• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modulated spatial transmission signals in the photonic bandgap

    2022-12-28 09:53:32WenqiXu許文琪HuiWang王慧DaohongXie謝道鴻JunlingChe車俊嶺andYanpengZhang張彥鵬
    Chinese Physics B 2022年12期
    關(guān)鍵詞:王慧

    Wenqi Xu(許文琪) Hui Wang(王慧) Daohong Xie(謝道鴻) Junling Che(車俊嶺) and Yanpeng Zhang(張彥鵬)

    1School of Science,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    2School of Communication and Information Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    3Key Laboratory for Physical Electronics and Devices of the Ministry of Education&Shaanxi Key Laboratory of Information Photonic Technique,Xi’an Jiaotong University,Xi’an 710049,China

    Keywords: electromagnetically induced transparency, nonlinear Kerr effect, four-wave mixing, photonic bandgap

    1. Introduction

    For a long time, light field modulation — which mainly uses lasers to modulate various mesoscopic systems — has been a key area of optics research. In this modulation process,the interaction between laser light and materials and the resulting effects shed light on the workings of mesoscopic systems.[1]In addition, the related phenomena and effects have potential applications in light fields. Optical lattices constructed using artificial light fields are very important for light field modulation due to their unique periodic structure.[2]A periodic refractive index is formed when laser beams are transmitted in a periodic structure.[3]By periodically modulating the refractive index of the medium, the way in which a light field is transmitted by the medium can be adjusted to control and manipulate the light field. In this paper, we describe the implementation of an artificially tunable one-dimensional optical bandgap lattice that uses enhanced optical nonlinear effects based on electromagnetically induced transparency and the interactions of nonperiodically structured atoms.[4–6]Tunable spatial transmissions of light fields were implemented in such an optical bandgap lattice, and its transmission patterns were investigated by modulating the nonlinear Kerr effect. This provides another way to observe the spatial transmission properties of light fields, which provides a basis for better controlling and manipulating lasers to modulate the refractive indices of media. Such research has potential applications in all-optical communications,[7,8]as it enables the spatial transmission mode,logic,and relevance of a light field to be modulated.

    The electromagnetically induced transparency effect offers great value for applications in nonlinear optics. In particular, when based on the multienergy atomic structure,electromagnetically induced transparency can not only drastically change the nonlinear refractive index of an atomic medium, which leads to a slower velocity of the probe beam,but can also enhance the nonlinear effect of the atomic medium and thus improve the intensity of the four-wave mixing signal.[9–11]In addition, the electromagnetically induced transparency effect can also enhance the nonlinear self-Kerr effect as well as the nonlinear cross-Kerr effect.[12,13]Furthermore, an electromagnetically induced grating can be created using the electromagnetically induced transparency phenomenon under certain spatial light field conditions,[14,15]causing the medium to form a periodic photonic bandgap structure.[16,17]In our experiment,we investigated the optical nonlinear Kerr effect generated by the electromagnetically induced transparency signal and the four-wave mixing signal in a one-dimensional photonic band structure. In this process,we observed the nonlinear Kerr effect and the corresponding transmission spot changes of two signals under different conditions, in particular, under the effect of interaction between different light fields. In addition,regulation of specific physical phenomena in the spatial images of the probe signal and the four-wave mixing signal was observed, including focusing, defocusing,[18]shifting,[19]and spatial splitting.[20]The experimental results show that the interaction between the light field and the medium can regulate the spatial transmission of the light field by changing the refractive index of the medium. These results provide experimental technology support for all-optical communications and open up potential research prospects for all-optical signal processing.

    2. Experimental scheme

    As shown in Fig. 1(a1), the energy levels in this experiment are designed based on an inverted Y-type four-energy atomic structure consisting of 5S1/2(F=3)(|0〉),5S1/2(F=2) (|3〉), 5P3/2(|1〉), and 5D5/2(|2〉) in a rubidium (85Rb)atomic four-energy system. The probe laser beamE1excites|0〉to|1〉, the coupling laser beamsE3andE′3connect|3〉and|1〉from two opposite directions, and the external dressing laser beamE2excites|1〉to|2〉. As the light field excites the atoms to their respective energy levels, the mutual dressing effect between the energy levels causes individual energy levels to split and form the dark state, which results in the electromagnetically induced transparency phenomenon. Figure 1(a2) shows the relationship between the mutual dressing effects of individual energy levels. The light fieldE3splits energy level|1〉into two dressed states denoted by|G3(z)+〉and|G3(z)?〉. When the external dressing field laser beamE2is injected, the energy level|G3(z)+〉is further split into two dressed states denoted by|G3(z)+G2+〉and|G3(z)+G2?〉due to the dressing effect between the energy levels. Figure 1(b)shows a schematic diagram of the experimental beam structure. The experimental setup is shown in Fig. 1(c); it consists of the probe laser beamE1together with the coupling laser beamsE3andE′3. In addition, the oval part of the figure represents the rubidium medium inside a heated cavity. The laser beam is divided into multiple beams through different polarizing beam splitters (PBSs), and is focused into the atomic medium in different directions. After passing through the atomic medium, the laser beam is then injected into the charge-coupled device (CCD) and the oscilloscope through the optical attenuator. The evolution of the spatial beam and its regulation are observed using the signals in the CCD and the oscilloscope. First, different laser beams are injected into the system under different experimental conditions.PBS2 and PBS3 transmit the refracted probe transmission signal (EP) to receiver D1, while the four-wave mixing signal(EF)is transmitted in the other direction through PBS1 and also through PBS4 to receiver D2and the CCD.The light fieldsE1andE3are injected in different directions, forming a small angle between them;E′3is transmitted in the opposite direction to that ofE1,while the dressing fieldE2propagates at a small angle in the opposite direction to that ofE1. In this process,the excitation energy levels of the periodic beam form a periodic split energy level structure,enabling a periodic polarization rate to be obtained, thus creating a periodic refractive index in the medium that finally constructs the photonic bandgap structure. The spectral signal in the detector and the spot image signal in the CCD are then observed and analyzed by changing the light field to adjust various parameters.

