• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    新型(4-HBA)SbX5·H2O 類鈣鈦礦單晶及其鹵素結(jié)構(gòu)對發(fā)光特性的調(diào)控

    2023-02-17 03:55:32莊必浩靳子驄田德華朱遂意曾琳茜范建東婁在祝李聞哲
    物理化學學報 2023年1期
    關鍵詞:暨南大學鈣鈦礦研究院

    莊必浩,靳子驄,田德華,朱遂意,曾琳茜,范建東,4,*,婁在祝,*,李聞哲,*

    1暨南大學,信息科學與技術學院電子科學與工程系,新能源技術研究院,廣州 510632

    2暨南大學,新型半導體與器件廣東省高等學校重點實驗室,廣州 510632

    3暨南大學,納米光子學研究院,廣州 511443

    4山東大學,晶體材料國家重點實驗室,濟南 250100

    1 Introduction

    Organic-inorganic hybrid perovskite materials are developing rapidly because of their unique photoelectric conversion properties. Among them, the power conversion efficiency (PCE)of solar cells based on organic-inorganic lead halide perovskite has exceeded 25%1–3. Likewise, the antibonding of lead element special 6s2inert electron pairs coupling to halide p orbitals would lead to the excellent luminescent properties, such as high quantum yield and narrow half peak width of luminescence spectrum4–6. At present, the photoluminescence quantum yield(PLQY) of organic-inorganic hybrid lead halide perovskite has exceeded 98%7–9. Although great progress has been made in the study of organic-inorganic hybrid lead halide perovskite, a series of problems such as thermal stability and lead toxicity also deserve deeply explored10–13.

    The general structural formula of organic-inorganic perovskite is ABX3(A is organic cation, B is metal cation, X is halogen anion)14. For B-site cations, the metal ions with ns2electronic configuration are commonly used to construct perovskite, such as Ge2+, Sn2+, Pb2+and Sb3+15. Compared with other metal ions, Sb5+ion has the advantages of high chemical stability and low chemical toxicity16–19. For example, an orally active composition of meglumine antimonate (MA) and βcyclodextrin (β-CD) is prepared at a molar ratio of antimony(Sb): β-CD of 7 : 1, allow large animals to take large doses of Sb5+20. Antimony-based materials have been extensively studied,such as the antimony-based superconductor CsV3Sb5, where detailed high-voltage transport measurements reveal a more complex relationship between charge-density-wave and superconductivity21. The research on the optical properties of antimony-based perovskite has made a great breakthrough recently, for example, (Ph4P)2SbCl5single crystal shows 87%PLQY broadband red-light emission at 648 nm15and(TMA)2SbCl5·DMF single crystal shows 67% broadband red light emission at 630 nm22.

    For halogen coordination ions, their lone-pair electrons usually hybridize with the empty orbitals in the central ions to form hybrid orbitals, which leads to the interaction between halogen coordination ions and central ions. Among them, the interaction between various halogen coordination ions and central metal ions affects the octahedral distortion, which could furtherly tune the optical properties. For example, Ye et al.regulated the emission wavelength in the range of 580–840 nm by regulating the proportion of halogens in FAPbBrxI3-xSCs23.At present, the structural instability of organic-inorganic lead halide perovskite is due to the widespread use of A-site cations with small radius, such as methyl ammonium, ethyl ammonium,methylamine, etc. High temperature accelerates the A-site cations breaking away from the lattice and perovskite decomposition24.

    In this paper, the 4-HBA (4-hydroxybenzylamine) with benzene derivative is used as A-site to construct a series of novel single crystal (4-HBA)SbX5·H2O by solvothermal method. The insertion of 4-HBA expands the metal octahedral frames so that(4-HBA)SbX5·H2O has a high stable 0D structure. The PLQY of(4-HBA)SbCl5·H2O single crystal is significantly enhanced than that of (4-HBA)SbBr5·H2O single crystal.

    2 Experimental

    2.1 Preparation method

    (4-HBA)SbBr5·H2O: 0.075 g 4-HBA and 0.189 g SbBr3were placed in a glass vial of 5 mL. 750 μL of acetonitrile, 500 μL of hydrobromic acid (48% (w, mass fraction) in water) and 300 μL of deionized water were added into the glass vial to prepare the precursor solution. The precursor solution was placed on hot plate and heated to 140 °C for 600 min. The temperature decreased from 140 to 100 °C at the rate of 0.6 °C·h-1. And then the precursor cooled from 100 to 60 °C at the rate of 0.9 °C·h-1.During this process, the critical crystal nucleus extends in the direction of the three directions. After 5 h the precursor is reduced to room temperature, the surface impurities are washed with hydrobromic acid, and finally (4-HBA)SbBr5·H2O single crystal is obtained.

