• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and superconductivity in yttrium superhydrides under high pressure

    2022-10-26 09:47:10YingyingWang王瑩瑩KuiWang王奎YaoSun孫堯LiangMa馬良YanchaoWang王彥超BoZou鄒勃GuangtaoLiu劉廣韜MiZhou周密andHongboWang王洪波
    Chinese Physics B 2022年10期
    關鍵詞:周密馬良

    Yingying Wang(王瑩瑩) Kui Wang(王奎) Yao Sun(孫堯) Liang Ma(馬良) Yanchao Wang(王彥超)Bo Zou(鄒勃) Guangtao Liu(劉廣韜) Mi Zhou(周密) and Hongbo Wang(王洪波)

    1State Key Laboratory of Superhard Materials,College of Physics,Jilin University,Changchun 130012,China

    2International Center of Computational Method&Software,College of Physics,Jilin University,Changchun 130012,China 3International Center of Future Science,Jilin University,Changchun 130012,China

    Keywords: high pressure,superhydride,superconductivity

    1. Introduction

    The search for high-temperature superconductors (HTS)with superconducting transition temperature(Tc)above liquidnitrogen temperature has long been recognized as an intriguing topic since the discovery of Hg withTc=4.2 K.[1]According to the Bardeen–Cooper–Schrieffer theory,[2]metallic hydrogen (MH) is one of the best candidates for achieving HTS; however, the quest for MH has proven extremely challenging due to the requirements of ultrahigh pressure conditions. Satterthwaiteet al.discovered~8 K superconductivity in thorium hydride in 1970,implying that hydrogen-rich metal hydrides would be HTS.[3]Then, Gilman[4]and Ashcroft[5]further proposed that MH could be achieved in hydrogenrich compounds at lower pressures because the heavier atoms played a chemical precompression role in hydrogen,ushering in a new era of HTS research in hydrogen-rich compounds at high pressures. However, despite significant efforts, there were no experimental breakthroughs for a long time until the observation of 203 K superconductivity at 155 GPa in covalent H3S,[6]which further inspired the search for HTS in conventional phonon-mediated hydride superconductors.

    In contrast to covalent superhydrides such as H3S, ionic metal hydrides offer more options for finding HTS. Wangetal.(2012) predicted the first CaH6clathrate hydride with a very highTcof 235 K at 150 GPa.[7]Following this study, a long list of clathrate REH6,REH9,and REH10superhydrides(RE: rare earth metal) were predicted to have highTcvalues close to or even above room temperature.[8–10]Stimulated by these predictions,a series of clathrate superhydrides,such as CaH6,[11]LaH10,[12,13]CeH9,CeH10,[14]ThH9,ThH10,[15](La,Y)H10,[16]were successfully synthesized withTcranging from 57 K–260 K.Among ionic superhydrides,yttrium superhydrides piqued the interest of researchers due to their abundant stoichiometries, they are predicted to have highTc, e.g.,84 K–95 K at 120 GPa in YH4,[10,17]251 K–264 K at 120 GPa in YH6,[10]21.5 K–43 K at 165 GPa in YH7,[18]253 K–276 K at 150 GPa in YH9,[8]and 305 K–326 K at 250 GPa in YH10.[9]Recently,Konget al.[19]successfully synthesized YH4and clathrate structured YH6and YH9with observedTcs of 220 K at 183 GPa and 243 K at 201 GPa for the last two yttrium superhydrides,respectively. Meanwhile,Troyanet al.also independently synthesized a clathrate YH6,[18]with an observedTcof 224 K at 166 GPa. Following that, Snideret al.synthesized YH9with aTcof up to 262 K using catalytic hydrogenation at about 182 GPa.[20]Furthermore, recent research has successfully observed 88 K superconductivity of YH4at 155 GPa.[21]

    Besides binary yttrium superhydrides, yttrium-bearing ternary hydrides, where the introduction of a third element other than hydrogen considerably expands the phase space,have attracted extensive attention. Lianget al.[22]and Xieet al.[23]predicted a clathrate CaYH12with an estimatedTcof 258 K at 200 GPa and 230 K at 180 GPa,respectively. Then,Lianget al.predicted a ternary YSH6with aTcof 91 K at 210 GPa.[24](La, Y)H6and (La, Y)H10[16]were synthesized experimentally at high pressures withTcs of 237 K and 253 K,respectively.

