• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Up-conversion detection of mid-infrared light carrying orbital angular momentum

    2022-10-26 09:50:00ZhengGe葛正ChenYang楊琛YinHaiLi李銀海YanLi李巖ShiKaiLiu劉世凱SuJianNiu牛素儉ZhiYuanZhou周志遠(yuǎn)andBaoSenShi史保森
    Chinese Physics B 2022年10期
    關(guān)鍵詞:李巖銀海志遠(yuǎn)

    Zheng Ge(葛正) Chen Yang(楊琛) Yin-Hai Li(李銀海) Yan Li(李巖)Shi-Kai Liu(劉世凱) Su-Jian Niu(牛素儉) Zhi-Yuan Zhou(周志遠(yuǎn)) and Bao-Sen Shi(史保森)

    1CAS Key Laboratory of Quantum Information,University of Science and Technology of China,Hefei 230026,China

    2CAS Center for Excellence in Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    Keywords: nonlinear optics,frequency up-conversion,mid-infrared detection

    1. Introduction

    The mid-infrared(MIR)band covers the absorption spectra of many molecules[1]and is closely related to the thermal radiation of objects, which has been used in many aspects, such as environmental monitoring,[2–4]geology for mineral identification,[5]stand-off detection,[6]and biomedical science.[7–10]Among them, the 3–5 μm band corresponds to one of the atmospheric communication windows,which is of potential importance in remote sensing[11]and communications.[12,13]On the other hand, light that carries orbital angular momentum (OAM) has stimulated considerable research interest in both the classical and quantum optical domains.[14–21]This particular beam with an azimuthal phase exp(ilφ) is well known as possessing an exact OAM oflˉhper photon,[22]wherelandφrefer to the topological charge (TC) and azimuthal angle, respectively. MIR light that carries OAM is of great value in many specific applications, such as enhancing the information channel capacity in communications[23–25]and helping the understanding and formation of chiral microstructures.[26,27]In contrast, the detection equipment in the MIR band is not mature at present, reflecting on the lower detection sensitivity, higher noise, and narrower bandwidth compared with its visible or near-infrared(NIR)counterpart. Consequently,it is more effective to detect MIR light after converting it into visible/NIR light, utilizing high-performance detectors based on wide bandgap materials like Si.[28]Due to the high effective nonlinear coefficient and elimination of the walk-off effect, the quasi-phase-matching(QPM)technique has been used extensively for frequency conversion of light carrying OAM in previous works.[29–31]Up to now,the effective up-conversion of MIR light has been realized by using a waveguide.[32,33]However, compared with traditional bulk crystals,the loss of spatial information makes waveguide-based up-conversion unable to meet a wider range of detection requirements. In addition, current waveguidebased nonlinear transformation is mainly in the single-mode case,while higher-order mode frequency conversion still faces some difficulties.Bulk crystals have been widely used in many practical applications of frequency conversion because they can keep the phase and spatial information during the nonlinear process.[34–40]In this case,however,the beam waist radius in the center of the crystal is larger than that in a waveguide,which requires a much higher pump power to improve the quantum conversion efficiency (QCE). In previous works on MIR up-conversion detection,cavity-enhanced[41,42]or pulsed light pumped[43–45]systems were employed, achieving satisfactory QCE. However, a systematic study of the frequency conversion of OAM modes in the MIR band has not been reported to date.

    In this work, the cascaded frequency conversion of light carrying OAM from 792 nm to 3100 nm and back to 792 nm was demonstrated, pumped by high power continuous-wave(CW) light. The laser light at 3100 nm was generated from a difference frequency generation (DFG) process, serving as the MIR source. Two identical MgO-doped periodically poled lithium niobate (MgO:PPLN from Covesion Ltd.) bulk crystals were utilized in the nonlinear processes above, each of which has a length of 40 mm and has nine poling periods ranging from 20.9 μm to 23.3 μm in steps of 0.3 μm. With the temperature of the crystals controlled, the nonlinear processes satisfied the type-0 QPM condition. Here we used a channel with a poled period of 20.6 μm and an aperture of 0.5 mm by 0.5 mm. For the convenience of discussion,in both three-wave mixing processes,the respective wavelengths were defined asλs=792 nm,λp=1063.8 nm,andλi=3100 nm,satisfying the relation 1/λs=1/λp+1/λi. Based on the nonlinear coupling equations, we proposed an analytical expression in the un-depleted approximation, which described the up-conversion efficiencies for various OAM values. Meanwhile, in the case of the depleted condition, the results given by numerical calculations were presented and compared with the experimental results. The final power efficiencies realized for conversion from MIR to visible are 133.1%, 40.7%,and 13.6% for TC ofl=0, 1, and 2, respectively, and the corresponding maximum QCEs are 34.0%,10.4%,and 3.5%.We also showed that the OAM is conserved in the conversion process. The high conversion efficiency and well-preserved phase information indicated that our primary study for MIR up-conversion is both reliable and useful, and will pave the way for further applications in remote sensing, high capacity optical communications,and image detection.