    Fig.1. (a1)Model of a four-energy atomic system and the energy level structure of the light field, (a2) diagram of the energy levels splitting under the effect of the dressing light field,(b)schematic diagram of the optical path design and the atomic medium, (c) diagram of the simple experimental setup,including PBS(a polarizing beam splitter),D1 (detector 1),D2 (detector 2),Rb cell(a rubidium cell),and CCD(a charge-coupled device).

    3. Theoretical model

    The self-Kerr and cross-Kerr effects are mainly generated by the interaction of the light field with the atomic medium.In order to help the reader to understand the nonlinear dispersion in the medium and physical phenomena such as the focusing,defocusing,splitting,and shifting of the light transmission,we present the spatial light propagation equations for the probe transmission signal and the four-wave mixing signal that result from self-phase modulation and cross-phase modulation. The propagation equation corresponding to the probe transmission signal is shown below:

    In the left-hand sides of Eqs. (1) and (2), the first terms describe the longitudinal propagation process of the probe signal and the four-wave mixing signal,respectively. The second terms reflect the diffraction phenomena of the two different laser fields during the propagation process. In the right-hand sides of the two equations, the first terms describe the nonlinear self-Kerr effect, and the second through the fifth terms describe the nonlinear cross-Kerr effect.

    For the specific application of the Kerr effect in this experiment,all nonlinear Kerr effects can be expressed in a generalized form as

    In addition, when the nonlinear refractive index is large and the field strength is low, we can also use Eq. (7) to theoretically approximate the nonlinear phase shift and strong spatial focusing or defocusing phenomenon in order to simplify this complex problem.

    4. Experimental results

    Fig.2. Probe transmission spectra(a1), four-wave mixing spectra(a2), and refractive index(a3)with scanning detuning ?1 in the range of ?800 MHz to 800 MHz. Spatial image of the probe transmission signal(b1)and a spatial image of the four-wave mixing signal(b2)with scanning detuning ?1 in the range of ?800 MHz to 800 MHz. In the above figures, the coupling field detuning ?3 and the dressing field detuning ?2 are both 400 MHz,the power of E1 is 1.5 mW,the power of E3 is 15 mW,the power of E′3 is 15 mW,and the power of E2 is 30 mW.

    We now focus on the modulation of the spatial images by narrowing?1in the vicinity of the generated EIT and fourwave mixing under the cross-Kerr effect of the four beams interacting with each other.To ensure the symmetry of the study,we change the frequency detuning?3to?400 MHz and observe the variation of both signals under different experimental conditions by controlling a single variable.Figure 3(a1)shows the spectrum of the probe transmission signal for the scanning frequency detuning?1. On comparing this with Fig.2(a1),it can clearly be observed that when?3changes from positive to negative, the spectrum of the probe signal generates electromagnetically induced transparency at the scanning frequency detuning of?1=430 MHz. Figure 3(a2)shows the spectrum of the four-wave mixing signal for the scanning frequency detuning?1. Similarly, comparing Fig. 3(a2) with Fig. 2(a2),one can see that the spectra of both figures show basically the same pattern at symmetric frequencies. The theoretical variation curve of the Kerr nonlinear refractive index under the effect of light fieldE1alone is shown in Fig. 3(a3), which demonstrates that the variation in the Kerr nonlinear refractive index only occurs with the scanning frequency detuning.

    Fig.3. Probe transmission spectra(a1),four-wave mixing spectra(a2),and refractive index(a3)with scanning frequency detuning ?1 in the range of ?500 MHz to 500 MHz. Spatial images of the probe transmission signal (b1) and the four-wave mixing signal (b2) with scanning frequency detuning ?1 in the range of 400 MHz to 440 MHz. In the above figures,the coupling field frequency detuning ?3 and the dressing field frequency detuning ?2 are both ?400 MHz,the E1 power is 1.5 mW,the E3 power is 15 mW,and the E′3 power is 15 mW.All spectral vertical axis units are normalized units(arb.units).

