• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鹵代芳香族羧酸與含氮配體合成鑭系配合物的結(jié)構(gòu)、熱化學(xué)和熒光性質(zhì)

    2023-02-17 03:55:28王晨璐宿素玲任寧張建軍
    物理化學(xué)學(xué)報(bào) 2023年1期
    關(guān)鍵詞:鹵代張建軍河北師范大學(xué)

    王晨璐,宿素玲,任寧,張建軍,*

    1河北師范大學(xué)分析測試中心,化學(xué)與材料科學(xué)學(xué)院,石家莊 050024

    2河北省特種設(shè)備監(jiān)督檢驗(yàn)研究院,石家莊 050000

    3邯鄲學(xué)院,化學(xué)化工與材料學(xué)院,河北省雜環(huán)化合物重點(diǎn)實(shí)驗(yàn)室,河北 邯鄲 056005

    1 Introduction

    As an important branch of inorganic chemistry, coordination chemistry1is closely related to chemical fields such as organic chemistry2, analytical chemistry3, biochemistry4, medicinal chemistry5, and the chemical industry6. It has attracted the attention of many chemists. Due to the multiple coordination sites, flexible coordination structures, and unique [Xe]4fn(n =1–14) electron configuration of lanthanide ions7, the structures of complexes using lanthanide ions as central metal ions are very rich, and the chemical properties are very different8,9. This makes lanthanide metal complexes used as photocatalysis10,luminous diode, light-emitting sensors11, fluorescent probes12in optics, anti-tumor drugs, and antidepressants in the field of biomedicine5,13, and magnetic materials in the field9,14of electromagnetism, with a wide range of applications. Many metal complexes, including lanthanide metals, have organic ligands that play an essential role, stemming from their coordination patterns, functional groups, etc. The rich topology of the assembled structures fully demonstrates the charm of the directed assembly15, which can form lanthanide metal complexes with the desired functions and thus obtain various materials with the desired properties16. In recent years, the most studied organic aromatic carboxylic acid ligands17have been used to construct crystal structures because these ligands are usually rigid, thermally stable, and high in dimensionality. There are also various coordination geometric configurations, such as tetragonal antiprism with cap, triangular dodecahedron, doublecap trigonal prism, triangular trigonal prism, etc. In addition, the introduction of nitrogen-containing ligands18involved in the construction of Ln(III) will lead to more novel and large structures of the complexes. Common nitrogen-containing ligands include 2,2′-bipyridine19, 5,5′-dimethyl-2,2′-bipyridine,2,2′:6′2′′-tripyridine, and other pyridyl ligands. As highly conjugated auxiliary ligands, they form complexes with lanthanide ions. The ligands absorb energy, in the ground state,electrons jump into the excited state. Through the inter-system scurry to the excited triplet state, transferring energy to the lanthanide ions, forming the so-called ligand “antenna effect”20.This improves the luminous efficiency of the complex.

    Based on the above investigation, two series of five complexes were synthesized by selecting 2,4-difluorobenzoic acid and 2-chloro-6-fluorobenzoic acid as the main ligands and 1,10-phenanthroline and 2,2′:6′2′′-tripyridine as the auxiliary ligands. The novelty of the five complexes, which have not been synthesized before, lies in the variety of structures and the interesting supramolecular structure. In this study, the crystal structure of the polymer was characterized by single-crystal X-ray diffraction, and the supramolecular structure of the polymer was mapped in 1D and 2D. The thermogravimetric-infrared coupling technique performed a thermochemical analysis of complexes 1–5. The luminescent properties of the complexes were determined, except for complex 3.

    2 Experimental

    2.1 Required reagents and experimental method

    All required reagents are reagent grade and can be used without secondary processing. Described in Supporting Information Table S1 are the reagents that were used in this experiment.

    Weigh a certain mass of halogenated aromatic carboxylic acid and N-containing ligand in a clean small beaker. Dissolve with 95% ethanol and stir by adding a magnet to a magnetic stirrer.Weigh a certain amount of lanthanide nitrate into another small clean beaker and dissolve it with ultrapure water. The molar mass ratio is acidic ligand : neutral ligand : lanthanide nitrate =3 : 1 : 1. Sodium hydroxide solution is added to the ligand solution after the pH has been adjusted to weak acidity. The solution was poured into the salt solution with a glass rod primer and continued to stir for 6 h and then left to stand for 12 h. The filtrate obtained from the filtration was poured into a clean beaker covered with plastic wrap with small holes inserted and then left to incubate the crystal.

    Elemental analysis (%): C66H34F12Sm2N4O12, Calcd.: N, 3.49;C, 49.43; H, 2.14. Found: N, 3.55; C, 49.52; H, 2.12.C66H34F12Eu2N4O12, Calcd.: N, 3.49; C, 49.33; H, 2.13. Found:N, 3.38; C, 49.35; H, 2.18. C66H34F12Er2N4O12, Calcd.: N, 3.42;C, 48.41; H, 2.09. Found: N, 3.38; C, 48.60; H, 2.23.C58H38Cl4F4Tb2N8O16, Calcd.: N, 6.84; C, 42.51; H, 2.34.Found: N, 6.87; C, 42.55; H, 2.51. C58H38Cl4F4Dy2N8O16,Calcd.: N, 6.81; C, 42.33; H, 2.33. Found: N, 6.79; C, 42.41; H,2.55.

    2.2 Instruments and test conditions used

    Single crystal X-ray diffraction: Measurement with a Smart-1000 single-crystal X-ray diffractometer from Germany Bruker,incident rays are Mo-Kαand Cu-Kα(λ = 0.71073 ?, 1 ? = 0.1 nm)after graphite monochromatization. Structure data are refined using SHELXS-97.

    Elemental analysis: Using a Germany Elemental vario EL-III cube element analyzer, hydrogen, carbon, and nitrogen were determined in five complexes.