    2. Theoretical model

    The theoretical analysis for sum frequency generation(SFG), which is based on a second-order nonlinearity, is shown as follows. The nonlinear process involves the mixing of three waves, including a strong pump wave at frequencyωp, an idler wave to be converted at frequencyωi, and the up-converted beam at frequencyωs. In our experiment, the pump light is a normal Gaussian beam, while the idler light is in the OAM mode with a TC ofl. In the un-depleted pump approximation,the nonlinear coupled equations can be simplified as[46]

    wheredeffis the effective nonlinear efficiency of the crystal;ε0is the permittivity of a vacuum;nj(j=p,i,s) are the refractive indexes inside the crystal and the subscripts correspond to the pump, the idler, and the signal light, respectively;Δk=ks-ki-kp+2π/Λis the phase mismatch in the SFG process andΛis the poling period of the crystal;andAj(j=p,i,s)are the electrical fields of the pump, the idler and the signal beams,respectively,which can be expressed as[47]

    wherenj(j=p,i,s)are the refractive indexes of the pump,the idler, and the signal beams inside the crystal;ω0j(j=p,i,s)are the beam waists;Z0j=πnjω20j/λj(j= p,i,s) are the Rayleigh ranges of these beams;lrefers to the value of TC and is equal to zero in Gaussian mode; andφ=tan-1(y/x).We have directly omitted the term containing Gouy phase shift here, which can be ignored since the two input beams have approximately matching phases according to our experimental conditions. When considering the slowly varying amplitude approximation and the un-depleted pump approximation,an analytical expression of the SFG power can be obtained as follows:[48]

    whereLis the length of the crystal;Pj(j=p,i,s) are the pump,the idler,and the signal power of these beams,respectively;andh(l,ξ)is the focusing function defined as

    ξ=L/bpis defined as the focusing parameter of the pump beam, wherebp= 2Z0pis the confocal parameter;α=w20s/w20pandβ=bi/bpare determined by the waist ratio of the two beams; andσ= Δkbp/2 is the phase-mismatching parameter. Obviously, the loss of both pump light and input idler light is ignored when obtaining the analytical expressions,which may produce deviations in specific experiments.More discussion will be presented in the subsequent analysis of the experimental results. Therefore, numerical simulation was also conducted based on the coupled wave equations,utilizing a technique called the split-step Fourier method.[49,50]The basic assumption here is that spatial evolution and nonlinear effects can act separately for each small distance traveled by the light field during transmission. In this case,the transfer process fromztoz+dzcan be carried out in two steps. In the first step,only non-linear effects are considered in Eq.(1),which gives

    In the second step, there is only space evolution, and the Fourier transform term of the light field satisfies the following relation:

    With this method,we obtained a series of discrete points after setting the initial conditions, showing the intensity variations of the idler and signal light at different positions in the crystal for Gauss mode, as shown in Fig. 1. Obviously, the accuracy of the simulation depends on the choice of step size,which also affects the speed of the calculation. An important advantage of the split-step Fourier method is that it simulates the beam mode field evolution process,which is useful for analyzing the effect of beams overlapping on the non-linear efficiency. Taking the signal light in Gauss mode and OAM mode withl=2 as examples,we showed in Figs.1(b)and 1(c)the predicted normalized efficiency at different beam waists,helping to find the best focusing parameters for subsequent experiments.

    Fig. 1. (a) Dependence of the powers of the idler and signal beams on the propagation distance inside the nonlinear crystal. (b) and (c) Normalized efficiency with different beam waists for l=0 and 2.

    3. Experimental setup

    The schematic of the experimental setup is illustrated in Fig. 2. The signal beam for the down-conversion came from a diode laser (TOPTICA pro, Graefelfing); its spatial mode was later optimized by passing through a single-mode optical fiber. The pump beam was provided by an Yb-doped fiber laser working at 1064 nm, enhanced by a fiber amplifier, and then separated into two channels,pumping the DFG and SFG modules, respectively. Each laser beam was set to vertical polarization by the wave plates before the nonlinear crystal,satisfying the restriction of the phase-matching condition. A vortex phase plate(VPP)was placed before the focusing lens,imprinting OAM on the signal beam.

    Fig.2. Experimental setup. VPP:vortex phase plate;DM:dichromatic mirror;BPF:band-pass filter;PPLN:periodically poled lithium niobate crystal;HWP(QWP):half-wave plate(quarter-wave plate);PBS(BS):polarization beam splitter(beam splitter);CCD:charge-coupled device camera.