    This section describes the modulation effect of the nonlinear cross-Kerr effect on the signal, which was observed by scanning the frequency detuning?2and altering the intensity of the probe field. Fixing?1=200 MHz allows the frequency detuning?2to be scanned while changes in the images are located within the defocused area,which facilitates a more intuitive observation of the effect of the external dressing field. Figures 4(a1)and 4(a2)show the spectral variations and the spatial images of the probe transmission signal for a dressing fieldE2power of 30 mW. Theoretically, when the probe transmission signal satisfies the resonance condition of?1+?2=0 MHz,it should generate an EIT peak. However,when the probe fieldE1power is large,its interaction with the dressing fieldE2is strong,so thatE2has a suppressing effect on the energy level|1〉. Therefore, at a scanning frequency detuning of?2=0 MHz, a suppression phenomenon occurs in the middle of the EIT peak, because the|G2|2/d2term in Eq.(5)causes the dressing fieldE2to produce a dressing effect on the probe transmission signal. As we can see from the spatial image of the probe transmission signal in Fig.4(a2),theE2field has a clear suppressive effect on the probe transmission signal. Figures 4(a1′) and 4(a2′) show this phenomenon after only reducing the power ofE1and keeping all the other conditions constant.The probe transmission signal at this time shows a typical single-peak spectrum,because the field power ofE1is too small and the interaction withE2is weak. Therefore, the suppressive effect ofE2onE1cannot be reflected in the figure. On comparing Fig.4(a2′)with Fig.4(a2),it can be seen more obviously that with a continuous change of the scanning frequency detuning?2, the intensities of the probe transmission signal, spot area, and spot brightness decrease when the intensity of the probe field diminishes. In addition,hardly any obvious change can be seen in the spatial image in the weak signal case. Correspondingly, the strong probe field case shows significant transverse and longitudinal splitting of the probe transmission image,for the same reasons as explained above.

    Fig.4. (a)Scanning of the frequency detuning ?2 in the range of ?300 MHz to 300 MHz: the probe transmission spectrum (a1) and the corresponding spatial images(a2)at a probe field E1 power of 2 mW;the probe transmission spectrum(a1′)and the corresponding spatial images(a2′)at an E1 power of 1 mW, (b) scanning frequency detuning ?2 in the range of ?300 MHz to 300 MHz:the four-wave mixing spectrum(b1)and the corresponding spatial images(b2)at a probe field E1 power of 2 mW;the four-wave mixing signal spectrum(b1′)and the corresponding spatial images(b2′)at an E1 power of 1 mW.All spectral vertical axis units are normalized units(arb.units).

    The spectral and spatial image changes of the four-wave mixing signal are shown in Figs.4(b1)and 4(b2),respectively,for anE1field power of 2 mW. In the spectrum of the fourwave mixing signal, it can clearly be seen that the four-wave mixing signal is also affected by the dressing effect ofE2,which results in a suppression pit at?2=0 MHz in the spectrum. From Fig.4(b2),it can be observed that due to the cooperative effect of the nonlinear phase shifts?1and?2caused byE1andE2, the spatial image of the four-wave mixing signal exhibits a splitting phenomenon. Additionally,the variation of the frequency detuning ofE2changes the combined nonlinear refractive index of the two light fields. It turns out that if the change in the intensity is weak, the degree of splitting does not change with?2, indicating that the nonlinear modulation is subject to a smallerE2effect.

    The spectral and spatial image changes of the four-wave mixing signal after decreasing the power ofE1to 1 mW are shown in Figs.4(b1′)and 4(b2′),respectively. In comparison with Fig. 4(b1), we still see a suppression pit, but its depth is smaller than in Fig. 4(b1′). Figure 4(b2′) shows the corresponding spatial image of the four-wave mixing signal. On compared this with Fig. 4(b2), it can be seen that the image does not split longitudinally after theE1power is reduced.This indicates that the image of the four-wave mixing signal splits longitudinally due to the high power ofE1. Furthermore,the main reason for this is they-axis component of the nonlinear phase shift caused by the interaction betweenE1and the atomic medium. This demonstrates that different probe field powers play a crucial role in the splitting modulation of the probe transmission and four-wave mixing images.

