劉翠, 杜小正, 劉莉梅
外泌體中非編碼RNA在類風(fēng)濕關(guān)節(jié)炎中作用的研究進展*
劉翠, 杜小正△, 劉莉梅
(甘肅中醫(yī)藥大學(xué)針灸推拿學(xué)院,甘肅 蘭州 730000)
外泌體;非編碼RNA;類風(fēng)濕關(guān)節(jié)炎
類風(fēng)濕關(guān)節(jié)炎(rheumatoid arthritis, RA)是一種全身性慢性自身免疫性疾病,其病理特征以滑膜炎、血管翳生成以及關(guān)節(jié)軟骨破壞為主[1]。RA發(fā)病中,免疫細(xì)胞分泌的細(xì)胞因子通過特定受體介導(dǎo)細(xì)胞間通訊以促進RA的發(fā)生發(fā)展[2]。近年來外泌體已被證實為細(xì)胞間信息傳遞的重要介質(zhì),其主要將母細(xì)胞中的脂質(zhì)、蛋白質(zhì)以及核酸轉(zhuǎn)運到受體細(xì)胞而發(fā)揮通訊作用[3]。研究表明,外泌體(exosomes)中的非編碼RNA(noncoding RNA, ncRNA)雖不能直接編碼蛋白質(zhì),但可通過調(diào)控相關(guān)基因、轉(zhuǎn)錄因子及信號通路而抑制滑膜炎癥與軟骨破壞,參與RA的病理過程,已成為當(dāng)前研究的熱點[4-5]。故本文對外泌體ncRNA在RA中的作用研究進行了綜述,為RA的診治提供參考資料。
外泌體是由細(xì)胞內(nèi)多泡體(multivesicular body)通過質(zhì)膜出芽釋放或與膜泡融合釋放而形成的直徑約為40~160 nm的細(xì)胞外囊泡。脂質(zhì)雙層膜結(jié)構(gòu)可以保護膜內(nèi)富含的脂質(zhì)、蛋白質(zhì)和核酸等內(nèi)容物免受溶酶體降解,進而介導(dǎo)細(xì)胞間通訊和信息傳遞[6]。ncRNA主要包括微小RNA(microRNA, miRNA)、長鏈非編碼RNA(long noncoding RNA, lncRNA)和環(huán)狀RNA(circular RNA, circRNA),在介導(dǎo)免疫應(yīng)答方面具有重要的調(diào)控作用[7]。其中miRNA可靶向mRNA而發(fā)揮生物學(xué)功能[8],而lncRNA和circRNA作為競爭性內(nèi)源RNA(competing endogenous RNA, ceRNA),海綿吸附miRNA而影響mRNA的表達,從而參與免疫應(yīng)答過程。研究表明circ-013043可直接結(jié)合miR-130a-3p,進而介導(dǎo)Kruppel樣因子9(Kruppel-like factor 9, KLF9)而抑制關(guān)節(jié)炎成纖維細(xì)胞MH7A的增殖、遷移及侵襲[9];lncRNA HIX003209作為ceRNA,通過海綿化miR-6089而激活巨噬細(xì)胞中的Toll樣受體4(Toll-like receptor 4, TLR4)/核因子κB(nuclear factor-κB, NF-κB)通路[10];lncRNA MINCR靶向上調(diào)miR-584-3p而抑制RA滑膜成纖維細(xì)胞的增殖、遷移和侵襲[11]。
在外泌體ncRNA生物學(xué)發(fā)生過程中,外泌體中與mRNA相互作用的蛋白質(zhì)和短核苷酸序列可以誘導(dǎo)ncRNA分選后進入外泌體,如存在于外泌體中的異質(zhì)性細(xì)胞核核糖蛋白B1(heterogeneous nuclear ribonucleoprotein A2/B1, hnRNPA2/B1)可直接通過相關(guān)的特殊基序與miRNA和lncRNA特異性結(jié)合,并控制其裝載到外泌體中[12-13]。此外,circRNA廣泛分布于除線粒體以外的亞細(xì)胞器中,對RNA結(jié)合蛋白(RNA binding proteins, RBPs)具有特殊識別作用,可以選擇性的包裝富含嘌呤5'-GMWGVWGRAG-3'基序的環(huán)狀RNA[14]。包裝完成后,外泌體可將其攜帶的ncRNA從母細(xì)胞轉(zhuǎn)移至遠(yuǎn)處的受體細(xì)胞,進而在免疫反應(yīng)、腫瘤進展和神經(jīng)退行性等疾病中發(fā)揮重要作用[15-16]??傊?,外泌體ncRNA可作為細(xì)胞間的通訊因子,通過調(diào)控受體細(xì)胞的基因、蛋白以及信號通路而參與細(xì)胞信號轉(zhuǎn)導(dǎo)。如圖1所示。
Figure 1. Biological occurrence process of exosome-encapsulted noncoding RNA (ncRNA). lncRNA: long noncoding RNA; circRNA: circular RNA; miRNA: microRNA.