    In the first crystal, the waist sizes for the pump and the signal beams were 43 μm and 37 μm at the focus, respectively. The temperature of each crystal was controlled using a homemade semiconductor Peltier temperature cooler,the temperature stability of which is±2 mK.At the end of the DFG module,a long-pass filter removed the pump and signal beam,before the idler beam was measured by a mercury telluride detector(MCT).In the second frequency conversion process,the pump and idler beam overlapped after a dichromatic mirror,focused by the lens with beam waists of 65 μm and 110 μm,respectively. The filter after the SFG crystal removed all the off-target beams except the up-converted beam at 792 nm before it entered the interference module.The input light with an OAM state of|l〉was converted into the form of|l〉+eiφ|-l〉by a specially designed balanced interferometer, as discussed in our previous work.[51]The result of the interference presented a petal-like pattern and was captured by a chargecoupled device camera placed on the output side. The petals had a count of exactly 2l, which signified that the value of the TC carried by the generated beam can be found by simply analyzing the patterns.

    4. Results and discussion

    In the first DFG module, both the input beams we used had a power of 1 W, preparing a 3100 nm Gaussian beam with a power of 2.36 mW. For ease of comparison, the idler power was adjusted to 0.2 mW with an optical attenuator for different OAM. The final power of the wave to be converted was 0.118 mW at the incident face of the crystal, suffering a total loss of 41.1%during the transmitting procedure,which was mainly introduced by the dichromatic mirror because of the mismatch of the center wavelength. For varying up-conversion pump power (while the idler power was maintained at 0.118 mW), the results of the generated signal power for each OAM are illustrated in Fig. 3(a). Notice that the results given by the analytical calculations agree well with the experimental values initially, but gradually deviate as the pumping power increases. This deviation is not a surprise,as the small-signal approximation was used in obtaining the analytical expressions, which requires a low conversion efficiency. As the pump power increased, the consumption of MIR photons intensified and deviations between theoretical and experimental results were inevitable. The numerical calculation,on the other hand,avoided this problem and gave theoretical predictions that are relatively close to the experimental values. For both thel= 1 and 2 cases, there was some deviation between the theoretical and experimental values. Because the Gaussian light passing through the VPP was not in an exact Laguerre Gaussian mode,[52,53]aberration of the MIR beams carrying OAM generated by the DFG progress was unavoidable.Considering the 2.03%power loss caused by the subsequent filter,the power efficiencies of the SFG system determined usingηpower=P792/P3100were 133.1%, 40.7%,and 13.6% for TClvalues of 0, 1, and 2 respectively with a pump power of 37 W,and the corresponding QCEs defined byηquantum =ηpowerλ792/λ3100were 34.0%, 10.4%, and 3.5%.The conversion efficiency was satisfied in Gauss mode but reduced rapidly for increasing OAM orders. The main cause was different overlaps between the idler and the pump beams,as the OAM charge would affect the beam size and amplitude vividly. Consequently,in the up-conversion of structured beams with different OAM modes, the focusing parameters can be adjusted utilizing the same method shown in Figs.1(b)and 1(c),which would optimize the efficiency of SFG to some extent. To further eliminate the dependence of the conversion efficiency on the TC,modulation methods such as flat-top pump or imaging techniques can be considered.[54,55]

    Fig. 3. Experimental results and theoretical predictions of the up-conversion process. (a) Relationships between the pump power and the SFG output powers for l =0, 1, and 2. The dashed lines are the analytical projections based on Eq. (3), while the solid lines present the results of numerical simulation. (b)Experimental results and predictions from numerical simulations of up-conversion efficiency for different OAM indexes.

    During the two-step frequency transformation,the OAM should always be conserved as described in our previous study.Take the SFG process as an example,assuming that the two input beams carried TC ofl1andl2respectively, the generated SFG light would have OAM of(l1+l2)ˉh.[51]In the DFG process, one of the input light carried the OAM withl, so the resulting MIR and up-converted light should both carry OAM with the same TC. Based on the above theoretical analysis,the experiment result can be well explained now. The intensity distributions of the signal beam withl=1 and 2, shown in Figs. 4(a)and 4(c), were recorded by blocking one arm of the interferometer,and the output images of the interferometer in normal operation are shown in Figs. 4(b) and 4(d). Figures 4(e)–4(h) give the corresponding simulation results for Figs.4(a)–4(d), exhibiting the same characteristics as the experimental results. The petal-like interference pattern shows the mode indices of the generated beam, as discussed in the preceding presentation. The numbers of petals in our experimental results indicated that the TCs of the up-converted light were 1 and 2 respectively,equaling the TC of the original signal beam,which is in agreement with the theoretical prediction and numerical simulations.

    Fig.4. Experimental results of the up-converted images. (a)and(c)Intensity distributions of up-converted light for l=1 and 2. (b)and(d)Interference patterns for l=1 and 2. (e)–(h)Images of the corresponding simulation results for(a)–(d).

