• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    新型(4-HBA)SbX5·H2O 類鈣鈦礦單晶及其鹵素結(jié)構(gòu)對發(fā)光特性的調(diào)控

    2023-02-17 03:55:32莊必浩靳子驄田德華朱遂意曾琳茜范建東婁在祝李聞哲
    物理化學學報 2023年1期
    關鍵詞:暨南大學鈣鈦礦研究院

    莊必浩,靳子驄,田德華,朱遂意,曾琳茜,范建東,4,*,婁在祝,*,李聞哲,*

    1暨南大學,信息科學與技術學院電子科學與工程系,新能源技術研究院,廣州 510632

    2暨南大學,新型半導體與器件廣東省高等學校重點實驗室,廣州 510632

    3暨南大學,納米光子學研究院,廣州 511443

    4山東大學,晶體材料國家重點實驗室,濟南 250100

    1 Introduction

    Organic-inorganic hybrid perovskite materials are developing rapidly because of their unique photoelectric conversion properties. Among them, the power conversion efficiency (PCE)of solar cells based on organic-inorganic lead halide perovskite has exceeded 25%1–3. Likewise, the antibonding of lead element special 6s2inert electron pairs coupling to halide p orbitals would lead to the excellent luminescent properties, such as high quantum yield and narrow half peak width of luminescence spectrum4–6. At present, the photoluminescence quantum yield(PLQY) of organic-inorganic hybrid lead halide perovskite has exceeded 98%7–9. Although great progress has been made in the study of organic-inorganic hybrid lead halide perovskite, a series of problems such as thermal stability and lead toxicity also deserve deeply explored10–13.

    The general structural formula of organic-inorganic perovskite is ABX3(A is organic cation, B is metal cation, X is halogen anion)14. For B-site cations, the metal ions with ns2electronic configuration are commonly used to construct perovskite, such as Ge2+, Sn2+, Pb2+and Sb3+15. Compared with other metal ions, Sb5+ion has the advantages of high chemical stability and low chemical toxicity16–19. For example, an orally active composition of meglumine antimonate (MA) and βcyclodextrin (β-CD) is prepared at a molar ratio of antimony(Sb): β-CD of 7 : 1, allow large animals to take large doses of Sb5+20. Antimony-based materials have been extensively studied,such as the antimony-based superconductor CsV3Sb5, where detailed high-voltage transport measurements reveal a more complex relationship between charge-density-wave and superconductivity21. The research on the optical properties of antimony-based perovskite has made a great breakthrough recently, for example, (Ph4P)2SbCl5single crystal shows 87%PLQY broadband red-light emission at 648 nm15and(TMA)2SbCl5·DMF single crystal shows 67% broadband red light emission at 630 nm22.

    For halogen coordination ions, their lone-pair electrons usually hybridize with the empty orbitals in the central ions to form hybrid orbitals, which leads to the interaction between halogen coordination ions and central ions. Among them, the interaction between various halogen coordination ions and central metal ions affects the octahedral distortion, which could furtherly tune the optical properties. For example, Ye et al.regulated the emission wavelength in the range of 580–840 nm by regulating the proportion of halogens in FAPbBrxI3-xSCs23.At present, the structural instability of organic-inorganic lead halide perovskite is due to the widespread use of A-site cations with small radius, such as methyl ammonium, ethyl ammonium,methylamine, etc. High temperature accelerates the A-site cations breaking away from the lattice and perovskite decomposition24.

    In this paper, the 4-HBA (4-hydroxybenzylamine) with benzene derivative is used as A-site to construct a series of novel single crystal (4-HBA)SbX5·H2O by solvothermal method. The insertion of 4-HBA expands the metal octahedral frames so that(4-HBA)SbX5·H2O has a high stable 0D structure. The PLQY of(4-HBA)SbCl5·H2O single crystal is significantly enhanced than that of (4-HBA)SbBr5·H2O single crystal.

    2 Experimental

    2.1 Preparation method

    (4-HBA)SbBr5·H2O: 0.075 g 4-HBA and 0.189 g SbBr3were placed in a glass vial of 5 mL. 750 μL of acetonitrile, 500 μL of hydrobromic acid (48% (w, mass fraction) in water) and 300 μL of deionized water were added into the glass vial to prepare the precursor solution. The precursor solution was placed on hot plate and heated to 140 °C for 600 min. The temperature decreased from 140 to 100 °C at the rate of 0.6 °C·h-1. And then the precursor cooled from 100 to 60 °C at the rate of 0.9 °C·h-1.During this process, the critical crystal nucleus extends in the direction of the three directions. After 5 h the precursor is reduced to room temperature, the surface impurities are washed with hydrobromic acid, and finally (4-HBA)SbBr5·H2O single crystal is obtained.