RA的發(fā)病中,外泌體ncRNA將母細(xì)胞中的脂質(zhì)、蛋白質(zhì)以及核酸轉(zhuǎn)運到受體細(xì)胞,通過調(diào)控相關(guān)基因、轉(zhuǎn)錄因子及信號通路而調(diào)節(jié)T淋巴細(xì)胞增殖分化,減輕細(xì)胞因子的分泌,抑制成纖維細(xì)胞樣滑膜細(xì)胞(fibroblast-like synoviocytes, FLS)增殖、遷移和侵襲,改善軟骨破壞等。如圖2所示。
Figure 2. The mechanism of exosome-encapsulted noncoding RNA in rheumatoid arthritis. Th17: T helper cell 17; Treg: regulatory T cells; STAT3: signal transducer and activator of transcription 3; TGFBRII: TGF beta receptor type II; Rock2: Rho-associated protein kinase 2; lnc-HOTTIP: long noncoding RNA-HOXA transcript at the distal tip; lncRNA NEAT1: long noncoding RNA nuclear-enriched abundant transcript 1; KLF4: Kruppel-like factor 4; TLR4: Toll-like receptor 4; NF-κB: nuclear factor-κB; circ-EDIL3: circular RNA EDIL3; HDAC4: histone deacetylase 4; MMP14: matrix metalloproteinase 14; VEGF: vascular endothlial growth factor; TNFAIP3 : tumor necrosis factor alpha-induced protein 3; lnc-HAND2AS1: long noncoding RNA heart and neural crest derivatives expressed 2-antisense RNA 1; circ-FBXW7: circular RNA FBXW7; NDRG2: N-myc downstream-regulated gene 2; PDK4: pyruvate dehydrogenase kinase 4; RANKL: receptor activator of nuclear factor-κB ligand; Dkk2: dickkopf 2; ALP: alkaline phosphatase; OPG: osteoprotegerin.
2.1外泌體ncRNA調(diào)節(jié)T淋巴細(xì)胞的增殖分化CD4+T淋巴細(xì)胞是RA免疫反應(yīng)的主要參與者,Th17細(xì)胞的活化增殖和調(diào)節(jié)性T細(xì)胞(regulatory T cell,Treg)數(shù)量與功能的異常改變是RA發(fā)病的重要機制[17]。外泌體通過抑制CD4+T亞群Th17細(xì)胞的增殖、誘導(dǎo)Treg細(xì)胞分化而發(fā)揮免疫調(diào)控作用[18]。遠(yuǎn)端HOXA轉(zhuǎn)錄本(HOXA transcriptat the distal tip, HOTTIP)是一類能夠抑制細(xì)胞增殖分化和促進細(xì)胞凋亡的lncRNA,在免疫炎癥疾病中的作用已得到證實[19]。研究顯示,外泌體lncRNA HOTTIP在RA-FLS中高表達,其可負(fù)性調(diào)控miR-1908-5p,增加信號轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄激活因子3(signal transducer and activator of transcription 3, STAT3)表達,經(jīng)其處理后的膠原誘導(dǎo)關(guān)節(jié)炎(collagen-induced arthritis, CIA)小鼠IL-17和視黃酸受體相關(guān)孤兒受體γt的表達顯著上調(diào),Th17細(xì)胞比例從1.58%上升到3.3%,而Treg細(xì)胞表面標(biāo)志物叉頭框蛋白P3(forkhead box P3, FOXP3)的表達下調(diào),Treg細(xì)胞比例從14.85%下降到7.76%。此研究表明,lncRNA HOTTIP通過影響Th17/Treg比例失衡而參與到RA的發(fā)生發(fā)展過程[20]。此外,lncRNA核富集轉(zhuǎn)錄本1(nuclear-enriched abundant transcript 1, NEAT1)為類風(fēng)濕關(guān)節(jié)炎病程進展中的重要調(diào)節(jié)分子。研究顯示,lncRNA NEAT1可下調(diào)RA中miR-144-3p的表達而間接激活Rho相關(guān)蛋白激酶2及Wnt/β-catenin信號通路,促進RA中CD4+T細(xì)胞向Th17的分化,抑制CD4+T細(xì)胞凋亡而加重RA病情進展[21]。