    Infrared spectrum: Measurements were performed on a Bruker Tensor 27 infrared spectrometer from Germany Bruker,in the range of 4000–400 cm-1using the KBr pressed-disk technique.

    Raman spectroscopy: Germany Bruker Vertex-70 FTIRRAMANII spectrometer with 100 scans in the wavelength range 2500–200 cm-1and a resolution of 4 cm-1Nd: YAG laser (λ =1.064 μm) with a laser power of 400 mW and liquid nitrogen cooling device was used.

    PXRD: Scanning was performed in the range of 5°–50° (2θ)using a Germany Bruker D8 advance X-ray diffractometer with a radiation source of copper-potassium radiation (λ = 0. 71073 ?).

    TG-DTG-DSC/FTIR: A Germany Netzsch STA 449 F3 simultaneous thermal analyzer with a Germany Bruker Tensor 27 FTIR spectrometer was used in conjunction with a liquid nitrogen cooling tank. The experimental conditions were simulated with a dynamic air atmosphere, using an ascent rate of 10 K·min-1, heating from 299.25 to 1073.15 K.

    Fluorescence spectroscopy: Solid-state fluorescence was measured using an UK Edinburgh FS5 fluorescence spectrometer with Xe lamp irradiation.

    3 Results and discussion

    3.1 Crystal structure and description

    The complexes 1–5 are all pure single-crystals obtained by volatilization from room temperature solutions. Single crystal X-ray diffraction was used to analyze five complexes, and the SHELXS-97 program21was used for structure resolution. The crystal structures were obtained by full-matrix least-squares on the F2refinement method. As can be seen in Table 1, the refinement parameters are listed. A list of select bond lengths follows in Supporting Information Table S2. The different structures can be divided into three conformations. Both are monoclinic crystal systems, belonging to the P21/n space group unexpectedly. Complexes 1 and 2 are the first type of conformation (I), complex 3 is the second type of confirmation(II), and complexes 4 and 5 are the third type of conformation(III), taking complexes 2, 3, and 5 as examples for a detailed explanation.

    3.1.1 [Ln(2,4-DFBA)3(phen)]2Ln = (Sm 1 and Eu 2)(I)

    To introduce complexes 1 and 2 in detail, complex 2 is used as an example since they are isomorphisms. This symmetrypreserving binuclear molecule consists of six 2,4-DFBA and two phen. The structural unit is shown in Fig. 1a. Each central Eu(III)is coordinated to the carboxyl oxygen atoms in five 2,4-DFBA ligands in three coordination modes, namely double-dentate chelation (O5, O6), bidentate bridging (O3, O4) and ternary bridging (O1, O1#, O2). In addition, coordination with the nitrogen atom (N1, N2) in 1,10-phenanthroline is also carried out. The muffin geometric configuration with coordination number nine was formed after the simulation calculation by the shape22software (Fig. 1b). There is a wide range of bond lengths for Eu―O as shown in Table S2 (in Supporting Information),ranging from 2.870(5)–2.299(5) ?, with an average bond length of 2.458(5) ?. This is similar to the bond length of Ln―O in the oxygen atom contributed by 2,5-bis(4-methylbenzoyl)terephthalic acid in the same type of complexes23. The bond lengths of Eu―N are 2.575(6) and 2.589(6) ?, with an average bond length of 2.582(6) ?. There is a chain-like structure, which can be viewed in Fig. 1c, between adjacent structural units that forms a 1D supramolecular structure along the crystallographic c-axis by C―H···F hydrogen bond. The action distance is 3.127 ?. Based on the 1D chain supramolecular structure, a 2D faceted supramolecular structure (Fig. 1d) along the bc-plane is formed by π–π stacking interaction24in the b-axis direction ofcrystallography. The distance of π–π stacking interaction is 3.414 ?.

    Table 1 Structural refinement parameters of complexes 1-5.

    3.1.2 [Er(2,4-DFBA)3(phen)]2(II)

    Complex 3 has a similar structural general formula to complexes 1 and 2. The only difference is that the central metal ion of complex 3 is coordinated with the oxygen atom in the carboxylic acid root differently. Complex 3 is shown in Fig. 2a as a structural unit. In the halogenated benzoate ligand, the central Er(III) atom is coordinated to the oxygen atom. The coordination is divided into double-dentate chelating (O5, O6)and bidentate bridging (O1, O2, O3, O4). Each central Er(III) is connected to five 2,4-DFBA ligands, equivalent to three complete 2,4-difluorobenzoate ligands when folded. The coordination mode is different from that of complexes 1 and 2,resulting in differences in coordination number and central atomic geometry configuration, presumably due to the lanthanide contraction25. Complex 3 is a double-capped trigonal center geometry configuration (Fig. 2b) with 8 coordination numbers. The geometric configuration is calculated in the same way as above22. The average bond length of Er―O is 2.327(4)?, and the shortest bond length is 2.243(6) ?, which is derived from the Er1―O2 with bidentate bridging coordination. The 1D chain-like supramolecular structure (Fig. 2c) is reflected along the crystallographic a-axis direction. On the crystallographic acplane (Fig. 2d), facets of the supramolecular structure are reflected as 2D surfaces. Both are connected by C―H···F hydrogen bonding in adjacent 2,4-difluorobenzoate ligands in different structural units with an action distance of 3.152 and 3.416 ?, respectively.

    Fig. 1 Structural unit (a) and central Eu(III) geometrical configuration (b) of complex 2,1D chain-like supramolecular structure (c) of complex 2, 2D faceted supramolecular structure (d) of complex 2.

    Fig. 2 Structural unit (a) and central Er(III) geometrical configuration (b) of complex 3,1D chain-like supramolecular structure (c) of complex 3, 2D faceted supramolecular structure (d) of complex 3.

    Fig. 3 Structural unit (a) and central Tb(III) geometrical configuration (b) of complex 4,1D chain-like supramolecular structure (c) of complex 4, 2D faceted supramolecular structure (d) of complex 4.

