• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dual Variational Generation Based ResNeSt for Near Infrared-Visible Face Recognition

    2022-05-09 06:48:14DINGXiangwu丁祥武LIUChaoQINYanxia秦彥霞

    DING Xiangwu(丁祥武), LIU Chao(劉 超), QIN Yanxia(秦彥霞)

    College of Computer Science and Technology, Donghua University, Shanghai 201620, China

    Abstract: Near infrared-visible (NIR-VIS) face recognition is to match an NIR face image to a VIS image. The main challenges of NIR-VIS face recognition are the gap caused by cross-modality and the lack of sufficient paired NIR-VIS face images to train models. This paper focuses on the generation of paired NIR-VIS face images and proposes a dual variational generator based on ResNeSt (RS-DVG). RS-DVG can generate a large number of paired NIR-VIS face images from noise, and these generated NIR-VIS face images can be used as the training set together with the real NIR-VIS face images. In addition, a triplet loss function is introduced and a novel triplet selection method is proposed specifically for the training of the current face recognition model, which maximizes the inter-class distance and minimizes the intra-class distance in the input face images. The method proposed in this paper was evaluated on the datasets CASIA NIR-VIS 2.0 and BUAA-VisNir, and relatively good results were obtained.

    Key words: near infrared-visible face recognition; face image generation; ResNeSt; triplet loss function; attention mechanism

    Introduction

    Face recognition has always been a hot topic in computer vision. Although conventional face recognition is relatively mature, it is sensitive to illumination environment and cannot properly perform face recognition in low light or dark environment[1]. In contrast, near infrared (NIR) imaging can capture high-quality face images in low light or even dark environment, so the robustness of NIR imaging to light can largely compensate for the shortcomings of conventional face recognition.

    Near infrared-visible (NIR-VIS) face recognition is a branch of heterogeneous face recognition (HFR), and current NIR-VIS face recognition faces two major challenges. (1) Cross-modality gap: NIR face images are captured under infrared imaging device and VIS face images are captured under visible imaging sensor. And this difference leads to a significant gap between face images from the same identity in different modalities. (2) Lack of sufficient paired NIR-VIS face images: one of the reasons that traditional face recognition is relatively well developed is a large number of VIS face images available. However, the size of the currently available NIR-VIS face images is relatively small, and using small-scale datasets to train the HFR is prone to overfitting. Obtaining pairs of NIR-VIS face images is a time-consuming and expensive task.

    The current NIR-VIS face recognition methods can be mainly categorized into three classes[1]: invariant feature learning, subspace learning, and image synthesis. Invariant feature learning is used to learn identity-related features only between NIR face images and VIS face images, such as the deep transfer convolutional neural network for NIR-VIS face recognition proposed by Liuetal.[2], which learns invariant features on NIR-VIS face images by fine-tuning a model pre-trained with VIS face images. Yangetal.[3]combined adversarial learning to integrate modality-level and class-level alignments into a quadratic framework. Modality-level alignment in the framework is used to eliminate modality-related information and retain modality-invariant features, and class-level alignment is used to minimize the intra-class distance and to maximize the inter-class distance. The subspace learning approach focuses on learning identity discrimination features by mapping NIR face image features and VIS face image features into a common subspace. For example, Heetal.[4]used Wasserstein distance to minimize the feature distance between the NIR face image and VIS face image of the same person in a common subspace. Huangetal.[5]proposed a discriminative spectrum algorithm that minimized the feature distance between NIR face image and VIS face image from the same person in the subspace and maximized the feature distance between NIR face image and VIS face image of different identities. The image synthesis method is to synthesize cross-modality face images from the source domain to the target domain, thus transforming a cross-modality recognition problem into a single modality recognition problem. For example, a method for reconstructing VIS face images in the NIR modality is proposed by Juefei-Xuetal.[6]. Heetal.[7]used an end-to-end depth framework based on generative adversarial networks (GAN)[8]to convert NIR face images into VIS face images. Fuetal.[9]proposed an image synthesis method based on dual variational generation (DVG) from the perspective of expanding the training set, which could generate a large number of paired NIR-VIS face images from noise, thus effectively increasing the size of the training set.