    Finally, we further investigated the relationship between the intensity of the external dressing field and the nonlinear refractive index by fixing?1=200 MHz in the defocused area.The spatial evolution patterns of the four-wave mixing images are shown in Fig. 5(a). Spatial images are shown in detail in Figs. 5(a1), 5(a2), and 5(a3), for different powers of the external dressing fieldE2of 30 mW, 20 mW, and 10 mW, respectively. In the transverse view,the optical spot area of the four-wave mixing decreases near?2=0 MHz,which is consistent with the intensity magnitude of the spectral signals in Figs.5(b1),5(b2),and 5(b3).In the longitudinal view,the suppression effect of the light fieldE2on the four-wave mixing signal is smaller away from the resonant frequency of 0 MHz.In the other words, for the same scanning frequency detuning, the smaller the power, the smaller the area of the optical spot that appears. Moreover, the farther?2is from 0 MHz,the more apparent this pattern becomes. When?2is closer to resonant frequency of 0 MHz, the larger theE2power becomes, and the spot area shows the opposite pattern. To be precise,the closer?2is to 0 MHz,the larger theE2light-field power becomes, and the smaller the spot appears due to the suppression effect.This is because when?2=0 MHz,the resonance effect betweenE2and the atomic energy level is at its strongest,and the dressing effect ofE2on the four-wave mixing signal exhibits stronger suppression.Figure 5(b)shows the pattern of variation in the spectrum intensity of the four-wave mixing signal for various powers. The larger theE2power,the more significant the suppression effect on the four-wave mixing spectrum becomes,and the deeper the suppression pit.In Figs. 5(a1) and 5(b1), it can be seen that the power ofE2is 30 mW. Under these conditions, with a changing scanning frequency detuning?2,the suppression pit created by the fourwave mixing signal at?2=0 MHz corresponds to the smallest spot in Fig.5(a1). As the power ofE2decreases,the suppression of the four-wave mixing signal byE2diminishes,and the suppression pit depth becomes smaller,as shown in Figs.5(b2)and 5(b3). In Figs.5(a2)and 5(a3),when?2=0 MHz and the dressing effect is the strongest, the smaller the power ofE2,the larger the optical spot. For a more intuitive observation of the relationship between the intensity of the dressing field and the variation of the optical spot, we have added a red dashed line as a reference in Fig. 5(a). The dashed line corresponds to the location of the maximum intensity of the dressing field.It can be seen that when theE2power is constant, the area of the optical spot shrinks to its minimum when the dressing effect reaches its maximum. Moreover,the optical spot is increasingly less suppressed byE2as theE2power decreases.At the same time,the spot area gradually increases at the same scanning frequency detuning. Figure 5(c) shows the trend of the nonlinear Kerr refractive index at different dressing intensities. As the scanning frequency detuning?2changes, the refractive index gradually changes from zero to less than zero and then back to its initial position. In addition,the larger the power ofE2,the larger the change in the Kerr refractive index becomes, and the greater the variations of the curves corresponding to Fig.5(c1),5(c2),and 5(c3).

    Fig.5. (a)Spatial images of the four-wave mixing signal with a scanning frequency detuning ?2 range of ?50 MHz to 50 MHz,an E1 power of 1.5 mW,and dressing field intensities of (a1) 30 mW, (a2) 20 mW, and (a3) 10 mW,respectively. (b)Spectra of the four-wave mixing with a scanning frequency detuning ?2 range of ?50 MHz to 50 MHz and dressing field intensities of(b1)30 mW,(b2)20 mW,and(b3)10 mW,respectively.(c)Nonlinear refractive index variation for a scanning frequency detuning ?2 range of ?50 MHz to 50 MHz and dressing field intensities of (c1) 30 mW, (c2) 20 mW, and(c3)10 mW,respectively. The power of E3 is 15 mW,and the power of E′3 is 15 mW.

    Based on Figs. 5(a)–5(c) it can be seen that the external dressing field has a modulating effect on the nonlinear Kerr refractive index. Furthermore, it may also modulate the intensity and spatial spot area of the four-wave mixing signal.When the intensity of the external dressing field is larger, the nonlinear Kerr refractive index changes at a faster rate, and the nonlinear modulating effect of the four-wave mixing signal becomes stronger. Conversely, when the intensity of the external dressing field is smaller,the nonlinear Kerr refractive index changes more slowly, and the modulating effect of the four-wave mixing signal becomes weaker.

    5. Conclusion

    In summary, we have presented a theoretical and experimental study of the spatial image and spectral signal evolution patterns of the probe transmission and the four-wave mixing signal based on an inverted Y-type four-energy level atomic system by changing the adjustable parameters of the light field. The refractive index of the medium was modulated by the nonlinear Kerr effect of the interaction between the light field and the atomic medium. In addition,the nonlinear phase shift of the probe transmission and the four-wave mixing signal was modulated. Spatial shifting and splitting patterns of the probe transmission and the four-wave mixing signals were obtained by manipulating the light fields. In this process, it was observed that frequency detuning and the power of the light fields play a decisive role in the spatial image change of the probe transmission and four-wave mixing signals. These modulating patterns provide experimental technology support for all-optical communications and open up potential research prospects for nonlinear optical communications networks.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No. 61705182) and the Natural Science Foundation of Shaanxi Province, China (Grant No.2017JQ6024).