    3.1.3 [Ln(2-Cl-6-FBA)2(terpy)(NO3)(H2O)]2Ln = (Tb 4 and Dy 5) (III)

    The structure of the third category is clearly distinguished from the first two categories and is elaborated in detail using complex 4 as an example. The binuclear structural unit (Fig. 3a)consists of two Tb(III) as the central ion, with four 2-chloro-6-fluorobenzoate ligands, two 2,2′:6′2′′-tripyridine ligands, two nitrate ions, and two coordination water molecules involved in coordination. Due to the symmetry of the structural unit, the environment around Tb1 is introduced as an example. There are three types of coordination between oxygen atoms and central metal ions, namely bidentate bridging (provided by carboxyl oxygen atoms O1, O2 in 2-chloro-6-fluorobenzoate ligand),double-dentate chelating (provided by oxygen atoms O5, O6 in nitrate) and single-dentate chelating coordination (provided by oxygen atom O3 in 2-chloro-6-fluorobenzoate and oxygen atom O8 in ligand water molecule). The N atoms (N1, N2, N3) in the 2,2′:6′2′′-tripyridine are also involved in the coordination. A bond length of 2.406(1) ? is the average for Tb―O, which ranges from 2.303(4) to 2.527(4) ?. The bond lengths of Dy―N range from 2.512(5)–2.567(5) ?. This is similar to the previously reported bond length26of Ln―N in the same neutral ligand 2,2′:6′2′′-tripyridine. A muffin-type coordination environment(Fig. 3b) with a coordination number of 9 was calculated by shape22software simulation. The adjacent structural units form a 1D chain-like supramolecular structure (Fig. 3c) along the crystallographic a-axis with a hydrogen-bonding distance of 3.396 ? under the C―H···F hydrogen bonding. Based on the 1D chain structure, a 2D faceted supramolecular structure (Fig. 3d)along the ac-plane is formed along the crystallographic c-axis,which is achieved by a weak π-π stacking interaction24at an action distance of 3.574 ?.

    3.2 Infrared and Raman spectroscopy

    For determining the structure of ligands and complexes, IR and Raman spectra were analyzed, as shown in Fig. 4. Both of them reflect the structural information of the complexes and are complementary27. In Table S3 (in Supporting Information), the IR spectra of the four ligands and complexes 1–5 are listed, and the Raman spectra are shown in Table S4 (in Supporting Information). After complex formation, the νC=Oin 2,4-difluorobenzoic acid ligands (IR: 1691 cm-1, R: 1634 cm-1) and 2-chloro-6-fluorobenzoic acid ligands (IR: 1703 cm-1, R: 1652 cm-1) disappeared. Instead, symmetric and antisymmetric stretching vibrations28of the carboxylate were observed,suggesting that it is the carboxylate group in the acidic ligand involved in the coordination with Ln(III) coordination. In addition to this, the vibration of νLn―O29was also observed,which corroborates the above point. Putting the focus on the two auxiliary ligands, we observed a significant displacement of the stretching vibration of the C=N bond after the complex formation. Since the Raman spectrum covers a wider range than the IR spectrum, νLn―N(R: 213–246 cm-1) was also observable in the spectrum of the Raman, which provides strong evidence for the involvement of nitrogen-containing ligands in the coordination formation of Ln―N bonds30.

    3.3 Powder X-ray diffraction test

    According to the results of single-crystal X-ray diffraction, it can be classified into three types according to the type of structure, complexes 1 and 2 (I), complex 3 (II), and complexes 4 and 5 (III). To obtain PXRD spectra, representative singlecrystal CIF data for complexes 2–4 were fitted and compared with experimentally measured PXRD (Fig. 5). The measured peak pattern was in good agreement with the simulated peak pattern, indicating that the target complexes were synthesized with high purity31. Besides, the positions and peak shapes of the diffraction peaks of the same type of complex powder are the same, confirming that they have the same structure32. As a final note, the ligand powder peaks showed significant differences with respect to the complexes, indicating the formation of a new phase, not the result of mechanical summation of the ligand powders31,32.

    Fig. 4 (a-d) IR and Raman spectra. a: IR spectra of ligands and complexes 2-4; b: IR spectra of complexes 1-5;c: Raman spectra of ligands and complexes 2-4; d: Raman spectra of complexes 1-5.

    Fig. 5 (a, b) PXRD diffraction peaks of ligands and complexes 1-5. a: PXRD diffraction peaks of ligands and complexes 1-3; b: PXRD diffraction peaks of ligands and complexes 4 and 5.