除lncRNA外,miR-17、miR-19B及miR-121在RA患者血清外泌體的表達升高,且與Treg細(xì)胞的表達呈負(fù)相關(guān),其中miR-17阻止Treg細(xì)胞分化可能與抑制轉(zhuǎn)化生長因子β受體Ⅱ有關(guān)[22]。而滑膜組織衍生的外泌體miR-424協(xié)同F(xiàn)OXP3可抑制Treg細(xì)胞分化[23]。此外,有研究顯示RA患者外周血中hsa-circ-0089172 (circNUP214)表達顯著增加,circNUP214可通過抑制miR-125a-3p表達,增強IL-17A轉(zhuǎn)錄活性,導(dǎo)致Th17細(xì)胞增加[24]。以上研究表明,lncRNA及circRNA可促進Th17細(xì)胞分化,而miRNA可誘導(dǎo)具有抑炎效應(yīng)的Treg細(xì)胞增殖。因此,外泌體ncRNA靶向恢復(fù)Th17細(xì)胞與Treg細(xì)胞比率失衡,將成為治療RA的潛在靶點。
2.2外泌體ncRNA抑制細(xì)胞因子的分泌和表達RA的炎癥進程中,TNF-α、IL-1β和IL-6等細(xì)胞因子發(fā)揮著重要作用[25],NF-κB、TLR和STAT3等信號通路亦廣泛參與其中。而外泌體ncRNA在抑制細(xì)胞因子分泌及調(diào)控上述信號通路活性,減輕RA滑膜炎癥方面飾演了重要角色[26]。lncRNA NEAT1可激活FLS增殖活性、磷酸化p65及促進TNF-α、IL-1β和IL-6等細(xì)胞因子的分泌,而沉默lncRNA NEAT1后,外泌體miR-23α、miR-129和miR-204的表達水平升高,絲裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)/細(xì)胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase, ERK)信號通路被抑制,F(xiàn)LS活力減弱,細(xì)胞因子釋放減少[27]。除了吸附miRNA,lncRNA NEAT1亦可直接調(diào)控NF-κB p65表達,上調(diào)多效性賴氨酸乙酰轉(zhuǎn)移酶p300及其同源物CBP而提高IL-18的轉(zhuǎn)錄水平,加重RA炎癥反應(yīng)[28]。另有研究顯示,lncRNA HOTTIP通過募集DNA甲基轉(zhuǎn)移酶3b,抑制分泌型卷曲相關(guān)蛋白1甲基化,激活Wnt信號通路而增強RA滑膜成纖維細(xì)胞的增殖和遷徙能力,誘導(dǎo)炎癥因子的分泌[29]。
研究顯示RA患者血清外泌體miR-548a-3p的表達顯著降低,其靶向TLR4/NF-κB信號通路可抑制巨噬細(xì)胞樣THP-1細(xì)胞增殖活化及細(xì)胞因子TNF-α和IL-6的產(chǎn)生[30];同樣,血清外泌體miR-6089可通過靶向TLR4信號通路,抑制脂多糖誘導(dǎo)的THP-1細(xì)胞增殖活化,并減少促炎因子的表達[31]。另外,有研究顯示,上調(diào)骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cell, BMSC)衍生的外泌體miR-192-5p表達可減輕RA大鼠地諾前列酮、TNF-α和IL-1β等細(xì)胞因子的分泌[32];亦有研究證實BMSC衍生的miR-21通過Tet甲基胞嘧啶雙加氧酶1去甲基化抑制Kruppel樣因子的表達,下調(diào)CIA小鼠血清和滑膜組織中炎性細(xì)胞因子的分泌[33];BMSC來源的外泌體miR-223可抑制巨噬細(xì)胞的增殖及核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3, NLRP3)的激活,從而減輕細(xì)胞因子的釋放[34]。同樣,BMSC分泌的外泌體miR-205-5p通過鼠雙微體基因2抑制MAPK和NF-κB活性,從而減輕CIA小鼠滑膜炎癥反應(yīng)[35]。
此外,近期研究顯示circ-EDIL3在CIA小鼠的滑膜間充質(zhì)干細(xì)胞(mesenchymal stem cell, MSC)中高表達,通過靶向核心分子STAT3/miR-485-3p,血管內(nèi)皮因子(vascular endothlial growth factor, VEGF)的生成被抑制,CIA小鼠的后爪腫脹減輕,這是迄今為止發(fā)現(xiàn)的第一個可同時參與RA炎癥和血管生成的circRNA[36]。同時,circRNA_09505可通過激活miR-6089/AKT1/NF-κB信號軸,加重CIA小鼠關(guān)節(jié)炎癥。另有研究顯示,除了靶向吸附miRNA外,circRNA 0003353可直接激活JAK2/STAT3信號通路而加重滑膜炎癥[37]。因此,3種外泌體ncRNA主要通過調(diào)節(jié)信號通路或靶向相關(guān)基因而調(diào)控炎性細(xì)胞因子的分泌,抑制RA炎癥反應(yīng)。