    The dependence of output power on the temperature of the crystal for the DFG and SFG processes is shown in Fig.5.The phase-matching temperatures were 55°C and 55.2°C,while the temperature bandwidths were 7.2°C and 6.9°C,respectively. The experimental results of the power of the generated 3100 nm and 792 nm waves with different temperatures are marked in the figure,and the measured data can be fitted by solving the coupled wave equations.[46]The insert in the upper right corner of Fig. 4 shows how the phase mismatch affects the efficiency of SFG by numerical simulation, displaying a half peak width of 140 m-1, while the same parameter given by the experimental conditions is 137 m-1.

    Fig.5. Output power of DFG and SFG depending on temperature.

    5. Conclusion

    Based on our present experimental conditions,the intensity profile of the MIR beam could not be obtained directly.The length of the crystals and the internal nonuniformity affected the quality of generated beams to a certain extent,such as the generation of distortions and vortex splitting caused by aberration. Besides,the relatively small aperture of the crystal puts a limit on the choice of the focusing parameter,especially for a beam at a long wavelength. For up-conversion of image or light carrying OAM with higher-order TC,a crystal with a larger intersecting surface would perform better.

    In summary, we have studied the frequency bridge between the visible and MIR bands for vortex light based on QPM crystals. We generated the MIR beams through a DFG process and then demonstrated OAM frequency up-conversion experimentally for different OAM modes. The maximum QCEs that were achieved for OAM modes with TCs of 0, 1,and 2 were 34.0%, 10.4%, and 3.5%, respectively. The experimental data were compared with the results of analytical expression and numerical simulation, proving the feasibility of theoretical prediction. We also verified the conservation of OAM in cascaded processes and studied the dependence of the output power on the temperature of the crystals. The present work provides a reliable solution for up-conversion detection of light carrying OAM in the MIR band, using a bulk crystal that preserves phase information well. By adjusting the crystal parameters and reducing the noise,this setup could potentially be extended to general image up-conversion detection and works at the single-photon level. This progress will be beneficial and encouraging for numerous applications that use MIR light as an information carrier and a means of detection,for example in the fields of biological detection,astronomical observation,[56]environmental monitoring, and remote sensing.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 92065101 and 11934013) and Anhui Initiative In Quantum Information Technologies(Grant No.AHY020200).