    To tackle the challenges in NIR-VIS face recognition, a DVG based on ResNeSt[10](RS-DVG) is proposed in this paper, which adopts the idea of DVG[9]and focuses on generating paired NIR-VIS face images. RS-DVG can generate a large number of paired NIR-VIS face images from noise, and is only concerned with the identity consistency between the generated NIR-VIS face images in pairs. Moreover, a triplet loss function which maximizes the inter-class distance and minimizes the intra-class distance in the input face images is introduced, and a novel triplet selection method is proposed specifically for the training of NIR-VIS face recognition model.

    1 Proposed Method

    This section is a detailed introduction to the RS-DVG proposed in this paper. Firstly, the ResNeSt used in this paper will be introduced, followed by a detailed introduction to the RS-DVG and its associated loss function, and finally the RS-DVG based NIR-VIS face recognition and the corresponding loss function will be introduced.

    1.1 ResNeSt

    ResNet[11]is a widely used convolutional neural network, which is proposed to reduce the difficulty of training deep neural networks, but ResNet has a limited receptive field size and lacks interaction between cross-feature map channels. ResNeSt[10]compensates for the shortcomings of ResNet by introducing a split attention module. The ResNeSt and ResNet structures are shown in Fig. 1. The Conv in Fig. 1 indicates the convolutional layer in the network.

    Fig. 1 Structures: (a) ResNet; (b) ResNeSt; (c) split attention unit

    ResNet improves the efficiency of information propagation in the network by adding a skip connection between multiple convolutional layers, as shown in Fig. 1(a), but it does not take into account the interaction between input feature map channels. ResNeSt introduces a split-attention module based on ResNet, as shown in Fig. 1(b). ResNeSt splits the input feature map intoKcardinal groups along the channel dimension and splits each cardinal group intoRsplits. So the total number of feature splits isG=K×R. The intermediate representation of a split can be defined asUi=i(X), whereidenotes the transformations performed on the inputXin spliti,i∈{1, 2,…,G}. The representation of each cardinal group can be defined ask∈{1, 2,…,K},C′=C/K, andH,W, andCdenote the feature map size of the input of ResNeSt block. Besides, the global average pooling operation across the spatial dimensionsk∈RC′is used to obtain the global contextual representation information of the statistical information of each channel, for example, the formula for thec-th component can be expressed as(i,j).

    (1)

    1.2 Dual variational generation based ResNeSt

    The RS-DVG structure proposed in this paper is the same as DVG[9], which consists of two encodersENandEV, and a decoderDI, as shown in Fig. 2.Fipis the face image feature extractor, as seen in section 1.3. The encoder and decoder network structure in DVG is based on ResNet, but the encoder and decoder network structure in RS-DVG is based on ResNeSt, as shown in Fig. 3, where Fig. 3(a) represents the network structure ofENandEV, and Fig. 3(b) represents the network structure ofDI.

    Fig. 2 Structure of RS-DVG

    Fig. 3 Structures in RS-DVG: (a) encoder; (b) decoder

    The two encoders in RS-DVG are used to map the input NIR face imagexNand VIS face imagexVto the distributionsq?N(zN|xN) andq?V(zV|xV), respectively, where ?Nand ?Vare the parameters learned by the encoder. The encoder is trained so that the encoding resultsq?N(zN|xN) andq?V(zV|xV) can sufficiently approximate the distributionp(zi) corresponding to the latent variablezi, wherei∈{N,V}. In this paper, the distributionsp(zN) andp(zV) are set to be multivariate standard Gaussian distributions. The meanμiand standard deviationσi(i∈{N,V}) can be obtained from the output of the encoder. Since the backpropagation operation cannot be performed directly onμiandσi, to train the decoder, a reparameterization operation is adoped in this paper:zi=μi+σi⊙, wherei∈{N,V},is the standard Gaussian distribution sampling value, and ⊙ in this paper is the Hadamard product. The decoder is used to reconstruct the joint distributionpθ(xN,xV|zI) of the NIR face image and the VIS face image, wherezIis the result of combiningzNandzVobtained by sampling fromq?N(zNxN) andq?V(zVxV), respectively, andθdenotes the parameter learned by the decoder.

    1.3 Loss function in RS-DVG

    This subsection provides a detailed description of the loss functions involved in the training process of the RS-DVG.

    For training the encoder, Eq. (2) is used as

    (2)

    whereDKLdenotes the KL divergence, and both the distributionsp(zN) andp(zV) are multivariate standard Gaussian distributions. To enable the decoder to reconstruct the face imagesxNandxV, the following equation is used

    (3)

    wherepθ(xN,xV|zI) is the joint distribution fitted by the decoder, andq?V(zV|xV)∪q?N(zN|xN)denotes the joint distribution of the distributions fitted by the two encoders, separately.