    猜你喜歡
    王慧
    翹首遠望
    綠色天府(2021年11期)2021-12-06 02:46:18
    情深深雨蒙蒙
    金秋(2021年24期)2021-04-01 10:05:44
    浮光掠影
    思維與智慧(2021年9期)2021-03-23 03:16:24
    粒粒皆辛苦
    童年色彩
    金秋(2019年10期)2019-01-13 13:05:55
    花枝俏
    暮之剪影
    王慧攝影作品二幅
    純真童趣
    金秋(2017年14期)2017-10-24 09:14:43
    Two Allusions in Sense and Sensibility
    男插女下体视频免费在线播放| 欧美高清成人免费视频www| 夫妻午夜视频| 99热国产这里只有精品6| av在线观看视频网站免费| 亚洲av日韩在线播放| 在线天堂最新版资源| videos熟女内射| 欧美极品一区二区三区四区| 女人十人毛片免费观看3o分钟| 免费观看性生交大片5| 在线观看国产h片| 夫妻午夜视频| 精品久久久久久久久av| 亚洲av免费在线观看| 国产成人免费观看mmmm| 精品午夜福利在线看| 日韩大片免费观看网站| 中文天堂在线官网| 免费观看在线日韩| 99精国产麻豆久久婷婷| 成人高潮视频无遮挡免费网站| 免费看光身美女| 99久久九九国产精品国产免费| 伦理电影大哥的女人| 国产一区二区三区综合在线观看 | 亚洲精品乱久久久久久| 99久久中文字幕三级久久日本| 777米奇影视久久| 国产精品国产三级国产av玫瑰| 免费看光身美女| 在线免费观看不下载黄p国产| 亚洲欧美中文字幕日韩二区| 国产 精品1| 亚洲精品第二区| a级毛色黄片| 日本黄色片子视频| 99热6这里只有精品| 又爽又黄无遮挡网站| 国产爽快片一区二区三区| 精品人妻一区二区三区麻豆| 国产高清三级在线| 日韩欧美一区视频在线观看 | 少妇裸体淫交视频免费看高清| 久久99热这里只频精品6学生| 久久综合国产亚洲精品| 69av精品久久久久久| 亚洲欧美中文字幕日韩二区| 亚洲成人一二三区av| av在线app专区| 午夜精品一区二区三区免费看| 免费看不卡的av| 国产又色又爽无遮挡免| 亚洲性久久影院| 亚洲,欧美,日韩| 成人一区二区视频在线观看| 女的被弄到高潮叫床怎么办| 欧美+日韩+精品| 国产成年人精品一区二区| 欧美3d第一页| 国产淫片久久久久久久久| 国内精品宾馆在线| 日韩成人伦理影院| 别揉我奶头 嗯啊视频| 亚洲图色成人| 日韩视频在线欧美| 精品少妇黑人巨大在线播放| 大陆偷拍与自拍| av福利片在线观看| 精品少妇黑人巨大在线播放| 少妇高潮的动态图| 国产爱豆传媒在线观看| 国产亚洲5aaaaa淫片| 欧美日韩在线观看h| 菩萨蛮人人尽说江南好唐韦庄| 久久久成人免费电影| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲91精品色在线| 欧美性猛交╳xxx乱大交人| 偷拍熟女少妇极品色| 嫩草影院精品99| 欧美zozozo另类| 国产美女午夜福利| 亚洲四区av| 水蜜桃什么品种好| 久久久久久久国产电影| 国产免费又黄又爽又色| 欧美日本视频| 大香蕉久久网| 我的老师免费观看完整版| 只有这里有精品99| 菩萨蛮人人尽说江南好唐韦庄| 久久久精品94久久精品| av国产精品久久久久影院| 一区二区三区免费毛片| 简卡轻食公司| 国产老妇伦熟女老妇高清| 性色av一级| 久久精品国产a三级三级三级| 国产亚洲av片在线观看秒播厂| 久久这里有精品视频免费| 日韩成人伦理影院| 看十八女毛片水多多多| 在线观看av片永久免费下载| 免费观看a级毛片全部| 精品久久国产蜜桃| 97在线视频观看| 久久精品综合一区二区三区| 色视频在线一区二区三区| 精品久久久久久久末码| 久久99热这里只频精品6学生| 丝袜美腿在线中文| 综合色av麻豆| 欧美日韩视频高清一区二区三区二| 插阴视频在线观看视频| 建设人人有责人人尽责人人享有的 | 国产精品国产三级国产专区5o| 狠狠精品人妻久久久久久综合| 国产免费又黄又爽又色| 日日摸夜夜添夜夜添av毛片| 美女脱内裤让男人舔精品视频| 亚洲精品亚洲一区二区| 3wmmmm亚洲av在线观看| 五月玫瑰六月丁香| 国产高清有码在线观看视频| 亚洲四区av| 91精品国产九色| 五月开心婷婷网| 成年女人看的毛片在线观看| 久久久久精品久久久久真实原创| 国产黄a三级三级三级人| 王馨瑶露胸无遮挡在线观看| 极品教师在线视频| 