2.3外泌體ncRNA調(diào)節(jié)RA-FLS增殖、遷移和侵襲FLS是RA滑膜組織增生的主要細(xì)胞類型,其增殖、遷移和侵蝕能力是RA滑膜炎癥、關(guān)節(jié)軟骨的侵蝕破壞的關(guān)鍵病理因素,而外泌體ncRNA通過影響FLS增殖、遷移和侵襲參與RA的發(fā)生發(fā)展[38]。研究顯示MSC衍生的外泌體miRNA-150-5p通過下調(diào)CIA小鼠血清基質(zhì)金屬蛋白酶14和VEGF的表達而抑制FLS的遷移、侵襲,緩解CIA小鼠炎癥反應(yīng)[39]?;ぜ?xì)胞衍生的外泌體miR-320a通過下調(diào)CXC趨化因子配體9,抑制RA患者FLS增殖與侵襲,降低CIA小鼠血清中IL-1β、IL-6和IL-8等炎癥因子的表達[40]。有研究將MSC來源的外泌體miR-124a與MH7A細(xì)胞共同孵育,結(jié)果顯示miR-124a可以將MH7A細(xì)胞阻滯在G0/G1期,減少細(xì)胞劃痕閉合和細(xì)胞遷移,增加相關(guān)凋亡蛋白的表達,表明來自MSC的外泌體是傳遞miRNA的載體,為RA的治療提供了新方向[41]。此外,T細(xì)胞外泌體中含有大量miR-204-5p,這些miRNA可以轉(zhuǎn)移到滑膜成纖維細(xì)胞中,抑制細(xì)胞增殖活化,延緩CIA小鼠疾病進展[42]。
除了miRNA,外泌體包裹的circRNA和lncRNA在抑制FLS增殖、遷移及侵襲方面的作用也逐漸得到證實。MSC來源外泌體中的circ-FBXW7其通過下調(diào)miR-216a-3p以促進組蛋白脫乙酰酶4釋放,從而抑制FLS的增殖、遷移以及減輕RA大鼠的炎癥反應(yīng)[43]。lncRNA HAND2AS1 (heart and neural crest derivatives expressed 2-antisense RNA 1)是一種公認(rèn)的腫瘤抑制因子。研究顯示,RA-FLS中HAND2-AS1的表達水平與FLS的增殖和侵襲呈負(fù)相關(guān),上調(diào)HAND2-AS1可正向調(diào)控TNF-α誘導(dǎo)蛋白3的表達而降低p65的表達水平,失活NF-κB通路,抑制FLS的增殖、遷移和炎癥[44]。此外,HAND2AS1還可抑制FLS中miR-143-3p的表達,進而誘導(dǎo)滑膜細(xì)胞的凋亡[45]。lncRNA LINC01419在抑制胃癌、肺腺癌等細(xì)胞生長及轉(zhuǎn)移方面有重要調(diào)節(jié)作用[46]。抑制LINC01419的表達可通過靶向上調(diào)miR-320a而減輕RA患者FLS增殖、遷移和侵襲[47]。此外,lncRNA THRIL亦可直接激活PI3K/AKT信號通路而調(diào)節(jié)FLS的增殖與侵襲[48]。這些研究皆證實了外泌體ncRNA可通過介導(dǎo)FLS的增殖、侵襲和遷移而參與RA的調(diào)控,有望成為RA治療的潛在策略。
2.4外泌體ncRNA調(diào)節(jié)RA骨破壞骨破壞是RA發(fā)病后期出現(xiàn)的一個核心特征,多因成骨細(xì)胞的形成不及與破骨細(xì)胞的吸收太過所致[49-50]。有研究應(yīng)用基因陣列法分析RA模型小鼠滑膜組織外泌體miRNA的表達差異,結(jié)果顯示miR-221-3p和miR-224-5p等基因上調(diào),miR-486-5p和miR-133a-5p等基因下調(diào),上調(diào)基因組鑒定的通路中有核因子κB配體受體激活因子(receptor activator of nuclear factor-κB ligand, RANKL)/骨鈣素(osteoprotegerin, OPG)等骨破壞及炎癥相關(guān)通路的富集,而下調(diào)基因組通過骨形態(tài)發(fā)生蛋白(bone morphogenetic protein, BMP)/Wnt信號通路間接調(diào)控了骨破壞;此研究還顯示在炎癥環(huán)境下,F(xiàn)LS來源的外泌體miR-221-3p表達增多,通過負(fù)向調(diào)控Dickkopf 2 ()基因,降低RA中堿性磷酸酶(alkaline phosphatase, ALP)和OPG表達[51]。此外,人臍帶MSC來源的外泌體miR-140-3p可沉默血清及糖皮質(zhì)激素誘導(dǎo)蛋白激酶1的表達而減輕RA大鼠的骨破壞及關(guān)節(jié)損傷[52]。亦有研究證實,來源于滑膜成纖維細(xì)胞的miR-106b通過外泌體從滑膜成纖維細(xì)胞傳遞至軟骨細(xì)胞,抑制軟骨細(xì)胞的增殖和遷移,促進細(xì)胞凋亡,且可通過抑制丙酮酸脫氫酶激酶4而調(diào)控NF-κB配體系統(tǒng)RANKL以參與骨調(diào)節(jié)[53]。RNA測序顯示,在TNF-α誘導(dǎo)的MH7A細(xì)胞中,miR-155-5p、miR-146a-5p、miR-323a-5p及miR-1307-3p在細(xì)胞外泌體中顯著上調(diào),而miR-1307-3p可靶向N-Myc下游調(diào)控基因2來抑制單核細(xì)胞向破骨細(xì)胞分化[54]。miR-486-5p亦是來源于滑膜成纖維細(xì)胞的外泌體,其靶向抗增殖蛋白家族成員Tob1而負(fù)調(diào)控BMP/Smad信號通路,進而增強了成骨細(xì)胞的細(xì)胞活力、ALP活性,以及osterix蛋白和(distal-less homeobox 2)基因的表達;體內(nèi)實驗也證實了經(jīng)miR-486-5p處理的CIA小鼠的軟骨損傷和滑膜炎癥均得到了顯著減輕[55]。以上研究提示調(diào)節(jié)RA骨破壞的外泌體ncRNA主要為miRNA,其可通過調(diào)控相關(guān)基因蛋白以增強成骨細(xì)胞的活力而抑制RA的骨破壞。