    (4-HBA)SbBr3Cl2·H2O: 0.075 g of 4-HBA, 0.040 g of SbCl3and 0.096 g of SbBr3, 750 μL of acetonitrile, 100 μL of hydrobromic acid, 400 μL of hydrochloric acid (37% (w) in water) and 270 μL of deionized water were placed in a glass vial of 5 mL. The cooling process was the same as above.

    (4-HBA)SbCl5·H2O: 0.075 g of 4-HBA and 0.12 g of SbCl3,750 μL acetonitrile, 500 μL of hydrochloric acid and 300 μL of deionized water were placed in a glass vial of 5 mL. The cooling process was the same as above25,26.

    2.2 Characterization method

    The determination of unit-cell parameters and data collections were performed on XtaLAB Synergy-i using the scan technique with Mo Kαradiation (λ = 0.71073 ? (1 ? = 0.1 nm)), for data collection at a temperature of 295(1) K. The single crystal structure was resolved and refined by SHELXT and OLEX227–29.All H atoms were placed in geometrically calculated positions and refined using a riding model with C―H = 0.97 ? (methylene)and 0.96 ? (methyl), with Uiso(H) = 1.2 Ueq (C) or 1.5 Ueq(methyl C). The visual structure of Fig. 1 can be obtained by importing the obtained single crystal data into VESTA software,and the simulated X-ray diffraction pattern can be obtained by using the powder diffraction pattern calculation function in VESTA. X-ray photoelectron spectroscopy (XPS) was measured with Thermo K-Alpha+. All XPS spectra were shifted to account for sample charging using inorganic carbon at 284.80 eV as a reference. Three kinds of single crystals were crushed and ground into powders, and then characterized by Cu Kαradiation under 40 kV and 40 mA by Bruker D8 Advantage X-ray diffractometer (XRD). The step and the time are set to 0.01° and 0.2 s respectively. The UV-Vis NIR spectra measurement of the single crystals was carried out by placing a single crystal in a double-beam spectrophotometer equipped with an integrating sphere (Japan-Shimadzu-UV-3600 plus). The PL images and spectra of the samples were recorded with the XPQY-EQE-Adv fluorescence quantum efficiency measurement system under the treatment of the integrating sphere. The PLE spectrum was obtained by the test of Edinburgh-steady-State/Transient Fluorescence Spectrometer FLS1000. The samples were excited through an oilimmersion objective lens (Olympus,UplanSApochromat, 100×, 1.4 NA) and a circular-polarized 405 nm Plus wave laser controlled by a PDL-800B driver(PicoQuant). The lifetime distribution is directly obtained from the FLIM equipment system.

    Fig. 1 Structure of the crystal lattice of (4-HBA)SbX5·H2O and arrangement along the (010) crystallographic orientation.

    3 Results and discussion

    3.1 Structure

    As shown in Fig. 1, five halogen atoms and one oxygen atom from 4-HBA surround antimony ion and form a pseudooctahedral structure with the [SbBr5O]2-framework. The organic 4-HBA is embedded in the gap to form a (4-HBA)SbBr5·H2O single crystal with space group P-1. With the substitution of Cl-ions, the unit cell volume decreases from 821.8974 to 741.2648 ?3. The specific crystallographic parameters are shown in Table 1.

    Table 1 Details of X-ray crystallographic parameters of (4-HBA)SbX5·H2O single crystals and their corresponding photophysical characteristics.

    In order to further verify the structure, the powder X-ray diffraction test was carried out, and the results are shown in Fig.2. The X-ray diffraction pattern of the experimental powder is almost consistent with the X-ray diffraction pattern simulated from the single crystal data, which indicates that the crystal composition is mainly (4-HBA)SbX5·H2O single crystal. We also notice that the experimental powder X-ray diffraction pattern a) and b) have miscellaneous peaks in the range of 20°–22°, which is due to the residual part of SbBr3in the single crystal.

    In order to determine the element composition and valence state of (4-HBA)SbX5·H2O single crystal, we also characterized it by X-ray photoelectron spectroscopy (XPS). As expected, the peaks of C 1s, N 1s, O 1s, Cl 2p, Sb 3p and Br 3d can be clearly detected in the full spectrum scan. For the valence state analysis of Sb element, because the peaks of Sb 3d5/2and O 1s overlap,we use the peak position of Sb 3d3/2to analyze, we can see that the binding energy of Sb 3d3/2were 540.19, 540.23, 540.28 eV,indicating that the Sb element in (4-HBA)SbX5·H2O single crystal is Sb5+30. In addition, the binding energy of Cl is much larger than that of Br, which indicates that the interaction between Cl-and Sb5+is stronger than that between Br-and Sb5+,as shown in the Fig. 3.