    3.4 Thermal decomposition process and analysis of escaping gases

    The TG-DTG-DSC/FTIR analysis33,34of complexes 1–5 was carried out under a simulated dynamic atmosphere (N2: 20 mL·min-1, O2: 10 mL·min-1, protective gas of N2: 30 mL·min-1),and the corresponding thermal decomposition data (Table 2), as well as the thermogravimetric curve (Fig. S1), 3D-IR fugitive gas data were obtained (Fig. S2 for the 3D-IR stacking diagram and IR spectral data are shown in Fig. S3). Thermogravimetric and 3D-IR coupling techniques can better analyze the thermal decomposition process of the complexes, and the two are complementary to each other. Let’s take complexes 2–4 as an example to introduce. Firstly, for complex 2, two parts of significant weight loss can be seen in the thermogravimetric curve (Fig. S1b), corroborating the two downward peaks in the DTG curve and the two stacking peaks in the 3D fugitive gas stacking diagram. The first decomposition step occurred in the temperature range of 466.15–693.15 K with a weight loss of 57.61%, corresponding to the loss of two phen and part 2,4-DFBA. Infrared spectral data of the strongest peak of the solved signal at a temperature of 619.15 K, where small fragments of organic molecules from the decomposition of 1,10-phenanthroline were observed (νC=N: 1608 cm-1, νC―N: 1232,1254 cm-1, νC―H: 3088–3167 cm-1, and γC―H: 765, 1047, 1128 cm-1). In addition, there is a vibrational peak of carbon dioxide(669, 2361 cm-1), which is attributed to the partial loss of 2,4-difluorobenzoate. There was a range of 693.15–1016.15 K in the second decomposition step. The actual weight loss was 19.29%,corresponding to the loss of the remaining 2,4-difluorobenzoate.754.15 K corresponds to the strongest peak of the second-stage 3D-IR signal, and only the vibrational peak of CO2was observed in the spectrum, which indicates that only the 2,4-difluorobenzoate ligand was lost in the second step. In summary,the thermogravimetric curves of each decomposition stage corresponded to the 3D-IR, confirming the correctness of the speculation. The structural formula of complex 3 is similar to that of complex 2. The difference only lies in the way of coordination, which is not explained in detail by thermogravimetry, but only the difference. The thermal decomposition process of complex 3 in three steps differs from that of complex 2. Some of the acidic ligands are lost in multiple stages, presumably due to the contraction of the lanthanide system25. The thermogravimetric curve of complex 4 is shown in Fig. S1d, where four distinct downward peaks of the DTG curve are observed, indicating a four-step decomposition. There are four stacking peaks in the 3D-IR stacking diagram (Fig.S2d), confirming the correctness of the decomposition phase.The first decomposition step is at 424.15–489.15 K. The weight loss is 2.38% (theoretical value 2.20%), which corresponds to the decomposition of two ligand water molecules. The strongest signal peak of the 3D-IR was solved at 432.15 K, corresponding to the vibrational peak of H2O (stretching vibration: 3198–3639 cm-1, bending vibration: 1566 cm-1). The temperature interval of the second decomposition step was 489.15–627.15 K, with a weight loss of 36.34%, corresponding to the loss of two 2,2′:6′2′′-tripyridine ligands and two nitrate ions (theoretical value 36.04%). The strongest peak of the IR signal was observed at 599.15 K, with the escape of NO2(1427, 1472, 1599 cm-1) and the decomposition of 2,2′:6′2′′-tripyridine resulting in partial fragmentation of small organic molecules (νC=C, νC=N, νC―N,δC―H, γC―H). The decomposition types of the third and fourth steps are the same: the decomposition of 2-chloro-6-fluorobenzoate (temperature interval 627.15–996.15 K). The total weight loss for these two decomposition steps was 37.55%,similar to the theoretical value (38.95%). The strongest signal peaks appeared at 764.15 K and 817.15 K. The escape signal of carbon dioxide gas (669, 2363 cm-1) due to the decomposition of aromatic carboxylic acids was observed in the 3D spectrum.The inference was confirmed to be correct. The products corresponding to each decomposition step are [Tb(2-Cl-6-FBA)2(terpy)(NO3)]2→ [Tb(2-Cl-6-FBA)2]2→ Tb2(2-Cl-6-FBA)4-x→ Tb4O7, and the final product is a metal oxide35,36.

    Fig. 6 Fluorescence spectrum of complex 1.

    Fig. 7 Fluorescence spectrum of complex 2.

    Table 2 Thermal decomposition values for complexes 1-5 at various stages.

    3.5 Fluorescent properties

    As a result of having unique fluorescent properties, lanthanide metal complexes are commonly used in producing various luminescent materials11. The solid-state fluorescence of complexes 1, 2, 4 and 5 were measured at room temperature.Different characteristic leap peaks were observed for different central metal ions. The similarity lies in the apparent broadband absorption of the excitation spectrum caused by the π-π* electron leap of the organic ligand37. The best excitation wavelengths(Sm: 362 nm, Eu: 353 nm, Tb: 354 nm, Dy: 353 nm) were chosen to obtain the corresponding emission spectra, and all the four complexes showed obvious characteristics of jump peaks (Figs.6–9).

    Complex 1:4G5/2→6H5/2,4G5/2→6H7/2, and4G5/2→6H9/238,39,located at 563 nm, 598 nm, and 645 nm, respectively, where4G5/2→6H7/2is the strongest jump peak, which is the main reason for the orange-red fluorescence of Sm(III).

    Complex 2:5D0→7F0,5D0→7F1,5D0→7F2,5D0→7F3,5D0→7F438, located at 579 nm, 593 nm, 615 nm, 651 nm, 700 nm, respectively. Since5D0→7F0and5D0→7F3are forbidden40, resulting in a low and negligible jump peak.According to this observation, there is little symmetry in Eu(III)in the complex36. The strongest jump peak of5D0→7F2at 615 nm is the main cause of the red glow41of Eu(III) complexes.Due to the strong fluorescence nature of Eu(III), the fluorescence lifetime was investigated and the fluorescence decay curve was obtained (Fig. 10a). The fluorescence lifetime is 1.288 ms calculated by the formula (i), which is expected to become a novel red fluorescent material.

    Fig. 8 Fluorescence spectrum of complex 4.

    Fig. 9 Fluorescence spectrum of complex 5.

    Complex 4:5D4→7F6,5D4→7F5,5D4→7F4,5D4→7F338at 491 nm, 545 nm, 585 nm, 623 nm, respectively. Among them,5D4→7F5at 545 nm is the strongest jump peak, which is the main reason for the green fluorescence42of Tb(III). The fluorescence decay curve is shown in Fig. 10b. The fluorescence lifetime calculated by the above equation (i) is 0.648 ms.

    Fig. 10 Fluorescence lifetime decay curves of complexes 4 (a) and 5 (b).

    Fig. 11 Color coordinates of complexes 1, 2, 4 and 5.

    Complex 5:4F9/2→6H15/2and4F9/2→6H13/238, located at 481 nm and 573 nm, respectively. The strongest jump peak of4F9/2→6H13/2at 573 nm is the main reason for the yellow43fluorescence of Dy(III).