    (4)

    (5)

    (6)

    whereλ1andλ2are the trade-off parameters.

    1.4 NIR-VIS face recognition based RS-DVG

    This paper uses LightCNN-29[13]as the feature extractorF, as shown in Fig. 4, whereDIis the decoder in the trained RS-DVG.

    Fig. 4 Structure of NIR-VIS face recognition

    The structure ofFis shown in Fig. 5, where MFM is the activation function max-feature-map which is an extension of the maxout activation function. Maxout uses enough hidden neurons to be infinitely close to a convex function, but MFM makes the convolutional neural network lighter and more robust by suppressing a small number of neurons.

    Fig. 5 Structure of LightCNN-29

    (7)

    1.5 Loss function in NIR-VIS face recognition

    In this paper, real data and generated data constitute the training set for NIR-VIS face recognition. What the generated data and the real data have in common is the identity consistency between every paired NIR-VIS face images, while the difference is that the generated face images do not belong to a specific category, while the real face images have their corresponding identity categories. Therefore, different loss functions were used in the training for both generated and real data, which were described in detail in this subsection.

    (8)

    (9)

    (10)

    whereα1is the trade-off parameters.

    2 Experiments Evaluation

    In this section, some experiments will be carried out on two challenging datasets, including CASIA NIR-VIS 2.0[14]and BUAA-VisNir[15], to illustrate the effectiveness of RS_DVG framework in paired NIR-VIS face images generation. Then, the accuracy of RS_DVG’s NIR-VIS is evaluated against state-of-the-art heterogeneous face recognition on these datasets.

    2.1 Datasets and protocol

    The total number of the subjects in CASIA NIR-VIS 2.0 dataset is 725. Each subject has 1-22 VIS and 5-50 NIR face images. This training follows the View2[14]protocol and includes tenfold cross-validation, where the training set includes nearly 6 100 NIR face images and 2 500 VIS face images from about 360 identities, and the testing set contains 358 VIS face images and 6 000 NIR face images from 358 identities. There was no intersection between training and testing sets. The final evaluation metrics were Rank-1 accuracy and verification rate at a false acceptance rate of 0.1%(i.e.,VR@FAR=0.1%).

    The BUAA-VisNir dataset consists of NIR face images and VIS face images from 150 identities. The training set consists of approximately 1 200 face images from 50 identities, and the test set is approximately 1 300 face images from the remaining 100 identities. The test was conducted using NIR face images to match VIS face images. The final evaluation metrics were Rank-1 accuracy,VR@FAR=1.0%, andVR@FAR=0.1%, respectively.

    2.2 Experimental settings

    The backbone for the encoder and decoder in RS-DVG is ResNeSt, with a parameterKof 2 and a parameterRof 1. The feature extractor used in RS-DVG is LightCNN-29[13], pre-trained on the dataset MS-Celeb-1M[16], with an optimizer Adam and an initial learning rate of 2×10-4. The NIR-VIS face recognition backbone is LightCNN-29 with a stochastic gradient descent optimizer and an initial learning rate of 10-3, which decreases to 5×10-4as the model is trained.

    2.3 Experimental results

    2.3.1 Datageneration

    For experimental comparison, the VAE[17]was trained with CASIA NIR-VIS 2.0 dataset. Samples drawn from it after training are shown in Fig. 6(a). The proposed RS-DVG was trained with CASIA NIR-VIS 2.0 dataset, and then 100 000 paired NIR-VIS face images were generated by it. Generated samples(128×128) are shown in Fig. 6(b). With BUAA-VisNir dataset, RS-DVG was trained, and also generated 100 000 paired NIR-VIS face images. Part samples are shown in Fig. 6(c).

    Fig. 6 NIR-VIS face images generated from: (a) VAE trained with CASIA NIR-VIS 2.0 dataset; (b) RS-DVG trained with CASIA NIR-VIS 2.0 dataset; (c) RS-DVG trained with BUAA-VisNir dataset(the first row shows the NIR face image and the second row shows the corresponding VIS face image)

    These experiments show that RS-DVG outperforms its competitors, especially on CASIA NIR-VIS 2.0 dataset. RS-DVG generates new paired images with clear outline, and abundant intraclass diversity (e.g., the pose and the expression).