綜上所述,外泌體ncRNA可通過調(diào)節(jié)T淋巴細(xì)胞增殖分化,限制細(xì)胞因子的合成與分泌,抑制FLS遷移、增殖而延緩RA病情進展,而少數(shù)外泌體ncRNA亦可促進RA的發(fā)生發(fā)展。如miR-103a通過抑制肝細(xì)胞核因子4A表達,激活JAK/STAT3通路而加重滑膜炎癥;miR-223及miR-221可介導(dǎo)NLRP3及TLR4/MyD88通路,促進炎性因子的分泌[56]。因此,靶向與此相關(guān)外泌體ncRNA為RA的治療提供新途徑和方法。如一線抗風(fēng)濕藥甲氨蝶呤可通過抑制RA患者血清HOTAIR的表達,緩解TNF-α誘導(dǎo)的滑膜炎癥[57];雷公藤內(nèi)酯醇通過下調(diào)miR-221及miR-223而抑制炎性因子的分泌[58]。而沉默lncRNA NEAT1可抑制MAPK/ERK信號通路,減輕FLS侵襲與增殖活性[27],與此相關(guān)的靶點將成為RA藥物研發(fā)的新方向。
目前,雖外泌體ncRNA對RA的作用研究有一定的進展,但仍存在局限性:(1)外泌體攜帶的大多數(shù)ncRNA抑制RA的進展,而關(guān)于加重RA病情發(fā)展的ncRNA研究較少;(2)lncRNA與circRNA除了通過吸附miRNA發(fā)揮功能,亦可通過結(jié)合RBS和翻譯短肽發(fā)揮功能[14, 59-60],但在RA研究中尚未見相關(guān)報道;(3)中醫(yī)藥在RA的治療中發(fā)揮著重要的作用,但目前基于外泌體ncRNA生物學(xué)功能研究中醫(yī)藥防治RA機制的相關(guān)報道亦較少。因此,今后在以上方面需要更加深入的研究,為RA的診治提供更可靠的理論基礎(chǔ)。
[1] Cush JJ. Rheumatoid arthritis: early diagnosis and treatment[J]. Med Clin North Am, 2021, 105(2):355-365.
[2] Zhao J, Guo S, Schrodi SJ, et al. Molecular and cellular heterogeneity in rheumatoid arthritis: mechanisms and clinical implications[J]. Front Immunol, 2021, 12:790122.
[3] Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977.
[4] Rodríguez-MS, Altuna-CA, Castro-OS, et al. A serum biomarker panel of exomiR-451a, exomiR-25-3p and soluble TWEAK for early diagnosis of rheumatoid arthritis[J]. Front Immunol, 2021, 12:790880.
[5] Liao TL, Hsieh SL, Chen YM, et al. Rituximab may cause increased hepatitis c virus viremia in rheumatoid arthritis patients through declining exosomal microRNA-155[J]. Arthritis Rheumatol, 2018, 70(8):1209-1219.
[6] Chan BD, Wong WY, Lee MM, et al. Exosomes in inflammation and inflammatory disease[J]. Proteomics, 2019, 19(8):e1800149.
[7] Cable J, Heard E, Hirose T, et al. Noncoding RNAs: biology and applications: a keystone symposia report[J]. Ann N Y Acad Sci, 2021, 1506(1):118-141.
[8] Saquib M, Agnihotri P, Monu, et al. Exogenous miRNA: a perspective role as therapeutic in rheumatoid arthritis[J]. Curr Rheumatol Rep, 2021, 23(6):43.
[9] Li L, Zhan M, Li M. Circular RNA circ_0130438 suppresses TNF-α-induced proliferation, migration, invasion and inflammation in human fibroblast-like MH7A synoviocytes by regulating miR-130a-3p/KLF9 axis[J]. Transpl Immunol, 2022, 72:101588.