    To corroborate the correctness of the luminescent colors, the emission spectra of complexes 1, 2, 4, and 5 were substituted into the CIE color coordinate, which showed the color regions(Fig. 11) of orange-red (0.5930, 0.4059), red (0.6670, 0.3328),green (0.3719, 0.5570), and yellow (0.3992, 0.4311),respectively. The correctness of the above analysis was confirmed.

    4 Conclusion

    In summary, the ambient solution volatilization method successfully synthesized five novel complexes: [Ln(2,4-DFBA)3(phen)]2(Ln = Sm 1, Eu 2, Er 3, 2,4-DFBA = 2,4-difluorobenzoate, phen = 1,10-phenanthroline), [Ln(2-Cl-6-FBA)2(terpy)(NO3)(H2O)]2(Ln = Tb 4, Dy 5, 2-Cl-6-FBA = 2-chloro-6-fluorobenzoate, terpy = 2,2′:6′2′′-tripyridine). They belong to the monoclinic crystal system with space group P21/n.The difference is that the five complexes are divided into three different structures, mainly reflected in the different coordination modes and the different forces of the twodimensional faceted supramolecular structures. The thermal decomposition of the complexes was investigated using an IR-thermogravimetric linkage technique. In each decomposition stage, intermediate complexes are identified, and metal oxides are the final products. Finally, the solid-state fluorescence of complexes 1, 2, 4 and 5 were investigated, all exhibiting distinctive characteristic ion emission peaks. The fluorescence lifetimes of complexes 2 and 4 were calculated to be 1.288 and 0.648 ms, which is expected to become a novel type of luminescent material.

    Supplementary data: Crystallographic data for the structure reported in this paper are deposited in the Cambridge Crystallographic Data Center (CCDC 2181666(1); CCDC 2181664(2); CCDC 2181662(3); CCDC 2181670(4); CCDC 2181668(5).)

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    Declaration of Competing Interest: The authors declare that they do not have any known financial interests or relationships that might have influenced their work.