    2.3.2 NIR-VISfacerecognition

    The recognition performance of our proposed RS-DVG is demonstrated in this section on two heterogeneous face recognition datasets. The performance of state-of-the-art methods, such as transfer NIR-VIS heterogeneous face recognition network (TRIVET)[2], Wasserstein CNN (W-CNN)[4], invariant deep representation (IDR)[18], coupled deep learning (CDL)[19], disentangled variational representation (DVR)[20], and DVG is compared in Table 1.

    Table 1 shows that on CASIA NIR-VIS 2.0 dataset, RS-DVG achieves 99.9% and 99.8% recognition rates in the Rank-1 andVR@FAR=0.1%, respectively. And compared to DVG, it improves Rank-1 accuracy from 99.8% to 99.9%. On BUAA-VisNir dataset, RS-DVG also achieves the highest Rank-1 accuracy. Compared to DVG, RS-DVG improvesVR@FAR=0.1% from 97.3% to 97.5% and improvesVR@FAR=1% from 98.5% to 98.6%.

    Table 1 Experimental results of NIR-VIS face recognition

    3 Conclusions

    In this paper, a dual variational generator based ResNeSt is proposed, which can generate a large amount of pairwise heterogeneous data from noise, which can effectively expand the training set size of heterogeneous face recognition. A triplet loss function is introduced and a novel triplet selection method is proposed specifically for the training of the current heterogeneous face recognition, which maximizes the inter-class distance and minimizes the intra-class distance in the input face images. The experimental results on two datasets demonstrate the effectiveness of the method proposed in this paper.