[10] Yan S, Wang P, Wang J, et al. Long non-coding RNA HIX003209 promotes inflammation by sponging miR-6089 via TLR4/NF-κB signaling pathway in rheumatoid arthritis[J]. Front Immunol, 2019, 10:2218.
[11] 楊波, 楊潔, 傅自力, 等. 長鏈非編碼RNA MYC誘導(dǎo)的長鏈非編碼RNA靶向miR-584-3p對類風(fēng)濕關(guān)節(jié)炎滑膜成纖維細(xì)胞增殖侵襲和遷移能力的影響[J]. 中華風(fēng)濕病學(xué)雜志, 2021, 25(10):669-675.
Yang B, Yang J, Fu ZL, et al. Effect of lncRNA MINCR on the proliferation,invasion and migration of rheumatoid arthritis synovial fibroblasts by targeting miR-584-3p[J]. Chin J Rheumatol, 2021, 25(10):669-675.
[12] Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function[J]. J Neurosci Res, 2020, 98(1):87-97.
[13] Groot M, Lee H. Sorting mechanisms for microRNAs into extracellular vesicles and their associated diseases[J]. Cells, 2020, 9(4):1044.
[14] Zhang J, Zhang X, Li C, et al. Circular RNA profiling provides insights into their subcellular distribution and molecular characteristics in HepG2 cells[J]. RNA Biol, 2019, 16(2):220-232.
[15] Sun L, Su Y, Liu X, et al. Serum and exosome long non coding RNAs as potential biomarkers for hepatocellular carcinoma[J]. J Cancer, 2018, 9(15):2631-2639.
[16] Yue B, Yang H, Wang J, et al. Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis[J]. Cell Prolif, 2020, 53(7):e12857.
[17] Koga T, Kawakami A, Tsokos GC. Current insights and future prospects for the pathogenesis and treatment for rheumatoid arthritis[J]. Clin Immunol, 2021, 225:108680.
[18] Cosenza S, Toupet K, Maumus M, et al. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis[J]. Theranostics, 2018, 8(5):1399-1410.
[19] He X, Gao K, Lu S, et al. LncRNA HOTTIP leads to osteoarthritis progression via regulating miR-663a/Fyn-related kinase axis[J]. BMC Musculoskelet Disord, 2021, 22(1): 67.
[20] Yao X, Wang Q, Zeng P, et al. LncRNA HOTTIP from synovial fibroblast-derived exosomes: a novel molecular target for rheumatoid arthritis through the miR-1908-5p/STAT3 axis[J]. Exp Cell Res, 2021, 409(2):112943.
[21] Liu R, Jiang C, Li J, et al. Serum-derived exosomes containing NEAT1 promote the occurrence of rheumatoid arthritis through regulation of miR-144-3p/ROCK2 axis[J]. Ther Adv Chronic Dis, 2021, 12:2040622321991705.
[22] Wang L, Wang C, Jia X, et al. Circulating exosomal miR-17 inhibits the induction of regulatory T cells via suppressing TGFBR II expression in rheumatoid arthritis[J]. Cell Physiol Biochem, 2018, 50(5):1754-1763.
[23] Ding Y, Wang L, Wu H, et al. Exosomes derived from synovial fibroblasts under hypoxia aggravate rheumatoid arthritis by regulating Treg/Th17 balance[J]. Exp Biol Med, 2020, 245(14):1177-1186.
[24] Peng H, Xing J, Wang X, et al. Circular RNA circNUP214 modulates the T helper 17 cell response in patients with rheumatoid arthritis[J]. Front Immunol, 2022, 24(13):885896.
[25] Ridgley LA, Anderson AE, Pratt AG. What are the dominant cytokines in early rheumatoid arthritis?[J]. Curr Opin Rheumatol, 2018, 30(2):207-214.
[26] Liang JJ, Li HR, Chen Y, et al. Diallyl trisulfide can induce fibroblast-like synovial apoptosis and has a therapeutic effect on collagen-induced arthritis in mice via blocking NF-κB and Wnt pathways[J]. Int Immunopharmacol, 2019, 71:132-138.
[27] Chen J, Luo X, Liu M, et al. Silencing long non-coding RNA NEAT1 attenuates rheumatoid arthritis via the MAPK/ERK signalling pathway by downregulating microRNA-129 and microRNA-204[J]. RNA Biol, 2021, 18(5):657-668.
[28] Guo T, Xing Y, Chen Z, et al. Long non-coding RNA NEAT1 knockdown alleviates rheumatoid arthritis by reducing IL-18 through p300/CBP repression[J]. Inflammation, 2022, 45(1):100-115.
[29] Hu X, Tang J, Hu X, et al. Silencing of long non-coding RNA HOTTIP reduces inflammation in rheumatoid arthritis by demethylation of SFRP1[J]. Mol Ther Nucleic Acids, 2020, 6(19):468-481.