    3.2 Optical properties

    As shown in Fig. 4a–d, the absorption edge of (4-HBA)SbBr5·H2O single crystal is 450 nm. With the substitution of Cl-, the absorption edge blue-shifts toward 400 nm. For the fluorescence excitation spectra (PLE), we can see a strong peak at 350 nm and a shoulder peak at 332 nm. The excitationwavelengths of 332 and 350 nm of (4-HBA)SbX5·H2O single crystals correspond to interband absorption and exciton absorption, respectively, which come from the high energy transition of electrons in organic matter and the exciton transition of metal octahedron, respectively, which is similar to TpyInCl5perovskite24.

    Fig. 2 Powder and single crystal XRD patterns of (4-HBA)SbBr5·H2O, (4-HBA)SbBr3Cl2·H2O, (4-HBA)SbCl5·H2O compounds..

    Fig. 3 XPS spectra of (4-HBA)SbX5·H2O single crystals.

    Fig. 4 UV-Vis and PL spectra of (4-HBA)SbX5·H2O single crystal, the inset shows the excitation spectra of the single crystals.

    Among them, we can see that the excitation spectra of (4-HBA)SbBr3Cl2·H2O and (4-HBA)SbCl5·H2O are similar, but there is a difference in UV-Vis. This is because the exciton of(4-HBA)SbBr3Cl2·H2O relaxes from high energy level to LUMO energy level, and then recombines to HOMO energy level,emitting long wavelength fluorescence. In the case of (4-HBA)SbCl5·H2O, the exciton relaxes directly from LUMO to HOMO energy level directly. In addition, the photoluminescence spectra (PL) show that the emission peak of(4HBA)SbBr3Cl2·H2O blue-shifts from 618 to 595 nm following the Br-completely replaced by Cl-, which is due to the increase of band gap caused by chloride ion substitution. It is worth noting that the large Stokes shift between the exciton absorption and emission peaks of (4-HBA)SbBr3Cl2·H2O and (4-HBA)SbCl5·H2O (268 and 245 nm) and the broadband emission peak (FWHM of 162 and 139 nm) are typical characteristics of STE emission31. To further verify the luminescence mechanism of the single crystal, we characterized the time-resolved decay curves of (4-HBA)SbCl5·H2O, as shown in Fig. 4d. It can be seen that the average lifetime of the carriers is 3.82 ns, which is similar to the (TPA)2SbCl5single crystal which is also the STE luminescence mechanism32. In addition, we characterize the PL of (4-HBA)SbCl5·H2O single crystal at different excitation wavelengths as shown in Fig. 4e. The results show that the PL peak wavelength excited by different wavelength of 365 nm and 385 nm are at the same position, which can be attributed to the fact that after being trapped by the defect level, excitons excited by different wavelengths have the same relaxation process to the ground state. So they have the same emission spectrum, and thus STE can be further verified. The principle is shown in Fig. 4f.

    We performed fluorescence lifetime imaging (FLIM) of (4-HBA)SbX5·H2O to characterize the optical properties. As shown in Fig. 5a–c, the average fluorescence lifetime of (4-HBA)SbBr5·H2O single crystal is about 12 ns. After the introducing of Cl-, the fluorescence lifetime is significantly increased to 22 ns. It should be noted that the lifetime distribution of (4-HBA)SbCl5·H2O single crystal is wider than that of both (4-HBA)SbBr5·H2O and (4-HBA)SbBr3Cl2·H2O single crystals. Besides, the improvement of PLQY likely benefit from the fact that the substitution of Br-by Cl-shrinks the size of the Sb-octahedron, which results in a limitation of the 4-HBA spatial vibration33. Furtherly, the exciton shielding is reduced,then the exciton absorption would be enhanced34. In addition,the chromaticity coordinate gamut diagram shows that the substitution of Cl-increases the color temperature from 2616 to 3106 K, and confirms the emission conversion from orange light to yellow light. Among them, the chromaticity diagram result of(4-HBA)SbBr5·H2O single crystal comes from the color of the single crystal itself, as shown in Fig. 5d–f.

    3.3 Band Structure and Spin–Orbit Coupling

    To explore the intrinsic relationship between the electronic structure and properties of (4-HBA)SbX5·H2O single crystals,we used density functional theory (DFT) calculation to obtain the band structure, total and orbital-resolved projected density of states. The band structure plots calculated by the generalized gradient approximation (GGA) exchange-correlation functional are displayed at the top panel of Fig. 6a–c. Note that the calculation was implemented under spin degenerate condition,and the spin–orbit coupling (SOC) effect was not involved in the calculation. We can see that when (4-HBA)SbBr5·H2O is doped by Cl-, the band gap width increases from 2.99 to 3.58 eV, which is consistent with the rules of UV-Vis absorption spectrum analysis, as shown in Table 1. The (4-HBA)SbBr5·H2O single crystal has a direct band gap, and when doped with Cl-,(4HBA)SbBr3Cl2·H2O and (4-HBA)SbCl5·H2O have an indirect band gap, which needs the assistance of phonon for the electron transition from valence band maximum (VBM) to conduction band minimum (CBM). In addition, we further exhibit the density of states in Fig. 6d–f. The results show that the VBM of(4-HBA) SbX5·H2O single crystal is mainly contributed by the P electron orbital of both halogen group element (Cl-, Br-) and O element, while the CBM of single crystal is mainly contributed by the P electron orbital of Sb element. It is worth noting that the VBM contributed by halogen element in (4-HBA)SbCl5·H2O is much larger than that of (4-HBA)SbBr5·H2O and(4HBA)SbBr3Cl2·H2O, which can be attributed to the fact that the charge combination from Sb to halogen is much more efficient than that to oxygen, which is why the PLQY of (4-HBA)SbCl5·H2O is higher than others..