    国产精品国产三级国产专区5o | 女人久久www免费人成看片 | 真实男女啪啪啪动态图| 插阴视频在线观看视频| 国产淫语在线视频| 99久久精品国产国产毛片| 国产精品av视频在线免费观看| 国产老妇女一区| 国产成人a区在线观看| 韩国av在线不卡| 亚洲四区av| av视频在线观看入口| 免费无遮挡裸体视频| 一级毛片aaaaaa免费看小| 久久韩国三级中文字幕| av国产免费在线观看| 国产精品.久久久| av专区在线播放| 午夜老司机福利剧场| 草草在线视频免费看| 午夜老司机福利剧场| 国产精品一区二区三区四区久久| 欧美日韩国产亚洲二区| 99热6这里只有精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品久久视频播放| 国产日韩欧美在线精品| 插阴视频在线观看视频| 久久久久久久午夜电影| 国产不卡一卡二| 天堂网av新在线| 中国国产av一级| 欧美日韩在线观看h| 亚洲最大成人中文| 国产在视频线在精品| 久久精品国产亚洲网站| 成人性生交大片免费视频hd| 成人无遮挡网站| 国产精品精品国产色婷婷| 亚洲精品成人久久久久久| 免费观看精品视频网站| 国产淫片久久久久久久久| 亚洲精品国产成人久久av| 高清日韩中文字幕在线| 你懂的网址亚洲精品在线观看 | 久久久午夜欧美精品| 亚洲欧美日韩东京热| 又爽又黄无遮挡网站| 国产老妇伦熟女老妇高清| 国产成年人精品一区二区| 国产av在哪里看| 白带黄色成豆腐渣| 久久久久网色| 男女下面进入的视频免费午夜| 人妻制服诱惑在线中文字幕| 日本一本二区三区精品| 少妇裸体淫交视频免费看高清| 日韩人妻高清精品专区| 成人综合一区亚洲| 中文字幕精品亚洲无线码一区| 国产成人福利小说| 国产亚洲5aaaaa淫片| 国产精品一区二区性色av| 岛国毛片在线播放| av在线老鸭窝| 亚洲一区高清亚洲精品| 日韩av在线大香蕉| 欧美性猛交╳xxx乱大交人| 少妇丰满av| 纵有疾风起免费观看全集完整版 | 国产精品无大码| 小蜜桃在线观看免费完整版高清| 能在线免费观看的黄片| 嫩草影院新地址| 亚洲av免费在线观看| 国产真实伦视频高清在线观看| 天堂中文最新版在线下载 | 免费观看a级毛片全部| 网址你懂的国产日韩在线| 国产精品永久免费网站| 久99久视频精品免费| 一级毛片我不卡| 美女国产视频在线观看| 黄色一级大片看看| 久久久欧美国产精品| 成人午夜精彩视频在线观看| 又爽又黄a免费视频| 一卡2卡三卡四卡精品乱码亚洲| 能在线免费看毛片的网站| 亚洲av成人精品一二三区| 日本免费在线观看一区| 午夜视频国产福利| 男女那种视频在线观看| 亚洲欧美中文字幕日韩二区| 一夜夜www| 一个人观看的视频www高清免费观看| 99热网站在线观看| 日本色播在线视频| 天天躁夜夜躁狠狠久久av| 日本熟妇午夜| 99热精品在线国产| 嫩草影院入口| 亚洲怡红院男人天堂| 亚洲伊人久久精品综合 | 黄色一级大片看看| 国产精品.久久久| 亚洲图色成人| 男插女下体视频免费在线播放| 精品久久久久久久末码| 欧美zozozo另类| 长腿黑丝高跟| 国产av不卡久久| 国产成人91sexporn| 久久国产乱子免费精品| 精品人妻视频免费看| 欧美日韩一区二区视频在线观看视频在线 | 国产老妇女一区| 级片在线观看| 日本一二三区视频观看| 国产亚洲91精品色在线| 亚洲乱码一区二区免费版| 成人毛片60女人毛片免费| 精品国产一区二区三区久久久樱花 | av.在线天堂| 精品少妇黑人巨大在线播放 | 看十八女毛片水多多多| 亚洲在线观看片| 99久国产av精品| 麻豆av噜噜一区二区三区| 国产精品伦人一区二区| 国产精品久久久久久久久免| 久久精品国产亚洲av天美| 中文字幕久久专区| 99久久人妻综合| 韩国高清视频一区二区三区| 99热全是精品| 成人av在线播放网站| 三级毛片av免费| 欧美成人a在线观看| 亚洲婷婷狠狠爱综合网| 大香蕉97超碰在线| 午夜爱爱视频在线播放| 精品无人区乱码1区二区| 99久国产av精品国产电影| 男人的好看免费观看在线视频| 一本一本综合久久| 麻豆成人午夜福利视频| 午夜激情欧美在线| 在线免费观看不下载黄p国产| 日本爱情动作片www.