    猜你喜歡
    鹵代張建軍河北師范大學(xué)
    賀河北師范大學(xué)百廿校慶
    電化學(xué)氧化還原法降解鹵代有機(jī)污染物的研究進(jìn)展
    云南化工(2021年11期)2022-01-12 06:06:10
    河北師范大學(xué)美術(shù)與設(shè)計(jì)學(xué)院油畫作品選登
    Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity*
    頸椎病患者使用X線平片和CT影像診斷的臨床準(zhǔn)確率比照觀察
    A NOTE ON MALMQUIST-YOSIDA TYPE THEOREM OF HIGHER ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS?
    巧用反例在概率論教學(xué)中的作用
    高等學(xué)校書法創(chuàng)作教學(xué)摭談——以河北師范大學(xué)為例
    二鹵代熒光素衍生物的熒光性能調(diào)控
    紅球菌-R04生物降解多鹵代聯(lián)苯的影響因素研究
    99国产综合亚洲精品| 午夜两性在线视频| 十八禁高潮呻吟视频| 久久久欧美国产精品| 美女高潮到喷水免费观看| 波野结衣二区三区在线| 人人妻人人澡人人爽人人夜夜| 国产在线视频一区二区| 精品少妇黑人巨大在线播放| 国产三级黄色录像| 国产老妇伦熟女老妇高清| www.精华液| 成年人黄色毛片网站| 午夜av观看不卡| 精品一区二区三区四区五区乱码 | 日本午夜av视频| 国产国语露脸激情在线看| 一本—道久久a久久精品蜜桃钙片| 一级毛片 在线播放| 亚洲精品国产一区二区精华液| 久久综合国产亚洲精品| 日日爽夜夜爽网站| 最近手机中文字幕大全| 亚洲欧美激情在线| 成年av动漫网址| 精品视频人人做人人爽| 欧美日本中文国产一区发布| 老司机影院毛片| 一区在线观看完整版| 久久热在线av| 99热全是精品| 国产不卡av网站在线观看| 欧美精品人与动牲交sv欧美| 国产片内射在线| 美女国产高潮福利片在线看| 宅男免费午夜| 后天国语完整版免费观看| 丰满迷人的少妇在线观看| 狂野欧美激情性bbbbbb| 另类亚洲欧美激情| 久久性视频一级片| 日日夜夜操网爽| 精品国产超薄肉色丝袜足j| 精品亚洲乱码少妇综合久久| 精品人妻在线不人妻| 免费看av在线观看网站| 侵犯人妻中文字幕一二三四区| 欧美精品亚洲一区二区| 国产成人欧美| 午夜影院在线不卡| 看免费成人av毛片| 男女下面插进去视频免费观看| 嫁个100分男人电影在线观看 | 国产成人欧美| 国产一区有黄有色的免费视频| 亚洲男人天堂网一区| 国产高清不卡午夜福利| 欧美亚洲 丝袜 人妻 在线| 欧美黄色淫秽网站| 国产高清国产精品国产三级| 日日爽夜夜爽网站| a级毛片黄视频| 热re99久久精品国产66热6| 一边摸一边做爽爽视频免费| 亚洲成人免费电影在线观看 | 欧美在线一区亚洲| 免费人妻精品一区二区三区视频| 亚洲五月婷婷丁香| 日本色播在线视频| 777米奇影视久久| 校园人妻丝袜中文字幕| 夜夜骑夜夜射夜夜干| 亚洲中文字幕日韩| 欧美av亚洲av综合av国产av| 一二三四社区在线视频社区8| 免费女性裸体啪啪无遮挡网站| 国产色视频综合| 18禁裸乳无遮挡动漫免费视频| 久久人人爽av亚洲精品天堂| 亚洲午夜精品一区,二区,三区| 欧美亚洲日本最大视频资源| 新久久久久国产一级毛片| 久久av网站| 99国产精品免费福利视频| 十八禁网站网址无遮挡| 国产精品一区二区在线观看99| 日韩人妻精品一区2区三区| bbb黄色大片| 国产激情久久老熟女| av国产精品久久久久影院| 欧美日韩av久久| 久久久久久久国产电影| 在线观看免费视频网站a站| 日韩熟女老妇一区二区性免费视频| 天天躁夜夜躁狠狠久久av| 两人在一起打扑克的视频| 黄片播放在线免费| a 毛片基地| 三上悠亚av全集在线观看| 国产精品一区二区在线观看99| 精品久久久久久电影网| 一边摸一边抽搐一进一出视频| 在线观看免费视频网站a站| 亚洲av国产av综合av卡| 男男h啪啪无遮挡| 久久久国产欧美日韩av| 亚洲精品日韩在线中文字幕| 亚洲成人手机| 久热这里只有精品99| 婷婷色麻豆天堂久久| 两个人看的免费小视频| 亚洲精品一区蜜桃| 电影成人av| 久久人人爽av亚洲精品天堂| 91字幕亚洲| 美女脱内裤让男人舔精品视频| 爱豆传媒免费全集在线观看| 国产精品99久久99久久久不卡| 国产欧美日韩一区二区三 | 极品人妻少妇av视频| 我要看黄色一级片免费的| 欧美97在线视频| 男女边摸边吃奶| 9色porny在线观看| av在线app专区| 欧美xxⅹ黑人| 91国产中文字幕| 少妇猛男粗大的猛烈进出视频| 精品人妻1区二区| 高清黄色对白视频在线免费看| av一本久久久久| 亚洲国产欧美网| 一级a爱视频在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 少妇被粗大的猛进出69影院| 亚洲一码二码三码区别大吗| 亚洲精品自拍成人| 99精品久久久久人妻精品| 色综合欧美亚洲国产小说| 国产1区2区3区精品| 国产亚洲av高清不卡| 91精品三级在线观看| 久久精品久久久久久噜噜老黄| 无限看片的www在线观看| 一区二区日韩欧美中文字幕| 又大又黄又爽视频免费| 97人妻天天添夜夜摸| 熟女av电影| 人人妻人人澡人人看| 欧美乱码精品一区二区三区| 赤兔流量卡办理| 亚洲熟女精品中文字幕| 亚洲午夜精品一区,二区,三区| 深夜精品福利| 亚洲精品乱久久久久久| 晚上一个人看的免费电影| 久久国产精品大桥未久av| 在线av久久热| 在线观看www视频免费| 女性生殖器流出的白浆| 国产精品 欧美亚洲| 久久久久久免费高清国产稀缺| 精品久久久久久久毛片微露脸 | 国产高清videossex| 亚洲精品国产区一区二| 90打野战视频偷拍视频| 亚洲人成电影免费在线| 欧美大码av| 人妻人人澡人人爽人人| 色婷婷久久久亚洲欧美| 久热爱精品视频在线9| 午夜免费成人在线视频| 九草在线视频观看| 国产色视频综合| 国产精品一区二区在线不卡| 97人妻天天添夜夜摸| 