    Previous research has primarily concentrated on HTS(Tc>200 K),even though more superhydrides have been synthesized. Thus far, there has been a dearth of efforts to systematically investigate the superconductivity of all experimentally reported unconventional superhydrides. In this work,we first conducted detailed structure and superconductivity studies of YH4, which was chosen as an example due to its rare previous investigation. X-ray diffraction measurements revealed the successful synthesis of predictedI4/mmm-YH4at about 167 GPa and 1600 K,and its measuredTcof 82 K was evidenced by a sharp drop in resistance and a characteristic decrease in superconducting transition under a magnetic field up to 8.5 T. Further electrical transport measurements revealed a series of additional superconducting transitions at 29 K (162 GPa), 218 K (165 GPa), and 230 K (300 GPa),which arise from YH7and clathrate structured YH6,and YH9,respectively,inferred fromTcs consistency with previous studies.

    2. Experimental methods

    According to the different target pressures, symmetric diamond anvil cells (DACs) outfitted diamond anvils with a culet size of~30 μm–60 μm beveled at 8.5°to a diameter of~250 μm. The composite gasket was composed of rhenium outer annulus and a mixture of epoxy resin and Al2O3powder. The insulating gasket was pre-indented to a thickness of 10 μm,and the corresponding sample chamber with a diameter of 20 μm–30 μm was drilled using a laser drilling system.Commercially available yttrium ingot(Alfa Aesar,99.9%purity) and NH3BH3(AB) powder (Sigma-Aldrich, 97%) were loaded into the sample chamber inside a glovebox filled with Ar atmosphere with O2and H2O contents of<0.01 ppm. The Y foil and Au electrodes with thicknesses of 2 μm and 1 μm,respectively, were sandwiched between the AB layers. The application of Au electrodes can effectively avoid the chemical reaction[25]between the electrodes and hydrogen, which can result in the formation of undesirable superconductors,as well as help to maintain a hydrogen-rich environment. AB serves as a hydrogen source while also acting as thermal insulation layers. Subsequently, the samples were compressed to the required synthesis pressure. The pressure in the sample chamber was calibrated using the high-frequency edge of the diamond Raman line.[26]The laser heating of the sample was performed using a pulsed YAG infrared laser,and the temperature was determined using the black-body radiation fit within the Planck function.In situhigh-pressure angle-dispersive x-ray diffraction (ADXRD) experiments were performed at the Shanghai Synchrotron Radiation Facility’s BL15U1 beamline(5 μm×12 μm)with a monochromatic beam wavelength of 0.6199 ?A and an average acquisition time of 120 s. Before the experiment, the relevant geometric parameters were calibrated using a CeO2standard. Diffraction patterns were collected using a Mar165 CCD detector and analyzed using DIOPTAS software, yielding one-dimension profiles.[27]The Le Bail profile matching refinements were performed using the GSAS+EXPGUI programs.[28]Based on the four-probe van der Pauw method,[29]the resistance measurements were performed with currents of 10-6–10-4A(Keithley 2182A nanovoltmeter and 6221 AC and DC source)and the selected data were warming cycles with a controlled rate of approximately 1 K·min-1. Furthermore, non-magnetic DACs made of Be–Cu alloy were used for resistance measurements in an external magnetic field of up to 8.5 T.