    猜你喜歡
    李巖銀海志遠(yuǎn)
    求MDS 碼權(quán)多項式的組合方法
    李巖國畫選
    蘇中少年英雄——周銀海
    Physical Therapy Modalities of Western Medicine and Traditional Chinese Medicine for Meibomian Gland Dysfunction
    Analysis of the Spleen and Stomach Thoughts in Treating Eyelids Diseases in Essential Subtleties on the Silver Sea (《銀海精微》)
    我最喜愛的玩具①
    Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis?
    銀海揚帆三十載
    商周刊(2018年25期)2019-01-08 03:31:12
    李巖繪畫作品選登
    那一夜(短篇小說)
    美女扒开内裤让男人捅视频| 国产成人aa在线观看| 97人妻精品一区二区三区麻豆| 欧美久久黑人一区二区| 九九热线精品视视频播放| 国产亚洲精品一区二区www| 亚洲美女黄片视频| 国产精品久久视频播放| 两个人看的免费小视频| 18禁黄网站禁片免费观看直播| 999久久久精品免费观看国产| 黄片小视频在线播放| 两人在一起打扑克的视频| avwww免费| 日日摸夜夜添夜夜添小说| av在线天堂中文字幕| 在线观看66精品国产| 麻豆av在线久日| 亚洲精品在线观看二区| 亚洲第一欧美日韩一区二区三区| 麻豆国产97在线/欧美 | 正在播放国产对白刺激| 亚洲熟妇中文字幕五十中出| 一边摸一边做爽爽视频免费| 女警被强在线播放| 老汉色av国产亚洲站长工具| 国产高清视频在线播放一区| 两个人看的免费小视频| 18禁裸乳无遮挡免费网站照片| 免费在线观看完整版高清| 国产精品98久久久久久宅男小说| 中文在线观看免费www的网站 | 国产亚洲精品综合一区在线观看 | 国产免费男女视频| 成人午夜高清在线视频| 亚洲美女黄片视频| 亚洲欧美精品综合一区二区三区| 日韩欧美在线二视频| 国产亚洲av嫩草精品影院| 亚洲精品国产精品久久久不卡| 一区二区三区高清视频在线| 脱女人内裤的视频| 无人区码免费观看不卡| 欧美性猛交黑人性爽| 精品少妇一区二区三区视频日本电影| 色综合欧美亚洲国产小说| 亚洲av第一区精品v没综合| 欧美黑人精品巨大| 婷婷精品国产亚洲av| 久久久久久亚洲精品国产蜜桃av| 亚洲人成77777在线视频| 久久久久亚洲av毛片大全| 真人做人爱边吃奶动态| 久9热在线精品视频| 俄罗斯特黄特色一大片| 久久人人精品亚洲av| 亚洲精品av麻豆狂野| 国产欧美日韩一区二区精品| 欧美性猛交黑人性爽| 久久婷婷成人综合色麻豆| 丰满人妻熟妇乱又伦精品不卡| 亚洲人成伊人成综合网2020| 国产精品久久久久久精品电影| 久久精品国产综合久久久| 国产区一区二久久| 少妇裸体淫交视频免费看高清 | 啦啦啦免费观看视频1| 级片在线观看| 亚洲中文av在线| 少妇粗大呻吟视频| 国产在线精品亚洲第一网站| 一个人免费在线观看电影 | 久久国产精品人妻蜜桃| 国产亚洲精品久久久久5区| av中文乱码字幕在线| 国产激情欧美一区二区| 国产欧美日韩一区二区精品| 国产免费av片在线观看野外av| 国产精品乱码一区二三区的特点| 亚洲人成伊人成综合网2020| 久久久精品欧美日韩精品| 波多野结衣高清无吗| 久久久久久久久免费视频了| 最近最新中文字幕大全免费视频| 69av精品久久久久久| 日韩欧美 国产精品| 天堂影院成人在线观看| 天天躁夜夜躁狠狠躁躁| а√天堂www在线а√下载| 久久精品国产亚洲av高清一级| 国产高清激情床上av| 丰满人妻熟妇乱又伦精品不卡| 九色成人免费人妻av| 曰老女人黄片| 久久性视频一级片| 全区人妻精品视频| 91老司机精品| 大型av网站在线播放| 巨乳人妻的诱惑在线观看| 怎么达到女性高潮| 久久九九热精品免费| 欧美精品啪啪一区二区三区| 一个人免费在线观看电影 | 制服人妻中文乱码| 色精品久久人妻99蜜桃| 悠悠久久av| 黄色片一级片一级黄色片| 亚洲精品色激情综合| 变态另类成人亚洲欧美熟女| 欧美3d第一页| 一个人免费在线观看电影 | 好看av亚洲va欧美ⅴa在| 欧美色欧美亚洲另类二区| 欧美性猛交黑人性爽| 大型黄色视频在线免费观看| 亚洲中文日韩欧美视频| 在线观看免费午夜福利视频| 床上黄色一级片| 久久久久久免费高清国产稀缺| 亚洲欧美日韩高清在线视频| www.www免费av| 美女高潮喷水抽搐中文字幕| 国产午夜福利久久久久久| 国产又黄又爽又无遮挡在线| 又大又爽又粗| 午夜免费观看网址| 欧美日韩黄片免| 亚洲精品中文字幕在线视频| 亚洲熟女毛片儿| 亚洲 国产 在线| 国产av在哪里看| 男人舔奶头视频| 九色国产91popny在线| 午夜亚洲福利在线播放| 亚洲,欧美精品.