    (4-HBA)SbBr3Cl2·H2O: 0.075 g of 4-HBA, 0.040 g of SbCl3and 0.096 g of SbBr3, 750 μL of acetonitrile, 100 μL of hydrobromic acid, 400 μL of hydrochloric acid (37% (w) in water) and 270 μL of deionized water were placed in a glass vial of 5 mL. The cooling process was the same as above.

    (4-HBA)SbCl5·H2O: 0.075 g of 4-HBA and 0.12 g of SbCl3,750 μL acetonitrile, 500 μL of hydrochloric acid and 300 μL of deionized water were placed in a glass vial of 5 mL. The cooling process was the same as above25,26.

    2.2 Characterization method

    The determination of unit-cell parameters and data collections were performed on XtaLAB Synergy-i using the scan technique with Mo Kαradiation (λ = 0.71073 ? (1 ? = 0.1 nm)), for data collection at a temperature of 295(1) K. The single crystal structure was resolved and refined by SHELXT and OLEX227–29.All H atoms were placed in geometrically calculated positions and refined using a riding model with C―H = 0.97 ? (methylene)and 0.96 ? (methyl), with Uiso(H) = 1.2 Ueq (C) or 1.5 Ueq(methyl C). The visual structure of Fig. 1 can be obtained by importing the obtained single crystal data into VESTA software,and the simulated X-ray diffraction pattern can be obtained by using the powder diffraction pattern calculation function in VESTA. X-ray photoelectron spectroscopy (XPS) was measured with Thermo K-Alpha+. All XPS spectra were shifted to account for sample charging using inorganic carbon at 284.80 eV as a reference. Three kinds of single crystals were crushed and ground into powders, and then characterized by Cu Kαradiation under 40 kV and 40 mA by Bruker D8 Advantage X-ray diffractometer (XRD). The step and the time are set to 0.01° and 0.2 s respectively. The UV-Vis NIR spectra measurement of the single crystals was carried out by placing a single crystal in a double-beam spectrophotometer equipped with an integrating sphere (Japan-Shimadzu-UV-3600 plus). The PL images and spectra of the samples were recorded with the XPQY-EQE-Adv fluorescence quantum efficiency measurement system under the treatment of the integrating sphere. The PLE spectrum was obtained by the test of Edinburgh-steady-State/Transient Fluorescence Spectrometer FLS1000. The samples were excited through an oilimmersion objective lens (Olympus,UplanSApochromat, 100×, 1.4 NA) and a circular-polarized 405 nm Plus wave laser controlled by a PDL-800B driver(PicoQuant). The lifetime distribution is directly obtained from the FLIM equipment system.

    Fig. 1 Structure of the crystal lattice of (4-HBA)SbX5·H2O and arrangement along the (010) crystallographic orientation.

    3 Results and discussion

    3.1 Structure

    As shown in Fig. 1, five halogen atoms and one oxygen atom from 4-HBA surround antimony ion and form a pseudooctahedral structure with the [SbBr5O]2-framework. The organic 4-HBA is embedded in the gap to form a (4-HBA)SbBr5·H2O single crystal with space group P-1. With the substitution of Cl-ions, the unit cell volume decreases from 821.8974 to 741.2648 ?3. The specific crystallographic parameters are shown in Table 1.

    Table 1 Details of X-ray crystallographic parameters of (4-HBA)SbX5·H2O single crystals and their corresponding photophysical characteristics.

    In order to further verify the structure, the powder X-ray diffraction test was carried out, and the results are shown in Fig.2. The X-ray diffraction pattern of the experimental powder is almost consistent with the X-ray diffraction pattern simulated from the single crystal data, which indicates that the crystal composition is mainly (4-HBA)SbX5·H2O single crystal. We also notice that the experimental powder X-ray diffraction pattern a) and b) have miscellaneous peaks in the range of 20°–22°, which is due to the residual part of SbBr3in the single crystal.

    In order to determine the element composition and valence state of (4-HBA)SbX5·H2O single crystal, we also characterized it by X-ray photoelectron spectroscopy (XPS). As expected, the peaks of C 1s, N 1s, O 1s, Cl 2p, Sb 3p and Br 3d can be clearly detected in the full spectrum scan. For the valence state analysis of Sb element, because the peaks of Sb 3d5/2and O 1s overlap,we use the peak position of Sb 3d3/2to analyze, we can see that the binding energy of Sb 3d3/2were 540.19, 540.23, 540.28 eV,indicating that the Sb element in (4-HBA)SbX5·H2O single crystal is Sb5+30. In addition, the binding energy of Cl is much larger than that of Br, which indicates that the interaction between Cl-and Sb5+is stronger than that between Br-and Sb5+,as shown in the Fig. 3.