精品一品国产午夜福利视频| 成年美女黄网站色视频大全免费| 一本—道久久a久久精品蜜桃钙片| 亚洲成人手机| 999久久久国产精品视频| 99re6热这里在线精品视频| 十八禁人妻一区二区| 男女边吃奶边做爰视频| 一级a爱视频在线免费观看| 两个人免费观看高清视频| 久久天躁狠狠躁夜夜2o2o | 国产有黄有色有爽视频| 久久青草综合色| 无遮挡黄片免费观看| 久久精品成人免费网站| 亚洲精品国产av成人精品| 亚洲精品一二三| 极品人妻少妇av视频| 国产精品免费视频内射| 99国产综合亚洲精品| av天堂久久9| 午夜精品国产一区二区电影| 宅男免费午夜| 男女下面插进去视频免费观看| 菩萨蛮人人尽说江南好唐韦庄| 日本av手机在线免费观看| 建设人人有责人人尽责人人享有的| 91成人精品电影| 久久久久精品人妻al黑| 国产精品久久久久久人妻精品电影 | 亚洲av国产av综合av卡| 伦理电影免费视频| 热re99久久精品国产66热6| 亚洲成av片中文字幕在线观看| 欧美日韩视频精品一区| 高潮久久久久久久久久久不卡| 国产亚洲一区二区精品| 亚洲成人国产一区在线观看 | 亚洲精品第二区| 两个人免费观看高清视频| 亚洲一区二区三区欧美精品| 天堂8中文在线网| 老司机靠b影院| 大香蕉久久网| 免费观看a级毛片全部| 我的亚洲天堂| 性色av一级| 亚洲av美国av| 天天躁夜夜躁狠狠久久av| 精品欧美一区二区三区在线| 高清欧美精品videossex| 亚洲国产精品国产精品| 国产在线免费精品| 日韩伦理黄色片| 午夜福利视频精品| 99久久人妻综合| 色网站视频免费| 七月丁香在线播放| 午夜福利影视在线免费观看| 国产真人三级小视频在线观看| 母亲3免费完整高清在线观看| 国产男女内射视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲av在线观看美女高潮| 国产精品av久久久久免费| 日韩中文字幕视频在线看片| 777久久人妻少妇嫩草av网站| 91麻豆精品激情在线观看国产 | 国产日韩欧美在线精品| 美女中出高潮动态图| 香蕉丝袜av| 午夜激情久久久久久久| 九色亚洲精品在线播放| 99久久99久久久精品蜜桃| 91九色精品人成在线观看| 中文乱码字字幕精品一区二区三区| 成人午夜精彩视频在线观看| 成人黄色视频免费在线看| 天天躁日日躁夜夜躁夜夜| 免费少妇av软件| 男人操女人黄网站| 国产免费一区二区三区四区乱码| 搡老岳熟女国产| 国产成人影院久久av| 日日夜夜操网爽| tube8黄色片| 久久精品成人免费网站| 黄片播放在线免费| 久热爱精品视频在线9| 国产不卡av网站在线观看| 美女主播在线视频| 日日爽夜夜爽网站| 亚洲国产精品国产精品| 黄频高清免费视频| 亚洲国产欧美在线一区| 国产亚洲精品久久久久5区| 日本wwww免费看| 美女国产高潮福利片在线看| 久久av网站| 七月丁香在线播放| 美女国产高潮福利片在线看| 国产亚洲精品第一综合不卡| 老鸭窝网址在线观看| 久久国产精品人妻蜜桃| 又紧又爽又黄一区二区| 久久av网站| 国产亚洲精品久久久久5区| 男女高潮啪啪啪动态图| 丝袜在线中文字幕| 免费高清在线观看日韩| 欧美日韩一级在线毛片| 国产成人精品久久二区二区免费| 亚洲伊人色综图| 欧美xxⅹ黑人| 精品一区在线观看国产| 亚洲精品第二区| 看免费成人av毛片| 在线av久久热| 一级a爱视频在线免费观看| 99re6热这里在线精品视频| 久久这里只有精品19| 欧美精品啪啪一区二区三区 | 欧美日韩精品网址| 欧美激情 高清一区二区三区| 久9热在线精品视频| 热re99久久国产66热| 巨乳人妻的诱惑在线观看| 免费看十八禁软件| 日本av手机在线免费观看| 亚洲av成人不卡在线观看播放网 | 叶爱在线成人免费视频播放| 成人国语在线视频| 少妇 在线观看| 91精品三级在线观看| 久久久久精品国产欧美久久久 | 欧美老熟妇乱子伦牲交| 在线观看国产h片| 日韩精品免费视频一区二区三区| 国产精品人妻久久久影院| av线在线观看网站| 人人妻人人澡人人看| 欧美亚洲日本最大视频资源| 国产熟女午夜一区二区三区| 黄色视频在线播放观看不卡| 黄色一级大片看看| 午夜免费鲁丝| 欧美老熟妇乱子伦牲交| 各种免费的搞黄视频| 国产日韩欧美视频二区| 亚洲精品自拍成人| 国产亚洲av高清不卡| 一级片免费观看大全| 成年人午夜在线观看视频| 国产伦人伦偷精品视频| 亚洲自偷自拍图片 自拍| 成人亚洲精品一区在线观看| 亚洲国产中文字幕在线视频| 国产成人欧美| 狠狠婷婷综合久久久久久88av| bbb黄色大片| 一区二区三区乱码不卡18| 久久久欧美国产精品| 人人妻人人澡人人看| 下体分泌物呈黄色| 欧美黄色片欧美黄色片| bbb黄色大片| 亚洲国产精品成人久久小说| 国产精品二区激情视频| 各种免费的搞黄视频| 啦啦啦啦在线视频资源| 中文字幕另类日韩欧美亚洲嫩草| 国产精品一区二区在线不卡| 十八禁高潮呻吟视频| 十八禁人妻一区二区| 日韩免费高清中文字幕av| 宅男免费午夜| 亚洲成国产人片在线观看| 精品国产超薄肉色丝袜足j| 国产亚洲精品久久久久5区| 久久综合国产亚洲精品| 午夜影院在线不卡| 别揉我奶头~嗯~啊~动态视频 | 午夜两性在线视频| 免费观看人在逋| 天堂8中文在线网| 精品一区二区三卡| 视频在线观看一区二区三区| 操出白浆在线播放| 国产精品一区二区精品视频观看| 丁香六月天网| 观看av在线不卡| 热99国产精品久久久久久7| 欧美激情 高清一区二区三区| 亚洲av成人精品一二三区| 亚洲欧美日韩另类电影网站| 51午夜福利影视在线观看| 2018国产大陆天天弄谢| 欧美日韩亚洲高清精品| 国产成人精品无人区| 青青草视频在线视频观看| 天天躁夜夜躁狠狠躁躁| 51午夜福利影视在线观看| 国产一区二区 视频在线| 自线自在国产av| 国产精品.