    Fig 5 FLIM spectra and 1931 color space chromaticity diagram.

    Fig. 6 Calculated band structure by the GGA-PBE exchange-correlation functional of (a) (4-HBA)SbBr5·H2O,(b) (4-HBA)SbBr3Cl2·H2O, and (c) (4-HBA)SbCl5·H2O. Total density of states (TDOS) and projected density of states (PDOS) of (d) (4-HBA)SbBr5·H2O, (e) (4-HBA)SbBr3Cl2·H2O, and (f) (4-HBA)SbCl5·H2O.

    4 Conclusions

    We have fabricated the emerging lead-free perovskite-like (4-HBA)SbX5·H2O single crystal. The emission of the PL spectra of (4-HBA)SbX5·H2O single crystal come from the STE of octahedron. Through the regulation of Sb-octahedral structure,the luminous color changes from orange to yellow, and the average fluorescence lifetime is extended from 12 to 22 ns. In addition, the PLQY of single crystals increase nearly 40 times from 0.2% to 7.9%. The current study provides the potential applications through octahedral structure regulation to assemble novel types of hybrid single crystals.

    Acknowledgment: The authors thank the Guangdong Engineering Research Center of Thin-Film Photovoltaic Technology and Equipment and Key Laboratory of New Semiconductors and Devices of Universities in Guangdong Province.