在线观看| 乱人视频在线观看| 亚洲av中文av极速乱| 成人国产麻豆网| 成人毛片60女人毛片免费| 熟女电影av网| 网址你懂的国产日韩在线| 一级爰片在线观看| 高清视频免费观看一区二区 | 性色avwww在线观看| 国产精品熟女久久久久浪| 亚洲最大成人手机在线| 亚洲综合精品二区| 久久精品夜色国产| 久久精品国产亚洲网站| 一级av片app| 久久精品国产亚洲av天美| 久久久精品大字幕| 日日摸夜夜添夜夜添av毛片| 国产午夜精品论理片| 三级男女做爰猛烈吃奶摸视频| 小说图片视频综合网站| 99久国产av精品| 亚洲成人久久爱视频| 亚洲va在线va天堂va国产| 免费看美女性在线毛片视频| 一级二级三级毛片免费看| 久久精品综合一区二区三区| 变态另类丝袜制服| 欧美精品国产亚洲| 国产成人精品婷婷| 变态另类丝袜制服| 午夜免费男女啪啪视频观看| 99久久精品国产国产毛片| 毛片一级片免费看久久久久| 亚洲国产最新在线播放| 欧美色视频一区免费| 丝袜美腿在线中文| 亚洲国产欧美人成| 欧美激情在线99| 18禁裸乳无遮挡免费网站照片| 99久久精品国产国产毛片| 一级黄片播放器| 麻豆乱淫一区二区| 99热全是精品| 亚洲国产色片| 男人和女人高潮做爰伦理| 国产亚洲av嫩草精品影院| 男人和女人高潮做爰伦理| 性色avwww在线观看| 国产精品精品国产色婷婷| 午夜亚洲福利在线播放| 天天躁日日操中文字幕| 99久国产av精品国产电影| 日韩 亚洲 欧美在线| 国产69精品久久久久777片| 亚洲欧美精品综合久久99| 国产色婷婷99| 亚洲在久久综合| 国产又黄又爽又无遮挡在线| 高清毛片免费看| 麻豆精品久久久久久蜜桃| 内地一区二区视频在线| 热99re8久久精品国产| 春色校园在线视频观看| 精品人妻熟女av久视频| 能在线免费看毛片的网站| 一边摸一边抽搐一进一小说| 亚洲av免费高清在线观看| 国产精品久久久久久精品电影小说 | 日韩成人伦理影院| 免费无遮挡裸体视频| 亚洲精品aⅴ在线观看| 久久精品久久久久久噜噜老黄 | 免费黄色在线免费观看| 久久久国产成人精品二区| 国产高清三级在线| 99久久人妻综合| 国产69精品久久久久777片| 午夜激情福利司机影院| 一区二区三区乱码不卡18| 春色校园在线视频观看| 午夜爱爱视频在线播放| 久久人人爽人人片av| 亚洲欧美精品综合久久99| 亚洲美女搞黄在线观看| 亚洲在线观看片| 欧美高清成人免费视频www| 网址你懂的国产日韩在线| 国产激情偷乱视频一区二区| 亚洲在线观看片| 免费在线观看成人毛片| 国产麻豆成人av免费视频| 国产精品嫩草影院av在线观看| 69av精品久久久久久| 亚洲av.av天堂| 亚洲内射少妇av| 国国产精品蜜臀av免费| 99国产精品一区二区蜜桃av| 亚洲欧美一区二区三区国产| 精品人妻一区二区三区麻豆| 熟妇人妻久久中文字幕3abv| 我的老师免费观看完整版| 国产一区二区在线观看日韩| 亚洲伊人久久精品综合 | 亚洲欧美日韩无卡精品| 欧美精品一区二区大全| 欧美日韩在线观看h| 久久精品国产自在天天线| 国产成人精品婷婷| 嫩草影院新地址| 简卡轻食公司| 级片在线观看| 欧美高清成人免费视频www| 看十八女毛片水多多多| 一区二区三区高清视频在线| 美女大奶头视频| 亚洲精品乱久久久久久| 久久婷婷人人爽人人干人人爱| 菩萨蛮人人尽说江南好唐韦庄 | 欧美zozozo另类| 日本av手机在线免费观看| 人妻少妇偷人精品九色| 成人性生交大片免费视频hd| 在线免费观看不下载黄p国产| 成人性生交大片免费视频hd| 在线免费十八禁| 成人亚洲精品av一区二区| 精品国内亚洲2022精品成人| 插阴视频在线观看视频| 国产成人aa在线观看| 国产精品永久免费网站| 熟妇人妻久久中文字幕3abv| 久久欧美精品欧美久久欧美| 亚洲综合色惰| 国产视频首页在线观看| 日本欧美国产在线视频| 欧美一级a爱片免费观看看| 九草在线视频观看| 免费av不卡在线播放| 国产免费一级a男人的天堂| 亚洲国产精品sss在线观看| 午夜a级毛片| 爱豆传媒免费全集在线观看| 欧美性感艳星| 成人无遮挡网站| 美女高潮的动态| 黄色欧美视频在线观看| 少妇熟女aⅴ在线视频| 久久久久久九九精品二区国产| 男女下面进入的视频免费午夜| 国产精品日韩av在线免费观看| 嫩草影院入口| 热99re8久久精品国产| 欧美高清性xxxxhd video| 国产在线男女| 大香蕉久久网| 身体一侧抽搐| 国产精品一及| 成人午夜高清在线视频| 国产黄色视频一区二区在线观看 | 国产精品1区2区在线观看.