    3.2 Optical properties

    As shown in Fig. 4a–d, the absorption edge of (4-HBA)SbBr5·H2O single crystal is 450 nm. With the substitution of Cl-, the absorption edge blue-shifts toward 400 nm. For the fluorescence excitation spectra (PLE), we can see a strong peak at 350 nm and a shoulder peak at 332 nm. The excitationwavelengths of 332 and 350 nm of (4-HBA)SbX5·H2O single crystals correspond to interband absorption and exciton absorption, respectively, which come from the high energy transition of electrons in organic matter and the exciton transition of metal octahedron, respectively, which is similar to TpyInCl5perovskite24.

    Fig. 2 Powder and single crystal XRD patterns of (4-HBA)SbBr5·H2O, (4-HBA)SbBr3Cl2·H2O, (4-HBA)SbCl5·H2O compounds..

    Fig. 3 XPS spectra of (4-HBA)SbX5·H2O single crystals.

    Fig. 4 UV-Vis and PL spectra of (4-HBA)SbX5·H2O single crystal, the inset shows the excitation spectra of the single crystals.

    Among them, we can see that the excitation spectra of (4-HBA)SbBr3Cl2·H2O and (4-HBA)SbCl5·H2O are similar, but there is a difference in UV-Vis. This is because the exciton of(4-HBA)SbBr3Cl2·H2O relaxes from high energy level to LUMO energy level, and then recombines to HOMO energy level,emitting long wavelength fluorescence. In the case of (4-HBA)SbCl5·H2O, the exciton relaxes directly from LUMO to HOMO energy level directly. In addition, the photoluminescence spectra (PL) show that the emission peak of(4HBA)SbBr3Cl2·H2O blue-shifts from 618 to 595 nm following the Br-completely replaced by Cl-, which is due to the increase of band gap caused by chloride ion substitution. It is worth noting that the large Stokes shift between the exciton absorption and emission peaks of (4-HBA)SbBr3Cl2·H2O and (4-HBA)SbCl5·H2O (268 and 245 nm) and the broadband emission peak (FWHM of 162 and 139 nm) are typical characteristics of STE emission31. To further verify the luminescence mechanism of the single crystal, we characterized the time-resolved decay curves of (4-HBA)SbCl5·H2O, as shown in Fig. 4d. It can be seen that the average lifetime of the carriers is 3.82 ns, which is similar to the (TPA)2SbCl5single crystal which is also the STE luminescence mechanism32. In addition, we characterize the PL of (4-HBA)SbCl5·H2O single crystal at different excitation wavelengths as shown in Fig. 4e. The results show that the PL peak wavelength excited by different wavelength of 365 nm and 385 nm are at the same position, which can be attributed to the fact that after being trapped by the defect level, excitons excited by different wavelengths have the same relaxation process to the ground state. So they have the same emission spectrum, and thus STE can be further verified. The principle is shown in Fig. 4f.

    We performed fluorescence lifetime imaging (FLIM) of (4-HBA)SbX5·H2O to characterize the optical properties. As shown in Fig. 5a–c, the average fluorescence lifetime of (4-HBA)SbBr5·H2O single crystal is about 12 ns. After the introducing of Cl-, the fluorescence lifetime is significantly increased to 22 ns. It should be noted that the lifetime distribution of (4-HBA)SbCl5·H2O single crystal is wider than that of both (4-HBA)SbBr5·H2O and (4-HBA)SbBr3Cl2·H2O single crystals. Besides, the improvement of PLQY likely benefit from the fact that the substitution of Br-by Cl-shrinks the size of the Sb-octahedron, which results in a limitation of the 4-HBA spatial vibration33. Furtherly, the exciton shielding is reduced,then the exciton absorption would be enhanced34. In addition,the chromaticity coordinate gamut diagram shows that the substitution of Cl-increases the color temperature from 2616 to 3106 K, and confirms the emission conversion from orange light to yellow light. Among them, the chromaticity diagram result of(4-HBA)SbBr5·H2O single crystal comes from the color of the single crystal itself, as shown in Fig. 5d–f.

    3.3 Band Structure and Spin–Orbit Coupling

    To explore the intrinsic relationship between the electronic structure and properties of (4-HBA)SbX5·H2O single crystals,we used density functional theory (DFT) calculation to obtain the band structure, total and orbital-resolved projected density of states. The band structure plots calculated by the generalized gradient approximation (GGA) exchange-correlation functional are displayed at the top panel of Fig. 6a–c. Note that the calculation was implemented under spin degenerate condition,and the spin–orbit coupling (SOC) effect was not involved in the calculation. We can see that when (4-HBA)SbBr5·H2O is doped by Cl-, the band gap width increases from 2.99 to 3.58 eV, which is consistent with the rules of UV-Vis absorption spectrum analysis, as shown in Table 1. The (4-HBA)SbBr5·H2O single crystal has a direct band gap, and when doped with Cl-,(4HBA)SbBr3Cl2·H2O and (4-HBA)SbCl5·H2O have an indirect band gap, which needs the assistance of phonon for the electron transition from valence band maximum (VBM) to conduction band minimum (CBM). In addition, we further exhibit the density of states in Fig. 6d–f. The results show that the VBM of(4-HBA) SbX5·H2O single crystal is mainly contributed by the P electron orbital of both halogen group element (Cl-, Br-) and O element, while the CBM of single crystal is mainly contributed by the P electron orbital of Sb element. It is worth noting that the VBM contributed by halogen element in (4-HBA)SbCl5·H2O is much larger than that of (4-HBA)SbBr5·H2O and(4HBA)SbBr3Cl2·H2O, which can be attributed to the fact that the charge combination from Sb to halogen is much more efficient than that to oxygen, which is why the PLQY of (4-HBA)SbCl5·H2O is higher than others..