    3. Results and discussion

    In this work, we prepared 11 samples, labeled as samples 1 through sample 11,to synthesize yttrium superhydrides from a mixture of Y and AB, and explore their superconductivity. Previous excellent results have shown AB to be a reliable H2source.[11,13,18,19,21]At high temperatures, AB would decompose into H2plus c-BN, the latter avoiding the problem of poor contact between the synthesized product and electrodes. The diagram of the assembly used for synthesis and four-probe electrical resistance measurements is shown in Fig. 1(a). In sample 1, the reactants were compressed to 167 GPa[Fig.S1(a)]before being heated to about 1600 K.The clear H–H vibration from H2molecular [Fig. S1(b)] demonstrates a hydrogen-rich environment. The sample turned black after laser heating,indicating that a chemical reaction occurred[inset in Fig. 1(b)]. Representative electrical resistance measurements as a function of temperature reveal a superconducting transition at 82 K, as evidenced by the sharp drop in the resistance,as shown in Fig.1(b). This superconducting transition can be perfectly reproduced in several independent experiments (Fig. 2 and Fig. S2), further confirming the reliability of our results. To determine the highest value ofTc,we evaluated the pressure dependence ofTc,as shown in Fig.2(b).Tcfluctuates in the pressure range of 145 GPa–170 GPa in different experiments and the highestTcof 84 K at 162 GPa is consistent with the previous theoretical estimate of 84 K–95 K for YH4.Furthermore,as pressure decreases,the superconducting transition disappears at about 143 GPa[Figs.S2(a)and S2(b)],indicating a possible superconducting phase decomposition.

    Fig.1. (a)Schematic of the experimental setup for synthesis and four-probe superconducting electrical resistance measurements. (b)Temperature dependence of resistance in sample 1(S1)at 167 GPa. The insets show an optical micrograph of the sample before and after laser heating. The value of the Tc is defined as the crossing point of the resistance slopes before and after the resistance drop. (c)Synchrotron XRD pattern of S1 at 167 GPa.The inset displays a two-dimensional XRD pattern. Unidentified weak reflections are marked by asterisks. (d)Crystal structures of I4/mmm-YH3 and I4/mmm-YH4. Big and small balls represent Y and H atoms,respectively.

    Fig.2. (a)Temperature dependence of resistance in sample 3(S3)at 162 GPa. Inset: crystal structures of Imm2-YH7. Big and small balls represent Y and H atoms, respectively. (b) Pressure dependence of Tc for I4/mmm YH4 (circle) and Imm2-YH7 (star). Different colors represent different samples. The cited experimental data for YH4 are represented by open circles.[21]Dark cyan symbols depict the calculated data from Troyan et al.[18]

    To further determine the structure of the high-temperature superconducting phase, we performedin situhigh-pressure ADXRD measurements of sample 1, which revealed that the products were dominated byI4/mmm-YH3andI4/mmm-YH4as shown in Fig.1(c)and the refined structural information is listed in Table S1.The tetragonal YH3,which possessed a new high-pressure phase in addition to the conventional fcc phase,was synthesized for the first time after prediction.[17]Moreover, no superconductivity was predicted inI4/mmm-YH3up to 200 GPa. Consequently, the observed-superconducting transition in sample 1 should be attributed to YH4.

    Due to the small sample size,measuring the Meissner effect in ultra-high-pressure experiments remains a significant challenge to this day. An applied external magnetic field can break the Cooper pairs, reducing the value ofTc; thus, the suppression of superconducting transitions by an applied magnetic field can be used to investigate the nature of the superconducting states. Figure 3(a)shows the measured resistance of sample 2 under different magnetic fields at 170 GPa.TheTcdecreased from 77 K to 53 K as the magnetic field increased to 8.5 T,indicating the superconducting nature of the transition.The extrapolated upper critical fieldμ0Hc2(T)and coherence length towardT=0 K are 14.9 T and 47 ?A,as well as 18.7 T and 42 ?A,respectively, as shown in Fig.3(b), and were fitted by the Ginzburg–Landau (GL)[30]and Werthamer–Helfand–Hohenberg (WHH)[31]models. Furthermore, besides the superconductivity of YH4,we observed another low-temperature superconductivity of 17 K [inset in Fig. 3(a)] in this experiment,which can be attributed to the element yttrium based on the agreement with theTcof the unheated sample (Fig. S3).Similar results for YH4were independently reported by another group.[21]