欧美97在线视频| 女人久久www免费人成看片| 免费高清在线观看视频在线观看| 欧美精品国产亚洲| 欧美zozozo另类| 成年免费大片在线观看| 免费黄频网站在线观看国产| 欧美人与善性xxx| 网址你懂的国产日韩在线| 日韩一本色道免费dvd| 日韩中字成人| 听说在线观看完整版免费高清| 男人和女人高潮做爰伦理| 青春草国产在线视频| 中文字幕人妻熟人妻熟丝袜美| 国产探花极品一区二区| 91久久精品电影网| 亚洲av成人精品一二三区| 欧美性猛交╳xxx乱大交人| 国产淫片久久久久久久久| 亚洲人成网站在线播| 欧美+日韩+精品| 男女啪啪激烈高潮av片| 免费不卡的大黄色大毛片视频在线观看| 一边亲一边摸免费视频| 王馨瑶露胸无遮挡在线观看| 久久精品久久久久久久性| 又黄又爽又刺激的免费视频.| 九草在线视频观看| 午夜福利高清视频| 丰满人妻一区二区三区视频av| 搡老乐熟女国产| 国内精品宾馆在线| 熟妇人妻不卡中文字幕| 人妻 亚洲 视频| 国产老妇女一区| 97人妻精品一区二区三区麻豆| 国产成人精品婷婷| 日韩欧美精品免费久久| 成年免费大片在线观看| 80岁老熟妇乱子伦牲交| 日本-黄色视频高清免费观看| 街头女战士在线观看网站| 2018国产大陆天天弄谢| 免费观看的影片在线观看| 中文字幕免费在线视频6| 麻豆成人av视频| 日韩av在线免费看完整版不卡| 久久久国产一区二区| 最近手机中文字幕大全| 亚洲av不卡在线观看| 国产精品不卡视频一区二区| 在线天堂最新版资源| 午夜福利在线在线| 最近最新中文字幕免费大全7| 久久97久久精品| 99热6这里只有精品| 亚洲人成网站高清观看| 99re6热这里在线精品视频| 男的添女的下面高潮视频| 国产欧美另类精品又又久久亚洲欧美| 我要看日韩黄色一级片| 国语对白做爰xxxⅹ性视频网站| 国产爽快片一区二区三区| 中国美白少妇内射xxxbb| 亚洲精品亚洲一区二区| 国产精品秋霞免费鲁丝片| 日本av手机在线免费观看| 国产精品99久久99久久久不卡 | 王馨瑶露胸无遮挡在线观看| 国产精品久久久久久精品电影小说 | 色播亚洲综合网| 少妇人妻精品综合一区二区| 中文字幕久久专区| 免费大片黄手机在线观看| 婷婷色麻豆天堂久久| 自拍欧美九色日韩亚洲蝌蚪91 | 肉色欧美久久久久久久蜜桃 | 久久久久久久国产电影| 日韩,欧美,国产一区二区三区| freevideosex欧美| 国产亚洲午夜精品一区二区久久 | 亚洲经典国产精华液单| 免费看a级黄色片| 丰满乱子伦码专区| 97精品久久久久久久久久精品| 国产精品麻豆人妻色哟哟久久| 看十八女毛片水多多多| 在线观看av片永久免费下载| 欧美日韩在线观看h| 久久影院123| 国产视频内射| kizo精华| 久久久午夜欧美精品| 精品久久国产蜜桃| 日韩亚洲欧美综合| 男女那种视频在线观看| 国产精品一区二区三区四区免费观看| 黄片无遮挡物在线观看| 国产高清国产精品国产三级 | 亚洲欧美日韩另类电影网站 | 免费看av在线观看网站| 午夜视频国产福利| 亚洲电影在线观看av| 99视频精品全部免费 在线| 成人国产麻豆网| 在线观看免费高清a一片| 国产中年淑女户外野战色| 小蜜桃在线观看免费完整版高清| 亚洲精品亚洲一区二区| 久久久精品欧美日韩精品| 毛片女人毛片| av专区在线播放| 99精国产麻豆久久婷婷| 亚洲av男天堂| 亚洲综合精品二区| 真实男女啪啪啪动态图| .国产精品久久| 免费电影在线观看免费观看| 毛片一级片免费看久久久久| 欧美极品一区二区三区四区| 岛国毛片在线播放| 日韩欧美精品v在线| av在线天堂中文字幕| 韩国av在线不卡| 97超碰精品成人国产| 免费看a级黄色片| 国产综合精华液| 国产黄色视频一区二区在线观看| 亚洲人成网站在线播| 18+在线观看网站| 22中文网久久字幕| 夫妻午夜视频| 国产免费一区二区三区四区乱码| 真实男女啪啪啪动态图| 精品视频人人做人人爽| 熟女av电影| 国产一区二区三区av在线| 精品少妇久久久久久888优播| 亚洲人成网站在线播| 精品酒店卫生间| www.色视频.com| 禁无遮挡网站| 在线观看人妻少妇| 国产免费福利视频在线观看| 一边亲一边摸免费视频| 国产精品99久久99久久久不卡 | 欧美激情在线99| 欧美 日韩 精品 国产| 日韩,欧美,国产一区二区三区| 视频区图区小说| 男人和女人高潮做爰伦理| 又黄又爽又刺激的免费视频.