    Fig 5 FLIM spectra and 1931 color space chromaticity diagram.

    Fig. 6 Calculated band structure by the GGA-PBE exchange-correlation functional of (a) (4-HBA)SbBr5·H2O,(b) (4-HBA)SbBr3Cl2·H2O, and (c) (4-HBA)SbCl5·H2O. Total density of states (TDOS) and projected density of states (PDOS) of (d) (4-HBA)SbBr5·H2O, (e) (4-HBA)SbBr3Cl2·H2O, and (f) (4-HBA)SbCl5·H2O.

    4 Conclusions

    We have fabricated the emerging lead-free perovskite-like (4-HBA)SbX5·H2O single crystal. The emission of the PL spectra of (4-HBA)SbX5·H2O single crystal come from the STE of octahedron. Through the regulation of Sb-octahedral structure,the luminous color changes from orange to yellow, and the average fluorescence lifetime is extended from 12 to 22 ns. In addition, the PLQY of single crystals increase nearly 40 times from 0.2% to 7.9%. The current study provides the potential applications through octahedral structure regulation to assemble novel types of hybrid single crystals.

    Acknowledgment: The authors thank the Guangdong Engineering Research Center of Thin-Film Photovoltaic Technology and Equipment and Key Laboratory of New Semiconductors and Devices of Universities in Guangdong Province.