| 日韩成人在线观看一区二区三区| 熟女电影av网| 一本综合久久免费| 成年免费大片在线观看| 国产欧美日韩一区二区精品| 国产成人精品无人区| 琪琪午夜伦伦电影理论片6080| 悠悠久久av| 夜夜看夜夜爽夜夜摸| 亚洲一区中文字幕在线| 免费观看精品视频网站| 观看免费一级毛片| 欧美中文日本在线观看视频| 一进一出抽搐动态| 国产真实乱freesex| 麻豆av在线久日| 国产亚洲精品久久久久5区| 91成年电影在线观看| 波多野结衣高清作品| 麻豆久久精品国产亚洲av| 久久精品亚洲精品国产色婷小说| 国产成人av激情在线播放| 久久精品国产99精品国产亚洲性色| 欧美日韩一级在线毛片| 99精品在免费线老司机午夜| 最近视频中文字幕2019在线8| 国产精品香港三级国产av潘金莲| 日韩中文字幕欧美一区二区| 成人永久免费在线观看视频| 亚洲av电影不卡..在线观看| 国产高清有码在线观看视频 | 国产av一区二区精品久久| 成人国产综合亚洲| 成人三级做爰电影| 午夜精品在线福利| 国产高清激情床上av| 亚洲最大成人中文| 特大巨黑吊av在线直播| 亚洲色图 男人天堂 中文字幕| 精品国产美女av久久久久小说| 亚洲午夜理论影院| √禁漫天堂资源中文www| 在线观看免费日韩欧美大片| 国产精品久久久人人做人人爽| 国语自产精品视频在线第100页| 啦啦啦韩国在线观看视频| 国产亚洲av嫩草精品影院| 99在线人妻在线中文字幕| 99国产极品粉嫩在线观看| 亚洲欧美精品综合一区二区三区| 中文字幕最新亚洲高清| 亚洲人与动物交配视频| 99久久无色码亚洲精品果冻| 免费高清视频大片| 大型黄色视频在线免费观看| 99国产精品99久久久久| 久久天躁狠狠躁夜夜2o2o| 99国产综合亚洲精品| 久久中文看片网| 激情在线观看视频在线高清| 久久午夜亚洲精品久久| 久久精品国产亚洲av香蕉五月| 两个人的视频大全免费| 久久久久免费精品人妻一区二区| 国产精品亚洲av一区麻豆| 一夜夜www| 欧美黄色片欧美黄色片| 亚洲美女黄片视频| 午夜激情av网站| 啦啦啦观看免费观看视频高清| 99久久综合精品五月天人人| 黄色视频,在线免费观看| 身体一侧抽搐| 麻豆国产av国片精品| 日韩欧美三级三区| 日本熟妇午夜| 日韩大尺度精品在线看网址| www国产在线视频色| 免费看a级黄色片| 亚洲国产高清在线一区二区三| 国产高清视频在线播放一区| 国产精品野战在线观看| 亚洲欧美日韩高清专用| 亚洲性夜色夜夜综合| 一区二区三区高清视频在线| 久久久久久久久免费视频了| aaaaa片日本免费| 成人手机av| 中文字幕熟女人妻在线| 男人舔女人下体高潮全视频| 91在线观看av| 久久这里只有精品19| 午夜福利高清视频| 日韩有码中文字幕| 日本a在线网址| 日韩欧美三级三区| 色在线成人网| 亚洲自拍偷在线| 又粗又爽又猛毛片免费看| 亚洲精品在线美女| 波多野结衣巨乳人妻| 91麻豆av在线| 午夜福利在线观看吧| 国产精品久久久久久人妻精品电影| 我要搜黄色片| 狠狠狠狠99中文字幕| 中文字幕av在线有码专区| 国模一区二区三区四区视频 | 99在线人妻在线中文字幕| 人人妻人人看人人澡| 色精品久久人妻99蜜桃| 欧美日韩亚洲综合一区二区三区_| 天堂av国产一区二区熟女人妻 | 免费在线观看完整版高清| 首页视频小说图片口味搜索| 日本成人三级电影网站| 91国产中文字幕| 午夜影院日韩av| 亚洲 国产 在线| 91九色精品人成在线观看| 少妇的丰满在线观看| 亚洲七黄色美女视频| 免费看美女性在线毛片视频| 午夜亚洲福利在线播放| 欧美午夜高清在线| 国产一区二区三区视频了| 国产高清videossex| 舔av片在线| 亚洲国产精品999在线| 此物有八面人人有两片| 啦啦啦观看免费观看视频高清| 香蕉久久夜色| 在线免费观看的www视频| 全区人妻精品视频| 久久久久久久久中文| 欧美丝袜亚洲另类 | 18禁黄网站禁片免费观看直播| 亚洲av成人一区二区三| 免费看日本二区| bbb黄色大片| 99国产综合亚洲精品| 小说图片视频综合网站| 熟女少妇亚洲综合色aaa.