极品国产一区二区三区| 夜夜骑夜夜射夜夜干| 男女边摸边吃奶| 午夜视频精品福利| 777米奇影视久久| 一本一本久久a久久精品综合妖精| 看免费av毛片| 黄色视频不卡| 中文字幕av电影在线播放| 男女床上黄色一级片免费看| av一本久久久久| h视频一区二区三区| 高清av免费在线| 精品视频人人做人人爽| av网站在线播放免费| 亚洲成人免费av在线播放| 女人精品久久久久毛片| 亚洲成人免费av在线播放| av又黄又爽大尺度在线免费看| 少妇精品久久久久久久| 日韩大片免费观看网站| 在线观看人妻少妇| 成人国产av品久久久| 亚洲国产欧美网| 日韩 亚洲 欧美在线| 男女免费视频国产| 天天躁日日躁夜夜躁夜夜| 十八禁网站免费在线| 50天的宝宝边吃奶边哭怎么回事| 免费在线观看完整版高清| 欧美另类亚洲清纯唯美| 免费少妇av软件| 2018国产大陆天天弄谢| 国产成人系列免费观看| 国产成人欧美在线观看 | 狂野欧美激情性xxxx| 国产日韩欧美在线精品| 欧美日韩亚洲国产一区二区在线观看 | 在线精品无人区一区二区三| 黄色怎么调成土黄色| 精品人妻熟女毛片av久久网站| 亚洲色图综合在线观看| 成人免费观看视频高清| 午夜91福利影院| 免费观看av网站的网址| 超碰成人久久| 亚洲黑人精品在线| 亚洲精品第二区| 国产精品成人在线| 午夜视频精品福利| 国产一区二区在线观看av| 丝袜喷水一区| www.精华液| 热99久久久久精品小说推荐| 啦啦啦中文免费视频观看日本| 99国产精品一区二区蜜桃av | 黄网站色视频无遮挡免费观看| 国产97色在线日韩免费| 亚洲,欧美精品.| 一区二区三区乱码不卡18| 91国产中文字幕| 午夜影院在线不卡| 一区二区三区四区激情视频| 电影成人av| 亚洲伊人色综图| 丰满迷人的少妇在线观看| 久久人妻熟女aⅴ| 欧美 日韩 精品 国产| 日本猛色少妇xxxxx猛交久久| 国产亚洲欧美在线一区二区| 水蜜桃什么品种好| 性少妇av在线| 他把我摸到了高潮在线观看 | 波多野结衣av一区二区av| 午夜免费鲁丝| 啪啪无遮挡十八禁网站| 日韩欧美国产一区二区入口| 91大片在线观看| 99国产综合亚洲精品| 欧美日韩黄片免| 熟女少妇亚洲综合色aaa.| 大香蕉久久网| 国产视频一区二区在线看| 十分钟在线观看高清视频www| 91精品三级在线观看| 色老头精品视频在线观看| 国产成人一区二区三区免费视频网站| 91麻豆精品激情在线观看国产 | 人妻人人澡人人爽人人| 亚洲中文av在线| 精品久久久精品久久久| 啪啪无遮挡十八禁网站| 一边摸一边做爽爽视频免费| av福利片在线| 丝袜喷水一区| 久久ye,这里只有精品| 欧美激情极品国产一区二区三区| 美国免费a级毛片| 亚洲精华国产精华精| 国产精品久久久久久精品古装| 国产一区二区在线观看av| 美女中出高潮动态图| 久久久久久久久免费视频了| 午夜福利免费观看在线| 色老头精品视频在线观看| 亚洲人成电影观看| 成人国产一区最新在线观看| 精品欧美一区二区三区在线| 1024香蕉在线观看| 91精品伊人久久大香线蕉| 在线看a的网站| 另类精品久久| 国产区一区二久久| 国产欧美日韩一区二区三 | 欧美+亚洲+日韩+国产| 可以免费在线观看a视频的电影网站| 热99久久久久精品小说推荐| 99国产精品99久久久久| 亚洲欧美精品自产自拍| 日韩中文字幕欧美一区二区| 性少妇av在线| 另类亚洲欧美激情| 丝袜美足系列|