    猜你喜歡
    暨南大學鈣鈦礦研究院
    北京食品科學研究院
    肉類研究(2022年5期)2022-06-16 05:53:24
    工程技術研究院簡介
    從心所欲不逾矩——為中國戲曲研究院成立70周年作
    戲曲研究(2021年3期)2021-06-05 07:06:46
    不是我!是他搗亂!
    “派系撕裂校園”:暨南大學驅(qū)長風潮研究(1933—1934)
    近代史學刊(2017年2期)2017-06-06 02:25:25
    當鈣鈦礦八面體成為孤寡老人
    物理學進展(2017年1期)2017-02-23 01:35:44
    2016年中國新聞史學會學術年會在暨南大學成功舉辦
    幾種新型鈣鈦礦太陽電池的概述
    鈣鈦礦型多晶薄膜太陽電池(4)
    太陽能(2015年4期)2015-02-28 17:08:19
    鈣鈦礦型多晶薄膜太陽電池(2)
    太陽能(2015年2期)2015-02-28 17:07:18
    黄色欧美视频在线观看| 最后的刺客免费高清国语| 99久久精品热视频| 国产午夜福利久久久久久| 少妇的逼水好多| 特大巨黑吊av在线直播| 欧美xxxx黑人xx丫x性爽| 精品久久国产蜜桃| 国产国拍精品亚洲av在线观看| 久久久久久久久久黄片| 久久精品人妻少妇| 黄色日韩在线| 中文字幕av在线有码专区| 高清毛片免费看| av女优亚洲男人天堂| 亚洲高清免费不卡视频| 国产高清有码在线观看视频| av国产久精品久网站免费入址| 一个人观看的视频www高清免费观看| 日本免费a在线| 免费看美女性在线毛片视频| 亚洲精品色激情综合| 亚州av有码| 久久久久久久久久黄片| 亚洲av男天堂| 2021天堂中文幕一二区在线观| 亚洲经典国产精华液单| 日韩欧美在线乱码| videos熟女内射| 在线播放国产精品三级| videos熟女内射| 十八禁国产超污无遮挡网站| 亚洲av成人精品一区久久| 又爽又黄a免费视频| 欧美xxxx性猛交bbbb| 久久99热这里只频精品6学生 | 人体艺术视频欧美日本| 午夜精品一区二区三区免费看| 51国产日韩欧美| 久热久热在线精品观看| 简卡轻食公司| 午夜福利在线观看吧| 嫩草影院精品99| 日韩大片免费观看网站 | 九九热线精品视视频播放| 精品久久久久久电影网 | 国产精品久久久久久精品电影小说 | 国产亚洲一区二区精品| 插阴视频在线观看视频| 乱人视频在线观看| 亚洲精品色激情综合| 久久精品国产自在天天线| 亚洲精品亚洲一区二区| 午夜福利在线观看免费完整高清在| 少妇熟女aⅴ在线视频| 看黄色毛片网站| 亚洲在线自拍视频| 精品99又大又爽又粗少妇毛片| 最近的中文字幕免费完整| 成人无遮挡网站| 综合色丁香网| 97人妻精品一区二区三区麻豆| 国产午夜福利久久久久久| 国产精品1区2区在线观看.| 91狼人影院| 亚洲人成网站在线观看播放| 99久久成人亚洲精品观看| 亚洲av电影在线观看一区二区三区 | 全区人妻精品视频| 日韩成人伦理影院| 成人综合一区亚洲| 日韩欧美国产在线观看| 国产精品久久久久久久久免| 午夜激情欧美在线| 国内精品宾馆在线| 亚洲五月天丁香| 一边摸一边抽搐一进一小说| 插阴视频在线观看视频| 日韩亚洲欧美综合| 51国产日韩欧美| 非洲黑人性xxxx精品又粗又长| 91在线精品国自产拍蜜月| 麻豆国产97在线/欧美| 精品久久久久久电影网 | 国内精品宾馆在线| 亚洲婷婷狠狠爱综合网| 少妇裸体淫交视频免费看高清| 麻豆国产97在线/欧美| 国产精品人妻久久久影院| 亚洲怡红院男人天堂| 亚洲激情五月婷婷啪啪| 国产av码专区亚洲av| 少妇高潮的动态图| 日本-黄色视频高清免费观看| 夫妻性生交免费视频一级片| 日日摸夜夜添夜夜添av毛片| 免费人成在线观看视频色| 国产一区有黄有色的免费视频 | 国产精品日韩av在线免费观看| 国产精品一及| 精华霜和精华液先用哪个| 亚洲成人精品中文字幕电影| 日韩av在线免费看完整版不卡| 国产精品一区二区性色av| 免费观看在线日韩| 欧美最新免费一区二区三区| 人妻制服诱惑在线中文字幕| 国产伦在线观看视频一区| 国产午夜精品一二区理论片| 免费一级毛片在线播放高清视频| 十八禁国产超污无遮挡网站| 亚洲精品一区蜜桃| 亚洲不卡免费看| 亚洲人成网站在线播| 99久国产av精品| 美女高潮的动态| 国产精品国产三级国产专区5o | 欧美日韩综合久久久久久| 国产精品乱码一区二三区的特点| 在线播放无遮挡| 欧美日韩国产亚洲二区| 国产伦一二天堂av在线观看| 18+在线观看网站| 欧美日本视频| 国产色婷婷99| 男女那种视频在线观看| 成年av动漫网址| 国产一级毛片在线| 国产乱来视频区| 免费在线观看成人毛片| 51国产日韩欧美| 能在线免费观看的黄片| 午夜精品在线福利| 国产精品熟女久久久久浪| 美女高潮的动态| 高清毛片免费看| 成人午夜精彩视频在线观看| 18+在线观看网站| 国产成人freesex在线| 少妇熟女aⅴ在线视频| 老司机影院毛片| 波野结衣二区三区在线| 黄色日韩在线| av.