[30] Wang Y, Zheng F, Gao G, et al. MiR-548a-3p regulates inflammatory response via TLR4/NF-κB signaling pathway in rheumatoid arthritis[J]. J Cell Biochem, 2019, 120(2):1133-1140.
[31] Xu D, Song M, Chai C, et al.?Exosome-encapsulated?miR-6089 regulates inflammatory response via targeting TLR4[J]. J Cell Physiol, 2019, 234(2):1502-1511.
[32] Zheng J, Zhu L, Iok In I, et al.Bone marrow-derived mesenchymal stem cells-secreted exosomal microRNA-192-5p delays inflammatory response in rheumatoid arthritis[J]. Int Immunopharmacol, 2020, 78:105985.
[33] Li GQ, Fang YX, Liu Y, et al. MicroRNA-21from bone marrow mesenchymal stem cell-derived extracellular vesicles targets TET1 to suppress KLF4 and alleviate rheumatoid arthritis[J]. Ther Adv Chronic Dis, 2021, 12:20406223211007369.
[34] Huang Y, Lu D, Ma W, et al. MiR-223 in exosomes from bone marrow mesenchymal stem cells ameliorates rheumatoid arthritis via downregulation of NLRP3 expression in macrophages[J]. Mol Immunol, 2022, 143:68-76.
[35] Ma W, Tang F, Xiao L, et al. MiR-205-5p in exosomes divided from chondrogenic mesenchymal stem cells alleviated rheumatoid arthritis via regulating MDM2 in fibroblast-like synoviocytes[J]. J Musculoskelet Neuronal Interact, 2022, 22(1): 132-141.
[36] Zhang J, Zhang Y, Ma Y,?et al. Therapeutic potential of exosomal circRNA derived from synovial mesenchymal cells via targeting circEDIL3/miR-485-3p/PIAS3/STAT3/VEGF functional module in rheumatoid arthritis[J]. Int J Nanomedicine, 2021, 16:7977-7994.
[37] Wang J, Liu J, Wen JT, et al. Correlation between circRNA0003353 in peripheral blood mononuclear cells and immune inflammation in rheumatoid arthritis patients with damp heat obstruction syndrome[J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2022, 53(3):437-443.
[38] 史棟梁, 史桂榮. MicroRNA-16對類風(fēng)濕關(guān)節(jié)炎患者滑膜成纖維細(xì)胞增殖、侵襲及細(xì)胞因子分泌的影響[J]. 中國病理生理雜志, 2014, 30(10):1868-1872.
Shi DL, Shi GR. Effects of microRNA-16 on proliferation,invasion and cytokine secretion of synovialfibroblasts from rheumatoid arthritis patients[J]. Chin J Pathophysiol, 2014, 30(10):1868-1872.
[39] Chen Z, Wang H, Xia Y, et al. Therapeutic potential of mesenchymal cell-derived miRNA-150-5p-expressing exosomes in rheumatoid arthritis mediated by the modulation of MMP14 and VEGF[J]. J Immunol, 2018, 201(8):2472-2482.
[40] Meng Q, Qiu B. Exosomal microRNA-320a derived from mesenchymal stem cells regulates rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing CXCL9 expression[J]. Front Physiol, 2020, 11:441.
[41] Meng HY, Chen LQ, Chen LH. The inhibition by human MSCs-derived miRNA-124a overexpression exosomes in the proliferation and migration of rheumatoid arthritis-related fibroblast-like synoviocyte cell[J]. BMC Musculoskelet Disord, 2020, 21(1):150.
[42] Wu LF, Zhang Q, Mo XB, et al. Identification of novel rheumatoid arthritis-associated miRNA-204-5p from plasma exosomes[J]. Exp Mol Med, 2022, 54(3):334-345.
[43] Chang L, Kan L. Mesenchymal stem cell-originated exosomal circular RNA circFBXW7 attenuates cell proliferation, migration and inflammation of fibroblast-like synoviocytes by targeting miR-216a-3p/HDAC4 in rheumatoid arthritis[J]. J Inflamm Res, 2021, 14:6157-6171.
[44] Bi X, Guo XH, Mo BY, et al. LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis[J]. EBioMedicine, 2019, 50:408-420.
[45] Su Y, Liu Y, Ma C, et al. Mesenchymal stem cell-originated exosomal lncRNA HAND2-AS1 impairs rheumatoid arthritis fibroblast-like synoviocyte activation through miR-143-3p/TNFAIP3/NF-κB pathway[J]. J Orthop Surg Res, 2021, 16(1):116.
[46] Ye Y, Gao X, Yang N. LncRNA ZFAS1 promotes cell migration and invasion of fibroblast-like synoviocytes by suppression of miR-27a in rheumatoid arthritis[J]. Hum Cell, 2018, 31(1):14-21.