| 亚洲av日韩在线播放| 激情五月婷婷亚洲| 麻豆精品久久久久久蜜桃| 人人妻人人爽人人添夜夜欢视频 | 国产精品一区www在线观看| 国产午夜精品一二区理论片| 亚洲av国产av综合av卡| 亚洲精品国产色婷婷电影| 丰满少妇做爰视频| 亚洲天堂国产精品一区在线| 国产女主播在线喷水免费视频网站| 舔av片在线| 在线亚洲精品国产二区图片欧美 | 日韩一本色道免费dvd| 激情 狠狠 欧美| 亚洲精品456在线播放app| 国产欧美亚洲国产| 欧美bdsm另类| 一本久久精品| 欧美潮喷喷水| 国产黄频视频在线观看| 日本爱情动作片www.在线观看| 18禁动态无遮挡网站| 欧美区成人在线视频| 亚洲av福利一区| 成年人午夜在线观看视频| 美女被艹到高潮喷水动态| 天天躁夜夜躁狠狠久久av| 色哟哟·www| 亚洲精品成人av观看孕妇| 中国美白少妇内射xxxbb| 美女主播在线视频| 国产亚洲91精品色在线| 国产精品熟女久久久久浪| 久久这里有精品视频免费| 两个人的视频大全免费| 各种免费的搞黄视频| 男人爽女人下面视频在线观看| 小蜜桃在线观看免费完整版高清| 神马国产精品三级电影在线观看| 久久影院123| 18禁动态无遮挡网站| 白带黄色成豆腐渣| 亚洲精品成人久久久久久| 欧美zozozo另类| 乱码一卡2卡4卡精品| 亚洲精品aⅴ在线观看| 精品一区在线观看国产| 亚洲欧美一区二区三区国产| 搞女人的毛片| 哪个播放器可以免费观看大片| 最近中文字幕高清免费大全6| 精品99又大又爽又粗少妇毛片| h日本视频在线播放| 少妇人妻久久综合中文| 婷婷色综合www| 日韩欧美一区视频在线观看 | 日韩免费高清中文字幕av| 秋霞伦理黄片| 亚洲精品成人久久久久久| 亚洲精品国产av成人精品| 亚洲丝袜综合中文字幕| 国产精品成人在线| 国产黄片视频在线免费观看| 久久精品国产亚洲av天美| 成年版毛片免费区| 久久99蜜桃精品久久| 一区二区三区乱码不卡18| 日韩电影二区| 2022亚洲国产成人精品| 少妇猛男粗大的猛烈进出视频 | 欧美bdsm另类| 亚洲综合精品二区| 亚洲精品日韩av片在线观看| 国产精品.久久久| 亚洲精品成人久久久久久| 在线观看免费高清a一片| 久久久久精品性色| 亚洲av中文字字幕乱码综合| 久久99蜜桃精品久久| 我要看日韩黄色一级片| 国产乱来视频区| 免费看不卡的av| 国内揄拍国产精品人妻在线| 日本一二三区视频观看| 看黄色毛片网站| 黄片wwwwww| 亚洲四区av| 麻豆成人av视频| 亚洲国产av新网站| 下体分泌物呈黄色| www.av在线官网国产| 国产精品人妻久久久影院| 成年免费大片在线观看| 99精国产麻豆久久婷婷| 国产高清国产精品国产三级 | 免费黄网站久久成人精品| 三级国产精品欧美在线观看| 久久人人爽av亚洲精品天堂 | 成年女人在线观看亚洲视频 | 热re99久久精品国产66热6| 黄色日韩在线| 有码 亚洲区| 成年av动漫网址| 亚洲av中文av极速乱| 一区二区三区四区激情视频| 精品人妻一区二区三区麻豆| 亚洲av中文av极速乱| 欧美成人a在线观看| 久久这里有精品视频免费| 亚洲欧洲国产日韩| 国产成人aa在线观看| 99久久九九国产精品国产免费| 欧美少妇被猛烈插入视频| 免费黄网站久久成人精品| 22中文网久久字幕| 国产成人a∨麻豆精品| 美女被艹到高潮喷水动态| 在线观看一区二区三区| 色婷婷久久久亚洲欧美| 日韩国内少妇激情av| 久久人人爽人人爽人人片va| 成人鲁丝片一二三区免费| 九九在线视频观看精品| 国产亚洲最大av| 国产色爽女视频免费观看| 国产一区二区三区av在线| 亚洲av免费高清在线观看| 久久久久国产网址| 国产成人福利小说| 涩涩av久久男人的天堂| 中文欧美无线码| 国产精品熟女久久久久浪| 亚洲最大成人中文| 亚洲欧洲日产国产| 成年av动漫网址| 日日啪夜夜撸| 精品一区二区三区视频在线| 成人免费观看视频高清| 夫妻午夜视频| 国产91av在线免费观看| 男人舔奶头视频| 日韩免费高清中文字幕av| 免费看光身美女| 久久ye,这里只有精品| 亚洲av成人精品一区久久| 成人黄色视频免费在线看| 男人和女人高潮做爰伦理| 少妇高潮的动态图| 亚洲av福利一区| 亚洲图色成人| 午夜福利在线在线| 国产老妇伦熟女老妇高清| 国产黄片美女视频| 国国产精品蜜臀av免费| 极品少妇高潮喷水抽搐| 国产精品偷伦视频观看了| 亚洲精品日本国产第一区| 成年版毛片免费区| 国产男女内射视频| av线在线观看网站| av国产免费在线观看| 亚洲精品成人av观看孕妇| 免费观看在线日韩| 啦啦啦中文免费视频观看日本| 在线亚洲精品国产二区图片欧美 | 日韩不卡一区二区三区视频在线| 韩国av在线不卡| 我的老师免费观看完整版| 