在线天堂| 2022亚洲国产成人精品| 亚洲欧美成人综合另类久久久 | 级片在线观看| 精品人妻一区二区三区麻豆| 亚洲久久久久久中文字幕| 久久精品国产99精品国产亚洲性色| 亚洲久久久久久中文字幕| av线在线观看网站| 精品人妻一区二区三区麻豆| 99久久中文字幕三级久久日本| 在线免费观看的www视频| 亚洲18禁久久av| 久久精品综合一区二区三区| 国产亚洲最大av| 免费观看人在逋| 亚洲伊人久久精品综合 | 黄片wwwwww| 久久久久精品久久久久真实原创| 精品国产三级普通话版| 色综合亚洲欧美另类图片| 国产一区亚洲一区在线观看| 国产一区二区在线av高清观看| 色综合站精品国产| 日本免费a在线| 性插视频无遮挡在线免费观看| 春色校园在线视频观看| 好男人在线观看高清免费视频| 简卡轻食公司| 免费看av在线观看网站| 久久久久久久国产电影| 国产综合懂色| 联通29元200g的流量卡| 亚洲人成网站在线观看播放| 高清视频免费观看一区二区 | 纵有疾风起免费观看全集完整版 | 欧美三级亚洲精品| 亚洲欧美精品专区久久| 亚洲精品,欧美精品| 亚洲欧美精品专区久久| 亚洲成人精品中文字幕电影| av播播在线观看一区| 最近视频中文字幕2019在线8| 欧美成人a在线观看| 麻豆乱淫一区二区| 国产大屁股一区二区在线视频| 欧美不卡视频在线免费观看| 亚洲精品乱码久久久久久按摩| 一边亲一边摸免费视频| 国语对白做爰xxxⅹ性视频网站| 日本三级黄在线观看| 伦理电影大哥的女人| 婷婷色综合大香蕉| 乱人视频在线观看| 免费黄色在线免费观看| 美女被艹到高潮喷水动态| 国产熟女欧美一区二区| 国产伦精品一区二区三区视频9| 视频中文字幕在线观看| 少妇熟女欧美另类| 99久久精品一区二区三区| 国产免费福利视频在线观看| 69人妻影院| 99热这里只有是精品50| 国内揄拍国产精品人妻在线| 久久精品久久久久久久性| 色网站视频免费| 舔av片在线| 老女人水多毛片| 亚洲自拍偷在线| 18禁裸乳无遮挡免费网站照片| 久久亚洲国产成人精品v| 我的女老师完整版在线观看| 亚洲国产成人一精品久久久| 亚洲精品,欧美精品| 男插女下体视频免费在线播放| 97超碰精品成人国产| 最近最新中文字幕免费大全7| 韩国高清视频一区二区三区| 亚洲av日韩在线播放| 一个人免费在线观看电影| 精品久久久噜噜| 五月伊人婷婷丁香| 三级国产精品片| 夜夜看夜夜爽夜夜摸| 国产黄色小视频在线观看| 黄色欧美视频在线观看| 男女下面进入的视频免费午夜| 国产精品久久久久久精品电影小说 | 免费不卡的大黄色大毛片视频在线观看 | 中文字幕制服av| 永久免费av网站大全| 国产免费视频播放在线视频 | 亚洲精品乱码久久久久久按摩| 欧美成人a在线观看| 亚洲成av人片在线播放无| 亚洲av.av天堂| 韩国高清视频一区二区三区| 久久久亚洲精品成人影院| 丰满少妇做爰视频| 网址你懂的国产日韩在线| 欧美性猛交黑人性爽| 老女人水多毛片| 亚洲成人中文字幕在线播放| 国产成人aa在线观看| 亚洲成人av在线免费| 免费观看人在逋| 美女被艹到高潮喷水动态| 精品一区二区免费观看| 国产91av在线免费观看| 日本午夜av视频| 国产成人aa在线观看| 国产老妇女一区| 日本av手机在线免费观看| 国产精品电影一区二区三区| 亚洲18禁久久av| 成年av动漫网址| 2021天堂中文幕一二区在线观| 日本欧美国产在线视频| av福利片在线观看| 男女视频在线观看网站免费| 国产午夜精品论理片| 变态另类丝袜制服| 国产成人a区在线观看| 在线观看一区二区三区| 国产精品蜜桃在线观看| 日韩欧美精品v在线| 欧美色视频一区免费| 免费av不卡在线播放| 国产精品精品国产色婷婷| 国产一区有黄有色的免费视频 | 亚洲内射少妇av| 精品久久久久久久久久久久久| 成人三级黄色视频| 麻豆精品久久久久久蜜桃| 大话2 男鬼变身卡| 大香蕉97超碰在线| 日本免费在线观看一区| 日韩高清综合在线| 国产白丝娇喘喷水9色精品| 偷拍熟女少妇极品色| 可以在线观看毛片的网站| 亚洲内射少妇av| 色尼玛亚洲综合影院| 日本色播在线视频| 久久精品国产99精品国产亚洲性色| 日韩一本色道免费dvd| 久久国内精品自在自线图片| 全区人妻精品视频| 插阴视频在线观看视频| 