| 两个人免费观看高清视频| 成人国产综合亚洲| 国产成人一区二区三区免费视频网站| 男女床上黄色一级片免费看| 国产成+人综合+亚洲专区| 成人av在线播放网站| 久久精品影院6| 999久久久国产精品视频| 亚洲av片天天在线观看| 99热这里只有是精品50| 亚洲一区高清亚洲精品| 欧美成人一区二区免费高清观看 | 欧美日韩黄片免| 国产成人精品久久二区二区免费| 日本三级黄在线观看| 制服诱惑二区| 一个人免费在线观看的高清视频| 床上黄色一级片| 岛国视频午夜一区免费看| 国产私拍福利视频在线观看| 国产91精品成人一区二区三区| 免费高清视频大片| 国产午夜精品久久久久久| 国产高清视频在线观看网站| 午夜a级毛片| 国产精品香港三级国产av潘金莲| av国产免费在线观看| 亚洲精品在线观看二区| 日本免费一区二区三区高清不卡| 日韩中文字幕欧美一区二区| 一本综合久久免费| 精品久久久久久久久久免费视频| 国产高清videossex| 亚洲天堂国产精品一区在线| www.熟女人妻精品国产| 亚洲精品av麻豆狂野| 国内精品久久久久精免费| 亚洲精品国产一区二区精华液| 国产精品美女特级片免费视频播放器 | 国产成人影院久久av| 一个人观看的视频www高清免费观看 | 真人一进一出gif抽搐免费| 男女视频在线观看网站免费 | 啦啦啦观看免费观看视频高清| 啦啦啦韩国在线观看视频| 夜夜躁狠狠躁天天躁| 亚洲中文日韩欧美视频| 日韩欧美在线乱码| 人人妻人人看人人澡| 在线十欧美十亚洲十日本专区| 在线观看66精品国产| 妹子高潮喷水视频| 亚洲精品一区av在线观看| 日本 av在线| 他把我摸到了高潮在线观看| 国产一区二区激情短视频| 久久久精品欧美日韩精品| 人成视频在线观看免费观看| av福利片在线| 国产午夜精品论理片| 国产精品影院久久| 日韩精品青青久久久久久| 99re在线观看精品视频| 十八禁网站免费在线| 亚洲人成77777在线视频| 夜夜爽天天搞| 1024手机看黄色片| 亚洲精品色激情综合| 老汉色av国产亚洲站长工具| videosex国产| 搡老妇女老女人老熟妇| 久久午夜亚洲精品久久| 欧美黄色淫秽网站| 精品欧美国产一区二区三| 香蕉av资源在线| 国产精品久久久久久精品电影| 久久99热这里只有精品18| 黄色女人牲交| 亚洲成人中文字幕在线播放| 午夜福利18| 黄色女人牲交| 88av欧美| 嫩草影院精品99| 51午夜福利影视在线观看| 母亲3免费完整高清在线观看| 成人午夜高清在线视频| 99在线视频只有这里精品首页| 精品午夜福利视频在线观看一区| 国产成人av教育| 国产69精品久久久久777片 | 亚洲无线在线观看| 国产精品精品国产色婷婷| 1024香蕉在线观看| 天堂动漫精品| 美女午夜性视频免费| 听说在线观看完整版免费高清| 51午夜福利影视在线观看| 麻豆国产av国片精品| 99久久综合精品五月天人人| 搡老熟女国产l中国老女人| 欧美一区二区精品小视频在线| 在线观看一区二区三区| 天堂√8在线中文| a级毛片在线看网站| 精品无人区乱码1区二区| 天堂av国产一区二区熟女人妻 | 午夜福利18| videosex国产| 久久久国产成人免费| 99热这里只有是精品50| 一二三四在线观看免费中文在| 日韩 欧美 亚洲 中文字幕| 九九热线精品视视频播放| 亚洲黑人精品在线| 性欧美人与动物交配| 99国产精品99久久久久| 色哟哟哟哟哟哟| 日本精品一区二区三区蜜桃| 亚洲欧美一区二区三区黑人| 97超级碰碰碰精品色视频在线观看| 怎么达到女性高潮| 老司机靠b影院| 美女黄网站色视频| 一个人观看的视频www高清免费观看 | 小说图片视频综合网站| 一区福利在线观看| 久久久久久久精品吃奶| aaaaa片日本免费| 一级毛片精品| 久久久久久九九精品二区国产 | 蜜桃久久精品国产亚洲av| 国产99久久九九免费精品| 午夜精品一区二区三区免费看| 亚洲狠狠婷婷综合久久图片| 日韩欧美国产在线观看| 免费无遮挡裸体视频| 免费在线观看日本一区| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久人人人人人| 国产欧美日韩精品亚洲av| 毛片女人毛片| 国产精品一区二区免费欧美| 精品国产超薄肉色丝袜足j| 亚洲成人国产一区在线观看| 久久精品成人免费网站| 亚洲av电影不卡..在线观看| 手机成人av网站| 国产一区二区在线观看日韩 | 别揉我奶头~嗯~啊~动态视频| 人妻丰满熟妇av一区二区三区| 精品国产亚洲在线| 免费电影在线观看免费观看| 人成视频在线观看免费观看| 欧美极品一区二区三区四区| 又黄又粗又硬又大视频| 日韩精品青青久久久久久| 久久久久久大精品| 很黄的视频免费| 99久久99久久久精品蜜桃| 久久人人精品亚洲av| a级毛片在线看网站| 亚洲人成网站高清观看| 小说图片视频综合网站| 国产高清激情床上av| 99国产精品一区二区蜜桃av| 美女扒开内裤让男人捅视频| 亚洲精品一卡2卡三卡4卡5卡| 黄色丝袜av网址大全| 久久99热这里只有精品18| 一二三四社区在线视频社区8| 99riav亚洲国产免费| 欧美中文综合在线视频| 亚洲av成人一区二区三| 波多野结衣高清无吗| 婷婷六月久久综合丁香| a级毛片a级免费在线| 国产精品亚洲av一区麻豆| 亚洲一区二区三区不卡视频| av天堂在线播放| av在线天堂中文字幕| 亚洲免费av在线视频| 婷婷精品国产亚洲av| 天堂动漫精品| 老司机午夜十八禁免费视频| 久久久久免费精品人妻一区二区| 日韩 欧美 亚洲 中文字幕| 岛国在线免费视频观看| 亚洲av电影不卡..