久久久| 伦理电影免费视频| 久久久久久久大尺度免费视频| 你懂的网址亚洲精品在线观看| 国产亚洲午夜精品一区二区久久| 成年av动漫网址| 久久精品亚洲av国产电影网| 在线 av 中文字幕| 熟女av电影| 七月丁香在线播放| 又紧又爽又黄一区二区| 波野结衣二区三区在线| 亚洲欧洲精品一区二区精品久久久| 亚洲图色成人| 日韩大码丰满熟妇| 欧美黑人精品巨大| 青草久久国产| 亚洲一区中文字幕在线| 视频区欧美日本亚洲| 男女国产视频网站| 欧美精品高潮呻吟av久久| 操出白浆在线播放| 激情视频va一区二区三区| cao死你这个sao货| 欧美日韩国产mv在线观看视频| 中文字幕人妻丝袜一区二区| 国产亚洲午夜精品一区二区久久| 久久精品国产a三级三级三级| 青草久久国产| 午夜激情av网站| 欧美激情高清一区二区三区| 国产av国产精品国产| 免费看不卡的av| 久久久国产一区二区| 91成人精品电影| 女警被强在线播放| 亚洲精品国产区一区二| 亚洲精品自拍成人| 国产老妇伦熟女老妇高清| 女性生殖器流出的白浆| 久久ye,这里只有精品| 丰满少妇做爰视频| 一区二区三区激情视频| 国产不卡av网站在线观看| 午夜福利免费观看在线| 在线观看国产h片| 一个人免费看片子| 一区在线观看完整版| 欧美日韩精品网址| 亚洲七黄色美女视频| 亚洲国产欧美网| 精品人妻熟女毛片av久久网站| 久久久久精品国产欧美久久久 | 99国产精品99久久久久| 熟女av电影| 亚洲欧洲日产国产| 欧美精品高潮呻吟av久久| 菩萨蛮人人尽说江南好唐韦庄| 免费在线观看影片大全网站 | 午夜免费鲁丝| 热99久久久久精品小说推荐| 久久久国产一区二区| 日本91视频免费播放| 操出白浆在线播放| 婷婷成人精品国产| 亚洲av国产av综合av卡| 下体分泌物呈黄色| 久久人妻熟女aⅴ| 日韩免费高清中文字幕av| 90打野战视频偷拍视频| 91精品国产国语对白视频| 女人久久www免费人成看片| 成人18禁高潮啪啪吃奶动态图| 国产真人三级小视频在线观看| 亚洲av男天堂| 纯流量卡能插随身wifi吗| 免费人妻精品一区二区三区视频| 国产精品一区二区精品视频观看| 亚洲av国产av综合av卡| 校园人妻丝袜中文字幕| 蜜桃在线观看..| 777米奇影视久久| 一个人免费看片子| 性少妇av在线| 自线自在国产av| 在线观看免费午夜福利视频| 午夜两性在线视频| 久久精品成人免费网站| 一级黄色大片毛片| av网站免费在线观看视频| 久久久久网色| 欧美xxⅹ黑人| 一本大道久久a久久精品| 丝袜美腿诱惑在线| 亚洲国产欧美网| 五月开心婷婷网| 色视频在线一区二区三区| 91麻豆精品激情在线观看国产 | 欧美xxⅹ黑人| 热re99久久国产66热| 成人免费观看视频高清| 欧美日韩视频高清一区二区三区二| 考比视频在线观看| 可以免费在线观看a视频的电影网站| 一区二区三区激情视频| 亚洲激情五月婷婷啪啪| 97人妻天天添夜夜摸| 交换朋友夫妻互换小说| 不卡av一区二区三区| 亚洲欧美精品自产自拍| 50天的宝宝边吃奶边哭怎么回事| 精品高清国产在线一区| 亚洲男人天堂网一区| av一本久久久久| 午夜免费观看性视频| 精品欧美一区二区三区在线| 国产亚洲av片在线观看秒播厂| 桃花免费在线播放| 91成人精品电影| 欧美黄色淫秽网站| 无遮挡黄片免费观看| 一本色道久久久久久精品综合| 午夜福利视频在线观看免费| 免费在线观看黄色视频的| 少妇精品久久久久久久| 91老司机精品| 免费观看av网站的网址| 亚洲三区欧美一区| 两人在一起打扑克的视频| 久久天堂一区二区三区四区| 精品卡一卡二卡四卡免费| 久久久亚洲精品成人影院| 18禁观看日本| 美女扒开内裤让男人捅视频| 国产精品九九99| 老司机亚洲免费影院| 91国产中文字幕| 免费黄频网站在线观看国产| 久久久久久久久免费视频了| 国产伦人伦偷精品视频| 999精品在线视频| 女人精品久久久久毛片| 人妻一区二区av| 国产免费一区二区三区四区乱码| 婷婷色麻豆天堂久久| 午夜免费成人在线视频| 国产人伦9x9x在线观看| 国产精品av久久久久免费| 亚洲成人免费电影在线观看 | 好男人电影高清在线观看| 亚洲国产中文字幕在线视频| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久久精品电影小说| 99香蕉大伊视频| 精品视频人人做人人爽| 久久精品久久精品一区二区三区| 欧美在线一区亚洲| 亚洲 国产 在线| 男女高潮啪啪啪动态图| 成人亚洲欧美一区二区av| 日韩一区二区三区影片| 成人国语在线视频| 99re6热这里在线精品视频| 日本欧美国产在线视频| 男人操女人黄网站| 男女无遮挡免费网站观看| 久久 成人 亚洲| 日韩一本色道免费dvd| 亚洲伊人色综图| 青春草亚洲视频在线观看| 欧美激情高清一区二区三区| 999精品在线视频| 又粗又硬又长又爽又黄的视频| 老汉色av国产亚洲站长工具| 丝袜脚勾引网站| 日本wwww免费看| 亚洲第一青青草原| 久久精品亚洲熟妇少妇任你| 精品熟女少妇八av免费久了| av欧美777| 好男人视频免费观看在线| 欧美亚洲 丝袜 人妻 在线| 欧美av亚洲av综合av国产av| xxxhd国产人妻xxx| 免费观看av网站的网址| 老司机在亚洲福利影院| 在线观看免费日韩欧美大片| 国产亚洲一区二区精品| 亚洲一卡2卡3卡4卡5卡精品中文| 国产欧美日韩一区二区三区在线| 久久这里只有精品19| av在线老鸭窝| 熟女少妇亚洲综合色aaa.| 国产成人一区二区在线| 免费在线观看日本一区| 国产视频一区二区在线看| 在线观看免费日韩欧美大片| 婷婷成人精品国产| 日韩伦理黄色片| 女人高潮潮喷娇喘18禁视频| 精品久久蜜臀av无| av欧美777| 91老司机精品| 色94色欧美一区二区| 夜夜骑夜夜射夜夜干| 母亲3免费完整高清在线观看| 亚洲欧美中文字幕日韩二区| 又大又爽又粗| 老司机靠b影院| 日韩制服骚丝袜av| 亚洲第一av免费看| www.精华液| www.999成人在线观看| 老司机深夜福利视频在线观看 | 啦啦啦视频在线资源免费观看| 国产黄色免费在线视频| 国产成人系列免费观看| 真人做人爱边吃奶动态| 一区二区三区精品91| 日韩电影二区| 亚洲成人手机| 成年人黄色毛片网站| 欧美黑人精品巨大| 人妻人人澡人人爽人人| 99香蕉大伊视频| 亚洲视频免费观看视频| 老司机影院成人| 老司机午夜十八禁免费视频| 一二三四社区在线视频社区8| 日韩 亚洲 欧美在线| 各种免费的搞黄视频| 看十八女毛片水多多多| 啦啦啦啦在线视频资源| √禁漫天堂资源中文www| 99国产综合亚洲精品|