    猜你喜歡
    暨南大學鈣鈦礦研究院
    北京食品科學研究院
    肉類研究(2022年5期)2022-06-16 05:53:24
    工程技術研究院簡介
    從心所欲不逾矩——為中國戲曲研究院成立70周年作
    戲曲研究(2021年3期)2021-06-05 07:06:46
    不是我!是他搗亂!
    “派系撕裂校園”:暨南大學驅(qū)長風潮研究(1933—1934)
    近代史學刊(2017年2期)2017-06-06 02:25:25
    當鈣鈦礦八面體成為孤寡老人
    物理學進展(2017年1期)2017-02-23 01:35:44
    2016年中國新聞史學會學術年會在暨南大學成功舉辦
    幾種新型鈣鈦礦太陽電池的概述
    鈣鈦礦型多晶薄膜太陽電池(4)
    太陽能(2015年4期)2015-02-28 17:08:19
    鈣鈦礦型多晶薄膜太陽電池(2)
    太陽能(2015年2期)2015-02-28 17:07:18
    免费搜索国产男女视频| 亚洲中文字幕日韩| 欧美 亚洲 国产 日韩一| 免费观看精品视频网站| 一本久久中文字幕| 天堂动漫精品| 成人av一区二区三区在线看| netflix在线观看网站| 午夜激情福利司机影院| 老司机午夜福利在线观看视频| 亚洲欧美精品综合久久99| 亚洲一区高清亚洲精品| 亚洲国产精品成人综合色| 午夜免费观看网址| 亚洲中文字幕日韩| 99国产精品99久久久久| 久久精品国产99精品国产亚洲性色| 国产成人一区二区三区免费视频网站| 一区二区三区精品91| 99国产综合亚洲精品| 国产精品九九99| 国产av不卡久久| 亚洲av美国av| 色综合亚洲欧美另类图片| 午夜免费成人在线视频| 女人高潮潮喷娇喘18禁视频| 天天一区二区日本电影三级| 欧美最黄视频在线播放免费| 国产成人啪精品午夜网站| 99热这里只有精品一区 | 国产97色在线日韩免费| 91麻豆av在线| 久久国产亚洲av麻豆专区| 麻豆成人av在线观看| 亚洲精品中文字幕在线视频| 黄色 视频免费看| 国产亚洲精品久久久久久毛片| 欧美乱码精品一区二区三区| 淫妇啪啪啪对白视频| 久久久国产成人精品二区| 久久久久久久精品吃奶| 精品国产乱码久久久久久男人| 极品教师在线免费播放| 久久精品国产亚洲av香蕉五月| 老司机在亚洲福利影院| 国产亚洲精品综合一区在线观看 | 欧美人与性动交α欧美精品济南到| 日韩欧美一区二区三区在线观看| 美女大奶头视频| 日韩欧美国产一区二区入口| 国产精品亚洲一级av第二区| 91九色精品人成在线观看| 人妻久久中文字幕网| 高潮久久久久久久久久久不卡| 亚洲国产精品久久男人天堂| 亚洲欧洲精品一区二区精品久久久| 我的亚洲天堂| 欧美乱色亚洲激情| 国产亚洲精品综合一区在线观看 | 久久久久久久精品吃奶| 这个男人来自地球电影免费观看| 人成视频在线观看免费观看| 欧美性猛交╳xxx乱大交人| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩无卡精品| 亚洲美女黄片视频| av欧美777| 此物有八面人人有两片| 精品不卡国产一区二区三区| 99久久99久久久精品蜜桃| 久久久久久久久免费视频了| 麻豆一二三区av精品| 757午夜福利合集在线观看| 精品福利观看| 日韩欧美 国产精品| 久久亚洲精品不卡| 男女床上黄色一级片免费看| 国产真人三级小视频在线观看| 黄色 视频免费看| 丝袜在线中文字幕| 此物有八面人人有两片| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品在线美女| 国产黄片美女视频| 啦啦啦韩国在线观看视频| 成人亚洲精品av一区二区| av福利片在线| 一级片免费观看大全| 黄色视频,在线免费观看| 黄片小视频在线播放| 一级a爱片免费观看的视频| 午夜a级毛片| 此物有八面人人有两片| 亚洲中文字幕日韩| 少妇熟女aⅴ在线视频| 国产精品亚洲美女久久久| 精品不卡国产一区二区三区| 韩国精品一区二区三区| 国产不卡一卡二| 国产亚洲欧美在线一区二区| 男女视频在线观看网站免费 | av天堂在线播放| 欧美亚洲日本最大视频资源| 欧美日韩精品网址| 亚洲一区二区三区不卡视频| 国产99久久九九免费精品| www.