国产老妇女一区| av在线播放精品| 国产成人午夜福利电影在线观看| 变态另类丝袜制服| 久久精品熟女亚洲av麻豆精品 | 最近视频中文字幕2019在线8| 国产探花在线观看一区二区| 久久精品影院6| 中文字幕亚洲精品专区| 国产三级在线视频| 久久精品国产亚洲网站| 汤姆久久久久久久影院中文字幕 | 一级av片app| 日日啪夜夜撸| 麻豆精品久久久久久蜜桃| 精品人妻偷拍中文字幕| 在线免费十八禁| 插逼视频在线观看| 一本久久精品| 亚洲电影在线观看av| 美女内射精品一级片tv| 免费av不卡在线播放| 女人十人毛片免费观看3o分钟| 麻豆成人av视频| 国产精品日韩av在线免费观看| 久久久久久久亚洲中文字幕| 国产成年人精品一区二区| av黄色大香蕉| 我的女老师完整版在线观看| 老女人水多毛片| 精品一区二区免费观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲av成人精品一二三区| 成人亚洲精品av一区二区| 亚洲国产精品sss在线观看| 免费在线观看成人毛片| 2022亚洲国产成人精品| 色视频www国产| 日韩一本色道免费dvd| 中文乱码字字幕精品一区二区三区 | 中文天堂在线官网| 国产精品美女特级片免费视频播放器| 男女啪啪激烈高潮av片| 中文乱码字字幕精品一区二区三区 | 日韩av不卡免费在线播放| av女优亚洲男人天堂| 国产成人精品久久久久久| 男插女下体视频免费在线播放| 三级男女做爰猛烈吃奶摸视频| 毛片一级片免费看久久久久| 国产精品1区2区在线观看.| 日韩av在线大香蕉| 老司机影院毛片| av卡一久久| 成年版毛片免费区| 国产精品久久视频播放| 亚洲成人av在线免费| 午夜福利在线观看吧| 国产精品一区二区在线观看99 | 国产精品久久久久久精品电影小说 | 国产免费视频播放在线视频 | 九九久久精品国产亚洲av麻豆| 成年av动漫网址| 久久久久精品久久久久真实原创| av线在线观看网站| 美女黄网站色视频| 亚洲三级黄色毛片| 国国产精品蜜臀av免费| 亚洲欧美成人精品一区二区| 深爱激情五月婷婷| 久久久久国产网址| 男女视频在线观看网站免费| 波野结衣二区三区在线| 美女cb高潮喷水在线观看| 欧美日韩综合久久久久久| 一边摸一边抽搐一进一小说| 欧美日韩一区二区视频在线观看视频在线 | 身体一侧抽搐| 国产成人aa在线观看| 男女啪啪激烈高潮av片| 桃色一区二区三区在线观看| av免费观看日本| 老司机福利观看| 在线观看一区二区三区| 别揉我奶头 嗯啊视频| 九九久久精品国产亚洲av麻豆| 色尼玛亚洲综合影院| 亚洲国产精品专区欧美| 真实男女啪啪啪动态图| 变态另类丝袜制服| 国产激情偷乱视频一区二区| 欧美性猛交╳xxx乱大交人| 伦精品一区二区三区| 校园人妻丝袜中文字幕| 人人妻人人澡人人爽人人夜夜 | 在线免费观看不下载黄p国产| 日日啪夜夜撸| 国产精品久久久久久久久免| 亚洲怡红院男人天堂| 高清在线视频一区二区三区 | 如何舔出高潮| 免费播放大片免费观看视频在线观看 | 黄色配什么色好看| 天天躁日日操中文字幕| 国内精品一区二区在线观看| 亚洲av电影在线观看一区二区三区 | 非洲黑人性xxxx精品又粗又长| 汤姆久久久久久久影院中文字幕 | 中文在线观看免费www的网站| 日日撸夜夜添| 亚洲丝袜综合中文字幕| 国产精品精品国产色婷婷| 欧美人与善性xxx| 日日干狠狠操夜夜爽| 国产白丝娇喘喷水9色精品| 一区二区三区免费毛片| 亚洲中文字幕一区二区三区有码在线看| 亚洲四区av| 成人毛片a级毛片在线播放| 日本欧美国产在线视频| 亚洲精品自拍成人| 国产一级毛片在线| 久久久久久久久大av| 一级爰片在线观看| 91久久精品国产一区二区三区| 日韩在线高清观看一区二区三区| 两个人视频免费观看高清| 少妇高潮的动态图| 国产亚洲精品久久久com| 国产女主播在线喷水免费视频网站 | 欧美丝袜亚洲另类| 日韩中字成人| 中文字幕人妻熟人妻熟丝袜美| 亚洲18禁久久av| 国产激情偷乱视频一区二区| 日本免费a在线| 白带黄色成豆腐渣| 2021少妇久久久久久久久久久| 男的添女的下面高潮视频| 久久久久性生活片| 午夜a级毛片| 午夜久久久久精精品| 长腿黑丝高跟| 国产伦一二天堂av在线观看| 美女内射精品一级片tv| 两个人的视频大全免费| 啦啦啦啦在线视频资源| 精品久久久久久电影网 | 深爱激情五月婷婷| 国产精品一区二区在线观看99 | 欧美丝袜亚洲另类| 热99在线观看视频| 国产色婷婷99| 一级毛片久久久久久久久女| 1024手机看黄色片| 日韩av在线免费看完整版不卡| 桃色一区二区三区在线观看| 亚洲美女视频黄频| 99热这里只有是精品50| 