亚洲婷婷狠狠爱综合网| 日韩国内少妇激情av| 1000部很黄的大片| 久久国产乱子免费精品| 久久97久久精品| 日日摸夜夜添夜夜添av毛片| 在线观看三级黄色| 亚洲不卡免费看| 国产 一区精品| av国产久精品久网站免费入址| 人妻一区二区av| 国产精品三级大全| 在线观看一区二区三区激情| 国产精品久久久久久精品电影| 国产精品久久久久久久久免| 国产亚洲5aaaaa淫片| 久久久久精品性色| 美女脱内裤让男人舔精品视频| 日日摸夜夜添夜夜爱| 国产成人午夜福利电影在线观看| 欧美精品国产亚洲| 老师上课跳d突然被开到最大视频| 亚洲精品成人久久久久久| 99热全是精品| 两个人的视频大全免费| 一级毛片我不卡| 女人久久www免费人成看片| 一区二区三区四区激情视频| 国产毛片在线视频| 亚洲精品国产色婷婷电影| 中文字幕久久专区| 亚洲精品色激情综合| 亚洲av成人精品一区久久| 我的女老师完整版在线观看| 又爽又黄a免费视频| 亚洲综合色惰| 内地一区二区视频在线| 久久国产乱子免费精品| 色视频www国产| 中文字幕av成人在线电影| 特级一级黄色大片| 日本猛色少妇xxxxx猛交久久| 国产免费又黄又爽又色| 在线观看三级黄色| 欧美97在线视频| 爱豆传媒免费全集在线观看| 国产日韩欧美亚洲二区| 亚洲av男天堂| 久热久热在线精品观看| 亚洲精品,欧美精品| 少妇熟女欧美另类| 午夜福利高清视频| 亚洲高清免费不卡视频| 亚洲欧美日韩东京热| 欧美日韩视频高清一区二区三区二| 小蜜桃在线观看免费完整版高清| 国产国拍精品亚洲av在线观看| 涩涩av久久男人的天堂| 少妇人妻久久综合中文| 成人亚洲精品av一区二区| 国产精品偷伦视频观看了| 国产精品国产三级国产专区5o| 男人舔奶头视频| 亚洲欧美一区二区三区国产| 欧美精品一区二区大全| 国产 精品1| 欧美精品一区二区大全| 国产精品一区www在线观看| 成人毛片a级毛片在线播放| 国产片特级美女逼逼视频| 麻豆久久精品国产亚洲av| 日本一二三区视频观看| 亚洲人成网站在线观看播放| 一级片'在线观看视频| 成人一区二区视频在线观看| 国产淫片久久久久久久久| 天天一区二区日本电影三级| 国精品久久久久久国模美| 伦理电影大哥的女人| 国产成人免费无遮挡视频| 亚洲图色成人| 国产精品国产三级专区第一集| 精品人妻熟女av久视频| 纵有疾风起免费观看全集完整版| 99久国产av精品国产电影| 国产午夜福利久久久久久| 日本欧美国产在线视频| 国产免费福利视频在线观看| 五月天丁香电影| 国产高潮美女av| 国产黄色视频一区二区在线观看| 2022亚洲国产成人精品| 久久99热6这里只有精品| av播播在线观看一区| 美女高潮的动态| 日本午夜av视频| 成年av动漫网址| 免费播放大片免费观看视频在线观看| 亚洲不卡免费看| 七月丁香在线播放| 男女那种视频在线观看| 亚洲av福利一区| 99久久精品一区二区三区| 久久久精品94久久精品| 国产伦在线观看视频一区| 美女xxoo啪啪120秒动态图| 国产精品99久久久久久久久| 一级片'在线观看视频| 亚洲美女搞黄在线观看| 汤姆久久久久久久影院中文字幕| 午夜福利视频1000在线观看| 大香蕉久久网| 国产高清国产精品国产三级 | 国产亚洲av嫩草精品影院| 国产精品99久久久久久久久| 少妇的逼好多水| 国产综合懂色| 精华霜和精华液先用哪个| 国产精品99久久99久久久不卡 | 亚洲av欧美aⅴ国产| 王馨瑶露胸无遮挡在线观看| 亚洲国产精品999| 国产成人精品婷婷| 国产大屁股一区二区在线视频| 国产一区二区在线观看日韩| 色视频www国产| 2022亚洲国产成人精品| 人妻少妇偷人精品九色| 国产有黄有色有爽视频| a级毛片免费高清观看在线播放| 成人美女网站在线观看视频| 免费av毛片视频| 国产欧美日韩一区二区三区在线 | 在线播放无遮挡| 一二三四中文在线观看免费高清| 国产老妇女一区| 老司机影院成人| 日产精品乱码卡一卡2卡三| 国产精品久久久久久精品古装| 视频区图区小说| 精品久久久噜噜| 欧美性猛交╳xxx乱大交人| 白带黄色成豆腐渣| 国产亚洲av嫩草精品影院| 亚洲精品乱码久久久久久按摩| 91精品国产九色| 成人国产av品久久久| 亚洲欧美日韩无卡精品| 九九爱精品视频在线观看| 精品一区二区免费观看| 国产成人精品一,二区| 国产一区二区亚洲精品在线观看| 不卡视频在线观看欧美| 亚洲va在线va天堂va国产| 午夜福利高清视频| 91精品国产九色| 免费电影在线观看免费观看| a级一级毛片免费在线观看| 18禁在线播放成人免费| 亚洲av二区三区四区|