熟女人妻精品国产| 久久久国产成人精品二区| 18禁黄网站禁片午夜丰满| a在线观看视频网站| 免费在线观看黄色视频的| 国产成人影院久久av| 久久久久九九精品影院| 男女视频在线观看网站免费 | 在线观看午夜福利视频| www.www免费av| 久99久视频精品免费| 成熟少妇高潮喷水视频| 国产激情欧美一区二区| 亚洲人成网站高清观看| 免费看日本二区| 人妻久久中文字幕网| xxx96com| 欧美乱码精品一区二区三区| 男男h啪啪无遮挡| 人人妻人人看人人澡| 精品国内亚洲2022精品成人| 免费在线观看日本一区| 成人欧美大片| 欧美 亚洲 国产 日韩一| 曰老女人黄片| 日本成人三级电影网站| 成人一区二区视频在线观看| 啦啦啦观看免费观看视频高清| 黑人欧美特级aaaaaa片| 久久精品亚洲精品国产色婷小说| 亚洲va日本ⅴa欧美va伊人久久| 在线观看舔阴道视频| 在线十欧美十亚洲十日本专区| 亚洲五月色婷婷综合| 欧美成人午夜精品| 中文字幕精品免费在线观看视频| 天天一区二区日本电影三级| 老司机深夜福利视频在线观看| 国产亚洲精品一区二区www| 亚洲av片天天在线观看| 欧美日韩瑟瑟在线播放| 日本黄色视频三级网站网址| 精品国产超薄肉色丝袜足j| 国产精品国产高清国产av| 国产激情欧美一区二区| 99国产精品99久久久久| 757午夜福利合集在线观看| 在线观看舔阴道视频| 国产亚洲精品综合一区在线观看 | 黄色视频,在线免费观看| 亚洲熟妇熟女久久| 欧美激情极品国产一区二区三区| 99国产综合亚洲精品| 在线观看午夜福利视频| 亚洲成av人片免费观看| 非洲黑人性xxxx精品又粗又长| 精品熟女少妇八av免费久了| 1024手机看黄色片| 真人一进一出gif抽搐免费| 好男人在线观看高清免费视频 | 99国产精品一区二区三区| 欧美绝顶高潮抽搐喷水| 超碰成人久久| 日韩国内少妇激情av| 精品国产国语对白av| 亚洲中文日韩欧美视频| 看片在线看免费视频| 国产精品电影一区二区三区| 看免费av毛片| 久久 成人 亚洲| 热re99久久国产66热| 国产亚洲精品av在线| 欧美乱码精品一区二区三区| 好看av亚洲va欧美ⅴa在| 熟妇人妻久久中文字幕3abv| 亚洲 欧美 日韩 在线 免费| 久久精品91蜜桃| 一区二区三区高清视频在线| 成人三级黄色视频| av有码第一页| 国产精品 国内视频| 成年免费大片在线观看| 亚洲免费av在线视频| 久久久久精品国产欧美久久久| 国产成人精品久久二区二区免费| 久久国产精品影院| 亚洲成人精品中文字幕电影| 一a级毛片在线观看| 欧美午夜高清在线| 美女高潮到喷水免费观看| 免费人成视频x8x8入口观看| 免费在线观看亚洲国产| 国产高清videossex| 成人一区二区视频在线观看| 亚洲午夜理论影院| www日本在线高清视频| 久热爱精品视频在线9| 亚洲精品中文字幕在线视频| 国产又色又爽无遮挡免费看| 亚洲av电影在线进入| 99久久无色码亚洲精品果冻| 亚洲一码二码三码区别大吗| 一边摸一边抽搐一进一小说| 国产熟女午夜一区二区三区| 婷婷丁香在线五月| 夜夜躁狠狠躁天天躁| 亚洲av成人一区二区三| 午夜两性在线视频| 亚洲国产精品999在线| 十八禁网站免费在线| 久久精品影院6| 少妇裸体淫交视频免费看高清 | 岛国在线观看网站| 在线观看www视频免费| 99re在线观看精品视频| 国产精品九九99| 日韩高清综合在线| 美女 人体艺术 gogo| 黄色丝袜av网址大全| 欧美日本视频| 午夜视频精品福利| 亚洲精品久久成人aⅴ小说| 国产精品久久久久久精品电影 | 在线播放国产精品三级| 99久久99久久久精品蜜桃| 亚洲一区二区三区色噜噜| 一级黄色大片毛片| 色哟哟哟哟哟哟| 亚洲全国av大片| 精品久久久久久,| 在线永久观看黄色视频| 国产一区二区激情短视频| 免费女性裸体啪啪无遮挡网站| 最近最新免费中文字幕在线| 精品熟女少妇八av免费久了| 国产精品永久免费网站| 亚洲精品av麻豆狂野| 麻豆成人av在线观看| 欧美又色又爽又黄视频| 成人三级黄色视频| 亚洲男人天堂网一区| 国产精品精品国产色婷婷| 母亲3免费完整高清在线观看| 真人一进一出gif抽搐免费| 两人在一起打扑克的视频| 国产激情久久老熟女| 看免费av毛片| 不卡av一区二区三区| 黄网站色视频无遮挡免费观看| 好男人电影高清在线观看| 美女免费视频网站| 久久中文看片网| 99国产综合亚洲精品| 黄片大片在线免费观看| 欧美日韩福利视频一区二区| 桃色一区二区三区在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲国产日韩欧美精品在线观看 | 亚洲av片天天在线观看| 成人特级黄色片久久久久久久| 日本 av在线| 亚洲av第一区精品v没综合| 亚洲人成伊人成综合网2020| 国产精品野战在线观看| 中文亚洲av片在线观看爽| av天堂在线播放| 波多野结衣高清作品| 禁无遮挡网站| 久久人妻av系列| 精品少妇一区二区三区视频日本电影| 亚洲国产看品久久| 视频区欧美日本亚洲| 午夜免费激情av| 亚洲免费av在线视频| 国内精品久久久久精免费| 国产熟女xx| 精品人妻1区二区| 久久久久久国产a免费观看| 亚洲五月婷婷丁香| 美女扒开内裤让男人捅视频| 