在线观看| 变态另类成人亚洲欧美熟女| 波多野结衣高清无吗| 视频区欧美日本亚洲| 欧美成狂野欧美在线观看| 国内久久婷婷六月综合欲色啪| 成人特级黄色片久久久久久久| 长腿黑丝高跟| 美女 人体艺术 gogo| 欧美绝顶高潮抽搐喷水| 久久精品国产亚洲av香蕉五月| tocl精华| 成人永久免费在线观看视频| 亚洲精品久久成人aⅴ小说| 亚洲精品久久国产高清桃花| 可以在线观看毛片的网站| 亚洲精品一区av在线观看| 亚洲国产精品成人综合色| 免费在线观看日本一区| 日本五十路高清| 99久久无色码亚洲精品果冻| 日本三级黄在线观看| 成人av一区二区三区在线看| 一个人免费在线观看的高清视频| 成人亚洲精品av一区二区| 亚洲精品在线美女| 国产精品自产拍在线观看55亚洲| 欧美日韩亚洲国产一区二区在线观看| 国产精品亚洲一级av第二区| 国产黄a三级三级三级人| 99热6这里只有精品| 777久久人妻少妇嫩草av网站| 亚洲精品粉嫩美女一区| 成人国语在线视频| 欧美日韩瑟瑟在线播放| 精品国产美女av久久久久小说| 国产成人影院久久av| 成人欧美大片| 亚洲真实伦在线观看| 99久久无色码亚洲精品果冻| 日日摸夜夜添夜夜添小说| 亚洲真实伦在线观看| 国产高清有码在线观看视频 | 色综合婷婷激情| 99国产极品粉嫩在线观看| 母亲3免费完整高清在线观看| 成人欧美大片| 一区福利在线观看| 亚洲成人久久爱视频| 国产精品一区二区精品视频观看| 亚洲熟妇中文字幕五十中出| 狂野欧美激情性xxxx| 亚洲精品在线美女| 日本a在线网址| 精品久久久久久久久久免费视频| 少妇人妻一区二区三区视频| 日本 欧美在线| 91九色精品人成在线观看| 男女做爰动态图高潮gif福利片| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美乱色亚洲激情| 久久久水蜜桃国产精品网| 欧美黄色淫秽网站| 国产精品久久久久久久电影 | 国产99久久九九免费精品| www日本黄色视频网| 无人区码免费观看不卡| 亚洲专区国产一区二区| 精品久久久久久久毛片微露脸| 黄色丝袜av网址大全| 人人妻,人人澡人人爽秒播| 男插女下体视频免费在线播放| 搡老熟女国产l中国老女人| 美女黄网站色视频| www国产在线视频色| 精品国产亚洲在线| 久久精品国产亚洲av高清一级| 99国产精品99久久久久| 免费av毛片视频| 国产69精品久久久久777片 | 黄色成人免费大全| 亚洲精品国产精品久久久不卡| 亚洲精品国产一区二区精华液| 男人舔奶头视频| 亚洲五月天丁香| 看黄色毛片网站| 婷婷六月久久综合丁香| 毛片女人毛片| 亚洲色图av天堂| 国产一区二区在线av高清观看| 国产久久久一区二区三区| 午夜福利在线在线| 午夜福利视频1000在线观看| 在线a可以看的网站| 岛国在线免费视频观看| 国产亚洲精品av在线| 五月玫瑰六月丁香| 99久久精品国产亚洲精品| av福利片在线观看| 精品久久久久久久毛片微露脸| 国产日本99.免费观看| 精品国产超薄肉色丝袜足j| 久久亚洲真实| 搡老熟女国产l中国老女人| 88av欧美| 色av中文字幕| 精品无人区乱码1区二区| 夜夜看夜夜爽夜夜摸| 国内毛片毛片毛片毛片毛片| 精品国内亚洲2022精品成人| 色综合亚洲欧美另类图片| 女人被狂操c到高潮| 日韩欧美 国产精品| 毛片女人毛片| 欧美成人午夜精品| 亚洲欧美一区二区三区黑人| 黄色毛片三级朝国网站| 欧美午夜高清在线| 久久伊人香网站| 人人妻人人澡欧美一区二区| 亚洲人成电影免费在线| 欧美精品亚洲一区二区| 一夜夜www| 欧美日本视频| 变态另类丝袜制服| 在线播放国产精品三级| 巨乳人妻的诱惑在线观看| 非洲黑人性xxxx精品又粗又长| 12—13女人毛片做爰片一| www.www免费av| 老熟妇乱子伦视频在线观看| 嫩草影院精品99| 波多野结衣巨乳人妻| 亚洲 欧美一区二区三区| 国产午夜福利久久久久久| 欧美成人一区二区免费高清观看 | 午夜精品一区二区三区免费看| 久久亚洲精品不卡| 特大巨黑吊av在线直播| 亚洲国产精品sss在线观看| 久久这里只有精品19| 久久久久久九九精品二区国产 | 757午夜福利合集在线观看| 黄色视频,在线免费观看| 亚洲av成人一区二区三| 九九热线精品视视频播放| 黄色a级毛片大全视频| 深夜精品福利| xxx96com| 亚洲男人天堂网一区|