[47] 劉延霞, 楊青, 王紅怡, 等. lncRNA LINC01419靶向miR-320a對小兒類風(fēng)濕關(guān)節(jié)炎滑膜成纖維細(xì)胞增殖、遷移和侵襲的影響[J]. 中國免疫學(xué)雜志, 2022, 38(4):414-418, 426.
Liu YX, Yang Q, Wang HY, et al. Effects of lncRNA LINC01419 targeting miR-320a on proliferation,migration and invasion of synovialfibroblasts in juvenile rheumatoid arthritis[J]. Chin J Immunol, 2022, 38(4):414-418, 426.
[48] Liang Y, Li H, Gong X, et al. Long Non-coding RNA THRIL mediates cell growth and inflammatory response of fibroblast-like synoviocytes by activating PI3K/AKT signals in rheumatoid arthritis[J]. Inflammation, 2020, 43(3):1044-1053.
[49] Tang M, Lu L, Yu X. Interleukin-17A interweaves the skeletal and immune systems[J]. Front Immunol, 2020, 11:625034.
[50] Maruotti N, Corrado A, Cantatore FP.Osteoblast role in osteoarthritis pathogenesis[J]. J Cell Physiol, 2017, 232(11):2957-2963.
[51] Maeda Y, Farina NH, Matzelle MM, et al. Synovium-derived microRNAs regulate bone pathways in rheumatoid arthritis[J]. J Bone Miner Res, 2017, 32(3):461-472.
[52] Huang Y, Chen L, Chen D, et al. Exosomal microRNA-140-3p from human umbilical cord mesenchymal stem cells attenuates joint injury of rats with rheumatoid arthritis by silencing SGK1[J]. Mol Med, 2022, 28(1):36.
[53] Liu D, Fang Y, Rao Y, et al. Synovial fibroblast-derived exosomal microRNA-106b suppresses chondrocyte proliferation and migration in rheumatoid arthritis via down-regulation of PDK4[J]. J Mol Med, 2020, 98(3):409-423.
[54] Takamura Y, Aoki W, Satomura A, et al. Small RNAs detected in exosomes derived from the MH7A synovial fibroblast cell line with TNF-α stimulation[J]. PLoS One, 2018, 13(8):e0201851.
[55] Chen J, Liu M, Luo X, et al. Exosomal miRNA-486-5p derived from rheumatoid arthritis fibroblast-like synoviocytes induces osteoblast differentiation through the Tob1/BMP/Smad pathway[J]. Biomater Sci, 2020, 8(12):3430-3442.
[56] Huang Y, Lu D, Ma W, et al. MiR-223 in exosomes from bone marrow mesenchymal stem cells ameliorates rheumatoid arthritis via downregulation of NLRP3 expression in macrophages[J]. Mol Immunol, 2022, 143:68-76.
[57] Tan J, Dan J, Liu Y. Clinical efficacy of methotrexate combined with iguratimod on patients with rheumatoid arthritis and its influence on the expression levels of HOTAIR in serum[J]. Biomed Res Int, 2021, 2021:2486617.
[58] Li N, Chen Z, Feng W, et al. Triptolide improves chondrocyte proliferation and secretion via down-regulation of miR-221 in synovial cell exosomes[J]. Phytomedicine, 2022, 29(107):154479.
[59] Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs[J]. Mol Cell, 2018, 71(3):428-442.
[60] Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3):393-407.
Progress in role of noncoding RNA in exosomes in rheumatoid arthritis
LIU Cui, DU Xiaozheng△, LIU Limei
(,,730000,)
Rheumatoid arthritis (RA) is a systemic chronic autoimmune disease with joint synovitis as the main pathological changes, and its pathogenesis is closely linked to immune dysfunction. Exosomes are cell-derived vesicles that are widely distributed in body fluids such as blood, saliva and synovial fluid. Exosomes play an important role in intercellular communication by transporting lipids, proteins and nucleic acids, and affecting the physiopathological processes of many diseases. Exosome-encapsulated functional noncoding RNA (ncRNA) is critical to regulate the proliferation and differentiation of RA synovial T-lymphocytes. It also inhibits synovial cell proliferation and invasion as well as alleviates cartilage destruction. This article reviews the latest research on ncRNA in exosomes in the pathogenesis and treatment of RA.
exosomes; noncoding RNA; rheumatoid arthritis
R593.22; R363.2
A
10.3969/j.issn.1000-4718.2023.02.019
1000-4718(2023)02-0359-07
2022-08-12
2022-11-01
[基金項目]國家自然科學(xué)基金資助項目(No. 82060891);國家中醫(yī)藥管理局甘肅鄭氏針法學(xué)術(shù)流派傳承工作室項目(No. 2305135901);甘肅省自然科學(xué)基金資助項目(No. 21JR7RA568);甘肅省青年科技基金資助項目(No. 20JR10RA344)
Tel: 15117059960; E-mail: lz-duxiaozheng@163.com
(責(zé)任編輯:李淑媛,羅森)