熟妇人妻久久中文字幕3abv| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲 欧美 日韩 在线 免费| 国产又色又爽无遮挡免费看| 黑丝袜美女国产一区| xxxwww97欧美| 日日爽夜夜爽网站| 99久久久亚洲精品蜜臀av| 亚洲av日韩精品久久久久久密| 国产真实乱freesex| 国内精品久久久久精免费| 亚洲三区欧美一区| 国产免费av片在线观看野外av| 最近最新中文字幕大全免费视频| 久久草成人影院| 中文字幕高清在线视频| 亚洲熟女毛片儿| 日韩 欧美 亚洲 中文字幕| 少妇裸体淫交视频免费看高清 | 国产野战对白在线观看| 久久中文字幕一级| 国产视频内射| 亚洲一区二区三区不卡视频| 天天躁夜夜躁狠狠躁躁| 在线免费观看的www视频| 精品免费久久久久久久清纯| 国产国语露脸激情在线看| 人人澡人人妻人| 亚洲一区二区三区色噜噜| 亚洲熟妇中文字幕五十中出| 1024视频免费在线观看| 亚洲免费av在线视频| 看片在线看免费视频| 亚洲中文字幕一区二区三区有码在线看 | 一区二区三区激情视频| 亚洲国产看品久久| 91av网站免费观看| 非洲黑人性xxxx精品又粗又长| 成人精品一区二区免费| 欧美日韩黄片免| 国产精品九九99| 国产av又大| 久久久久精品国产欧美久久久| 国产免费男女视频| 韩国精品一区二区三区| 十八禁网站免费在线| 这个男人来自地球电影免费观看| 精品欧美一区二区三区在线| 色综合婷婷激情| 欧美亚洲日本最大视频资源| 婷婷六月久久综合丁香| 大型av网站在线播放| 国产成人欧美在线观看| 国产亚洲精品综合一区在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 精品第一国产精品| 国产成人欧美| 波多野结衣av一区二区av| 欧美黄色片欧美黄色片| 夜夜爽天天搞| 午夜久久久在线观看| 久久国产精品影院| 老汉色av国产亚洲站长工具| 美女 人体艺术 gogo| 国产伦在线观看视频一区| 悠悠久久av| 他把我摸到了高潮在线观看| 免费人成视频x8x8入口观看| 精品午夜福利视频在线观看一区| 美国免费a级毛片| 美女免费视频网站| 免费搜索国产男女视频| 熟女少妇亚洲综合色aaa.| 婷婷精品国产亚洲av| 日韩欧美一区视频在线观看| 亚洲精品中文字幕一二三四区| 一区二区三区精品91| 欧美国产日韩亚洲一区| 国产精品一区二区精品视频观看| 在线免费观看的www视频| 操出白浆在线播放| 国产成+人综合+亚洲专区| 午夜福利欧美成人| 视频在线观看一区二区三区| svipshipincom国产片| 少妇 在线观看| 久久精品91无色码中文字幕| 日本三级黄在线观看| 精品少妇一区二区三区视频日本电影| 在线免费观看的www视频| 91国产中文字幕| 热re99久久国产66热| 成人三级黄色视频| 欧美黑人巨大hd| 91大片在线观看| 黄色 视频免费看| 久久久水蜜桃国产精品网| 制服诱惑二区| 成人精品一区二区免费| 亚洲国产精品999在线| 精品久久久久久久末码| 啦啦啦观看免费观看视频高清| 色哟哟哟哟哟哟| 亚洲精品粉嫩美女一区| 亚洲人成电影免费在线| 午夜日韩欧美国产| 亚洲真实伦在线观看| 欧美日韩乱码在线| 99热这里只有精品一区 | ponron亚洲| 欧美日韩亚洲综合一区二区三区_| 法律面前人人平等表现在哪些方面| 一级a爱视频在线免费观看| 99热只有精品国产| 亚洲欧美激情综合另类| 9191精品国产免费久久| 12—13女人毛片做爰片一| 久久香蕉国产精品| 久久这里只有精品19| 女人爽到高潮嗷嗷叫在线视频| 村上凉子中文字幕在线| 亚洲精品中文字幕一二三四区| 一卡2卡三卡四卡精品乱码亚洲| 手机成人av网站| 久久天堂一区二区三区四区| 久久九九热精品免费| 丁香六月欧美| 国产av在哪里看| 夜夜爽天天搞| 亚洲欧美日韩高清在线视频| 男人舔女人的私密视频| videosex国产| 久久久国产成人精品二区| 日韩精品中文字幕看吧| 亚洲激情在线av| 午夜精品久久久久久毛片777| 丁香六月欧美| 国产野战对白在线观看| 欧美zozozo另类| 天堂影院成人在线观看| 熟女电影av网| 国产一区二区在线av高清观看| 免费在线观看成人毛片| 国产免费男女视频| 午夜福利一区二区在线看| 国产av又大| 美国免费a级毛片| 亚洲国产精品sss在线观看| 啪啪无遮挡十八禁网站| 人人澡人人妻人| 无遮挡黄片免费观看| www.www免费av| 国产亚洲精品综合一区在线观看 | 成人国产一区最新在线观看| 一级片免费观看大全| 9191精品国产免费久久| 日韩欧美一区二区三区在线观看| 一级作爱视频免费观看| 日本熟妇午夜| 免费在线观看完整版高清| 最新在线观看一区二区三区| 女同久久另类99精品国产91| 久久久精品欧美日韩精品| 天堂影院成人在线观看| 波多野结衣高清无吗| 