| 免费看a级黄色片| 黑人高潮一二区| 美女xxoo啪啪120秒动态图| 丰满少妇做爰视频| 国产成人aa在线观看| 超碰97精品在线观看| 一级毛片aaaaaa免费看小| 精品国产一区二区三区久久久樱花 | 在线观看美女被高潮喷水网站| 亚洲人与动物交配视频| 黄色欧美视频在线观看| 三级经典国产精品| 亚洲欧洲国产日韩| 青青草视频在线视频观看| 国产美女午夜福利| 免费人成在线观看视频色| .国产精品久久| 久久久亚洲精品成人影院| 午夜福利高清视频| 日本五十路高清| 国产一区二区在线观看日韩| 亚洲av.av天堂| 亚洲精品国产成人久久av| 69人妻影院| 国产精品一二三区在线看| 九九爱精品视频在线观看| 欧美+日韩+精品| av天堂中文字幕网| 亚洲乱码一区二区免费版| 色综合亚洲欧美另类图片| av国产免费在线观看| 亚洲国产欧美人成| 午夜激情福利司机影院| 99久久精品一区二区三区| 色网站视频免费| 国产 一区精品| 中国国产av一级| 久久久久网色| 国产精品野战在线观看| 亚洲av中文av极速乱| 欧美性感艳星| 欧美xxxx性猛交bbbb| 天堂网av新在线| 日本熟妇午夜| 黄片无遮挡物在线观看| 中文精品一卡2卡3卡4更新| av卡一久久| 成人av在线播放网站| 日韩视频在线欧美| 寂寞人妻少妇视频99o| 精品午夜福利在线看| av女优亚洲男人天堂| 秋霞伦理黄片| 久久欧美精品欧美久久欧美| 乱人视频在线观看| 久久精品久久久久久久性| 久久久久免费精品人妻一区二区| 91aial.com中文字幕在线观看| 嫩草影院新地址| 免费看日本二区| 黄色日韩在线| www.色视频.com| 毛片女人毛片| 99久久人妻综合| 久久精品国产亚洲av涩爱| 中文欧美无线码| 亚洲av一区综合| 免费黄网站久久成人精品| 国产极品精品免费视频能看的| 色哟哟·www| 亚洲精品456在线播放app| 三级经典国产精品| 日韩大片免费观看网站 | 亚洲国产色片| 国产成人a区在线观看| 在线天堂最新版资源| 久久人人爽人人爽人人片va| 日本一二三区视频观看| 国产伦精品一区二区三区视频9| 欧美一区二区精品小视频在线| 人人妻人人澡欧美一区二区| 久久久久久久久久黄片| 久久久久久大精品| 成人无遮挡网站| 亚洲av电影不卡..在线观看| 一区二区三区乱码不卡18| 免费看av在线观看网站| 中国美白少妇内射xxxbb| 国产淫语在线视频| 伦理电影大哥的女人| 国产老妇女一区| 国产一级毛片七仙女欲春2| 亚洲综合色惰| 黑人高潮一二区| 好男人视频免费观看在线| 亚洲欧美中文字幕日韩二区| 国产在线一区二区三区精 | 91av网一区二区| 亚洲最大成人av| av视频在线观看入口| 99热全是精品| 亚洲一区高清亚洲精品| 成人综合一区亚洲| 高清午夜精品一区二区三区| 九九在线视频观看精品| 国产三级中文精品| 免费电影在线观看免费观看| 国产精品日韩av在线免费观看| 最后的刺客免费高清国语| 久久99热6这里只有精品| 高清视频免费观看一区二区 | 国内揄拍国产精品人妻在线| 精品久久久久久久久亚洲| 亚州av有码| 国产精品女同一区二区软件| 性色avwww在线观看| 秋霞在线观看毛片| 国产精品永久免费网站| 小蜜桃在线观看免费完整版高清| 一个人看视频在线观看www免费| 精品不卡国产一区二区三区| 国产亚洲5aaaaa淫片| 国产精品国产三级国产av玫瑰| 国产精品久久视频播放| 美女高潮的动态| 老女人水多毛片| 国语自产精品视频在线第100页| 亚洲精品久久久久久婷婷小说 | 精品免费久久久久久久清纯| 欧美成人一区二区免费高清观看| 韩国高清视频一区二区三区| 亚洲av电影不卡..在线观看| 欧美一级a爱片免费观看看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av日韩在线播放| 亚洲美女视频黄频| 99国产精品一区二区蜜桃av| 国内精品宾馆在线| 欧美3d第一页| 尾随美女入室| 亚洲精品乱码久久久久久按摩| 国产精品福利在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产亚洲精品久久久com| 国产亚洲一区二区精品| 国产在线男女| 国产精品一区二区性色av| 少妇被粗大猛烈的视频| 爱豆传媒免费全集在线观看| 天天躁日日操中文字幕| 在线免费十八禁| 亚洲欧美清纯卡通| 我要搜黄色片| 久久久久性生活片| 亚洲av成人精品一区久久| 岛国毛片在线播放| 久久久午夜欧美精品| 日日撸夜夜添| 男女视频在线观看网站免费| 亚洲av电影不卡..