我要看日韩黄色一级片| 网址你懂的国产日韩在线| 日本一二三区视频观看| 日韩一本色道免费dvd| 又爽又黄无遮挡网站| 日韩精品有码人妻一区| 啦啦啦观看免费观看视频高清| 噜噜噜噜噜久久久久久91| 国内精品一区二区在线观看| 国产亚洲精品久久久com| 日本黄大片高清| 2021少妇久久久久久久久久久| 亚洲国产高清在线一区二区三| 久久久久久久久大av| 听说在线观看完整版免费高清| 日韩欧美在线乱码| 男女国产视频网站| 一级毛片aaaaaa免费看小| 长腿黑丝高跟| 啦啦啦韩国在线观看视频| 亚洲欧洲日产国产| a级一级毛片免费在线观看| 又粗又硬又长又爽又黄的视频| av线在线观看网站| 亚洲av成人精品一二三区| 国产精品蜜桃在线观看| av播播在线观看一区| 建设人人有责人人尽责人人享有的 | 美女高潮的动态| av播播在线观看一区| 美女高潮的动态| 久久欧美精品欧美久久欧美| 亚洲欧美一区二区三区国产| 91午夜精品亚洲一区二区三区| 亚洲成人久久爱视频| 国产精品一区二区性色av| 99久国产av精品国产电影| 九九在线视频观看精品| 精品久久久久久久末码| 亚洲av二区三区四区| 国产精品久久久久久av不卡| 色综合色国产| 日日干狠狠操夜夜爽| 国产精品乱码一区二三区的特点| 免费观看人在逋| 欧美人与善性xxx| 一个人免费在线观看电影| 国产伦一二天堂av在线观看| 国产精品女同一区二区软件| 国产伦理片在线播放av一区| 中文字幕熟女人妻在线| 久久久欧美国产精品| 中国国产av一级| 尾随美女入室| 观看美女的网站| 日韩国内少妇激情av| 少妇裸体淫交视频免费看高清| 国产伦一二天堂av在线观看| 午夜亚洲福利在线播放| 国产免费男女视频| 国产高清有码在线观看视频| 国产精品.久久久| 免费观看的影片在线观看| 成人毛片60女人毛片免费| 精品无人区乱码1区二区| 亚洲真实伦在线观看| 日韩一区二区三区影片| 日本午夜av视频| 国产色婷婷99| av视频在线观看入口| 午夜福利在线观看免费完整高清在| 欧美丝袜亚洲另类| 99久久中文字幕三级久久日本| 国产精品人妻久久久久久| 一区二区三区免费毛片| 汤姆久久久久久久影院中文字幕 | 看片在线看免费视频| 91在线精品国自产拍蜜月| 我的老师免费观看完整版| 男人狂女人下面高潮的视频| 亚洲国产欧美在线一区| 久久精品国产亚洲av涩爱| 久久久色成人| 国产不卡一卡二| 99久久精品一区二区三区| 一个人观看的视频www高清免费观看| 欧美一区二区精品小视频在线| 91精品国产九色| АⅤ资源中文在线天堂| 国产毛片a区久久久久| 精品一区二区三区视频在线| 男人舔女人下体高潮全视频| 精品久久久久久久人妻蜜臀av| 亚洲高清免费不卡视频| 日产精品乱码卡一卡2卡三| 日韩欧美国产在线观看| 一级毛片久久久久久久久女| 日本黄大片高清| 中文字幕制服av| 国产精品日韩av在线免费观看| 久久久久久久久久久免费av| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品专区欧美| 色5月婷婷丁香| 国产亚洲精品久久久com| 日本色播在线视频| 秋霞伦理黄片| videossex国产| 国产精品福利在线免费观看| 国产日韩欧美在线精品| 欧美激情在线99| 亚洲精品乱码久久久久久按摩| 国产乱人偷精品视频| 欧美一区二区亚洲| 国产一级毛片七仙女欲春2| 午夜福利成人在线免费观看| 成人特级av手机在线观看| 国产老妇女一区| 久久久国产成人精品二区| 国产成年人精品一区二区| 岛国毛片在线播放| 99热6这里只有精品| 色吧在线观看| 亚洲欧美日韩东京热| 国产美女午夜福利| 久久久成人免费电影| 国产伦在线观看视频一区| 好男人在线观看高清免费视频| 国内揄拍国产精品人妻在线| 97超碰精品成人国产| 亚洲最大成人手机在线| 五月伊人婷婷丁香| 国产午夜精品一二区理论片| 春色校园在线视频观看| 久久精品国产自在天天线| 国产又色又爽无遮挡免| 国产亚洲av嫩草精品影院| 国产一区二区在线观看日韩| 波多野结衣巨乳人妻| 日本一二三区视频观看| 久久精品国产自在天天线| 久久久久久久久中文| 国产亚洲av嫩草精品影院| 男人舔女人下体高潮全视频| 91精品一卡2卡3卡4卡| 免费观看的影片在线观看| 少妇丰满av| 18+在线观看网站| 亚洲av免费高清在线观看| 搡女人真爽免费视频火全软件| 91狼人影院| 精品人妻熟女av久视频| 美女黄网站色视频| 少妇高潮的动态图| 久久99热6这里只有精品| 天堂√8在线中文| 亚洲成人av在线免费| 欧美成人精品欧美一级黄| 日韩强制内射视频| 身体一侧抽搐| 亚洲国产精品国产精品| 天美传媒精品一区二区| 午夜福利高清视频|