亚洲精华国产精华精| 日日夜夜操网爽| 久久久国产欧美日韩av| 色播亚洲综合网| 窝窝影院91人妻| av在线播放免费不卡| 免费在线观看黄色视频的| 欧美不卡视频在线免费观看 | www日本黄色视频网| 免费看十八禁软件| 一级毛片高清免费大全| 久久午夜综合久久蜜桃| 一级毛片女人18水好多| 日本五十路高清| 69av精品久久久久久| 高潮久久久久久久久久久不卡| 亚洲真实伦在线观看| 十八禁人妻一区二区| 亚洲av片天天在线观看| 色在线成人网| a在线观看视频网站| 一本综合久久免费| 99热只有精品国产| 国产精品美女特级片免费视频播放器 | 久久久久国产精品人妻aⅴ院| 国产一区在线观看成人免费| 国产亚洲av嫩草精品影院| 黑人操中国人逼视频| 18禁国产床啪视频网站| 夜夜夜夜夜久久久久| 日本黄色视频三级网站网址| 中文字幕另类日韩欧美亚洲嫩草| 人人澡人人妻人| 丁香欧美五月| 精品熟女少妇八av免费久了| 成年版毛片免费区| 99在线人妻在线中文字幕| 国产精品久久电影中文字幕| 一进一出抽搐gif免费好疼| 亚洲av熟女| 啦啦啦韩国在线观看视频| 国产又色又爽无遮挡免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 757午夜福利合集在线观看| 亚洲熟妇熟女久久| 欧美中文综合在线视频| 老熟妇仑乱视频hdxx| 热99re8久久精品国产| 日韩国内少妇激情av| 亚洲男人天堂网一区| 99久久综合精品五月天人人| 丝袜在线中文字幕| 人成视频在线观看免费观看| 好看av亚洲va欧美ⅴa在| 哪里可以看免费的av片| 亚洲精品国产一区二区精华液| 亚洲av成人不卡在线观看播放网| 国产精品久久视频播放| 一本大道久久a久久精品| www.999成人在线观看| 国产片内射在线| 搡老岳熟女国产| 午夜激情福利司机影院| 黄网站色视频无遮挡免费观看| 国产高清有码在线观看视频 | 精品免费久久久久久久清纯| 日日摸夜夜添夜夜添小说| 亚洲激情在线av| www.精华液| 国产成人系列免费观看| 久99久视频精品免费| 国产精品亚洲一级av第二区| 男女之事视频高清在线观看| 国产av一区在线观看免费| 国产野战对白在线观看| 久久香蕉激情| 欧美日韩精品网址| 日韩欧美免费精品| 久久国产亚洲av麻豆专区| 18禁国产床啪视频网站| 亚洲男人的天堂狠狠| 成人三级黄色视频| xxxwww97欧美| 精品电影一区二区在线| 制服诱惑二区| 国产乱人伦免费视频| 精品免费久久久久久久清纯| 亚洲av成人一区二区三| 19禁男女啪啪无遮挡网站| 欧美久久黑人一区二区| 日韩欧美一区视频在线观看| 免费看日本二区| 亚洲欧美日韩无卡精品| 亚洲成国产人片在线观看| 大型黄色视频在线免费观看| 久久精品91无色码中文字幕| 婷婷亚洲欧美| 亚洲一码二码三码区别大吗| 国产精品亚洲美女久久久| 午夜福利免费观看在线| 可以在线观看毛片的网站| 欧美午夜高清在线| 国产人伦9x9x在线观看| 免费av毛片视频| 在线看三级毛片| 一进一出抽搐gif免费好疼| 99在线视频只有这里精品首页| 夜夜看夜夜爽夜夜摸| 久久久久国内视频| 婷婷亚洲欧美| 久久精品国产亚洲av高清一级| 黑人操中国人逼视频| 精品久久久久久久毛片微露脸| 国产激情偷乱视频一区二区| 国产亚洲欧美在线一区二区| 免费一级毛片在线播放高清视频| 国产午夜精品久久久久久| 夜夜躁狠狠躁天天躁| www.999成人在线观看| 欧美久久黑人一区二区| 国产精品免费一区二区三区在线| 法律面前人人平等表现在哪些方面| 久久国产精品男人的天堂亚洲| 狂野欧美激情性xxxx| 无遮挡黄片免费观看| 亚洲一区高清亚洲精品| 日韩欧美国产一区二区入口| 亚洲人成伊人成综合网2020| 999久久久国产精品视频| 国产成人一区二区三区免费视频网站| 好男人电影高清在线观看| 操出白浆在线播放| 一进一出抽搐gif免费好疼| 欧美乱妇无乱码| 老汉色∧v一级毛片| 真人一进一出gif抽搐免费| 欧美亚洲日本最大视频资源| 真人一进一出gif抽搐免费| 身体一侧抽搐| 国产熟女午夜一区二区三区| 老司机靠b影院| 久久久国产成人免费| 一区二区三区高清视频在线| 男人操女人黄网站| 欧美亚洲日本最大视频资源| 一级作爱视频免费观看| 国内少妇人妻偷人精品xxx网站 | 757午夜福利合集在线观看| av视频在线观看入口| 美女国产高潮福利片在线看| a级毛片在线看网站| 久热爱精品视频在线9| 18禁裸乳无遮挡免费网站照片 | 免费av毛片视频| 一本精品99久久精品77| 日本精品一区二区三区蜜桃| 亚洲欧美日韩高清在线视频| 国产欧美日韩精品亚洲av| 高潮久久久久久久久久久不卡| 久久精品影院6| 亚洲av中文字字幕乱码综合 | 黄片播放在线免费| 亚洲男人天堂网一区| 看免费av毛片|