在线观看| 麻豆成人av视频| 神马国产精品三级电影在线观看| 国产私拍福利视频在线观看| 国产激情偷乱视频一区二区| 人体艺术视频欧美日本| 久久精品夜夜夜夜夜久久蜜豆| 欧美激情在线99| 欧美成人免费av一区二区三区| 高清视频免费观看一区二区 | 午夜福利在线观看吧| 欧美另类亚洲清纯唯美| 久久久久久久久久成人| 天堂中文最新版在线下载 | 色综合站精品国产| 久久人妻av系列| 最新中文字幕久久久久| 麻豆乱淫一区二区| 亚洲电影在线观看av| 免费看美女性在线毛片视频| 丝袜喷水一区| 日韩中字成人| 精品人妻熟女av久视频| 免费观看在线日韩| 成人午夜高清在线视频| 欧美变态另类bdsm刘玥| 色综合亚洲欧美另类图片| 99热这里只有是精品在线观看| 国产极品精品免费视频能看的| 69人妻影院| 91精品一卡2卡3卡4卡| 爱豆传媒免费全集在线观看| 亚洲人成网站在线播| av播播在线观看一区| 2021少妇久久久久久久久久久| www.av在线官网国产| 亚洲av电影在线观看一区二区三区 | 啦啦啦韩国在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 成年免费大片在线观看| 欧美日韩综合久久久久久| 国产精品一区二区三区四区久久| 色视频www国产| 永久免费av网站大全| 一个人免费在线观看电影| 日韩一区二区视频免费看| 亚洲欧美日韩无卡精品| 插阴视频在线观看视频| 欧美+日韩+精品| av免费在线看不卡| 国产淫片久久久久久久久| 国产精品国产高清国产av| 国产高清视频在线观看网站| 91精品国产九色| 日本-黄色视频高清免费观看| 深爱激情五月婷婷| 一级毛片aaaaaa免费看小| 久久精品国产自在天天线| 非洲黑人性xxxx精品又粗又长| 亚洲成色77777| 日本av手机在线免费观看| 国产精品麻豆人妻色哟哟久久 | 色网站视频免费| 中文字幕熟女人妻在线| 天堂网av新在线| www日本黄色视频网| 亚洲国产色片| 亚洲不卡免费看| 边亲边吃奶的免费视频| 男女视频在线观看网站免费| 亚洲无线观看免费| 男女国产视频网站| 亚洲精品乱码久久久v下载方式| 日本免费一区二区三区高清不卡| 国产亚洲精品久久久com| 国产午夜精品论理片| 淫秽高清视频在线观看| 九九久久精品国产亚洲av麻豆| videossex国产| 91狼人影院| 色吧在线观看| 能在线免费观看的黄片| 免费看光身美女| 黑人高潮一二区| 午夜福利成人在线免费观看| 男人舔奶头视频| 亚洲五月天丁香| 99久久精品一区二区三区| 免费观看a级毛片全部| 能在线免费看毛片的网站| 久久久久免费精品人妻一区二区| 国产成人精品婷婷| 直男gayav资源| 97人妻精品一区二区三区麻豆| 嘟嘟电影网在线观看| 黄色配什么色好看| 免费观看人在逋| 可以在线观看毛片的网站| 九色成人免费人妻av| 欧美97在线视频| 亚洲av男天堂| 高清在线视频一区二区三区 | 亚洲国产高清在线一区二区三| 91在线精品国自产拍蜜月| 不卡视频在线观看欧美| 激情 狠狠 欧美| 亚洲人成网站在线观看播放| 97超视频在线观看视频| 又爽又黄a免费视频| 日本午夜av视频| 免费看av在线观看网站| 一区二区三区高清视频在线| 日本欧美国产在线视频| 黄色日韩在线| 男女视频在线观看网站免费| 久久久久久久久久成人| 欧美一区二区亚洲| 国产色婷婷99| 99在线人妻在线中文字幕| 精品人妻一区二区三区麻豆| 久久久久久久久大av| 亚洲天堂国产精品一区在线| 久久精品久久久久久噜噜老黄 | 97超碰精品成人国产| 淫秽高清视频在线观看| 亚洲在线观看片| 国产精品一区二区三区四区久久| 亚洲国产精品国产精品| 婷婷六月久久综合丁香| 欧美成人免费av一区二区三区| 久久精品国产自在天天线| 桃色一区二区三区在线观看| 只有这里有精品99| 日韩 亚洲 欧美在线| 欧美三级亚洲精品| 亚洲av熟女| 一个人看视频在线观看www免费| a级毛片免费高清观看在线播放| 99热这里只有精品一区| 2022亚洲国产成人精品| 久热久热在线精品观看| 国产免费福利视频在线观看| 久久6这里有精品| 国产探花极品一区二区| 中文字幕熟女人妻在线|