    Furthermore, after laser heating sample 3 to approximately 1750 K at 162 GPa, we observed step-down behavior in electrical resistance measurements at 81 K,29 K,and 18 K(Fig. 2(a)). As aforementioned, the first and third resistance drops,result from superconducting transitions of YH4and element Y,respectively. Based on previous theoretical work,[18]we hypothesized that the second resistance drop at 29 K may originate from the superconducting transition ofImm2-YH7,which was also reproduced in sample 7 [Fig. S2(c)]. Figure 2(b) summarizes the pressure dependency ofTcfor YH7and YH4. Similar to the variation trend of YH4, theTcof YH7was relatively stable in the pressure range of 142 GPa–170 GPa. Although bothI4/mmm-YH4andImm2-YH7have a molecular“H2”unit[Fig.1(d)and Fig.2(a)],theTcof YH4with a high-symmetry structure is higher than that of YH7due to stronger electron-phonon coupling.[18]

    In the following work, we tuned the heating temperature and pressure, to synthesize the high-temperature superconducting clathrate YH6, YH9, or even YH10. When we increased the heating temperature to 2200 K at 165 GPa for sample 4,aTcof 218 K was observed,as shown in Fig.4(a). Subsequently,sample 5 was compressed to a superhigh pressure of 300 GPa[Fig.S1(a)]and heated to about 2000 K,and the electrical resistance measurement curve revealed superconductivity at 230 K (Fig. 4(a)). As shown in Fig. 4(b) theTcs of samples 4 and samples 5 perfectly match the reported experimental results for clathrate structured YH6and YH9,[18,19]respectively. The highTcofImˉ3m-YH6andP63/mmc-YH9was attributed to their hydrogen cage structure,and particularly the significant contribution of the H-derived electronic density of states at the Fermi level.[8,10]Unfortunately,we found no evidence of clathrate YH10,which may be synthesized at higher pressures.

    Fig.3. (a)The temperature dependence of the resistance for I4/mmm-YH4 under external magnetic fields of μ0H=0 T,1 T,3 T,5 T,7 T,and 8.5 T at 170 GPa in sample 2(S2). Inset: the temperature-resistance curve without external magnetic fields. (b)Upper critical field versus temperature,μ0H(0)was fitted with the GL and WHH models.

    Fig. 4. (a) Temperature dependence of resistance in sample 4 (S4) at 165 GPa and sample 5 (S5) at 300 GPa. The large residual resistance in S4 and S5 is mainly from the coexistence of multiple phases. Furthermore, the pseudo-four-electrode method was used in the electrical measurement for S5, thus introducing additional resistance from the electrodes.Inset:crystal structures of Imˉ3m-YH6 and P63/mmc-YH9.Big and small balls represent Y and H atoms,respectively. (b)Pressure dependence of Tc for Imˉ3m-YH6 (star)and P63/mmc-YH9 (hexagon). The symbols of dark cyan, orange,and red correspond to the data of Kong et al.,[19] Troyan et al.,[18] and this work,respectively.

    A series of superhydrides with highTchave been synthesized under high pressures; however, the absence of resistive transition broadening with increasing magnetic field in some works[12,16,32]has led to a debate about their superconductivity.[33]Using YH4as an example,we observed a clear broadening of the resistive transition under applied magnetic fields (Fig. S4), which follows a similar trend to that of typical standard superconductors such as MgB2[34]and NbN,[35]further demonstrating the veracity of our results. As a member of superhydride, the results of electrical transport measurements under external magnetic fields in YH4will help clarify the debate on the superconductivity in superhydrides.

    4. Conclusion and perspectives

    In summary, we have successfully synthesized YH4,YH6,YH7,and YH9,which exhibitedTcs of 82 K at 167 GPa,218 K at 165 GPa, 29 K at 162 GPa, and 230 K at 300 GPa,respectively. Furthermore, a tetragonal phase as a new highpressure structure of conventional YH3was synthesized for the first time at 167 GPa. These findings confirm the original theoretical prediction and provide a foundation for future research into HTS on the doped Y-based polynary superhydrides.

    Acknowledgments

    XRD measurements were performed at BL15U1 station in Shanghai Synchrotron Radiation Facility(SSRF)and 4W2 station in Beijing Synchrotron Radiation Facility(BSRF).The measurements of superconducting transition under external magnetic fields were supported by the Synergic Extreme Condition User Facility(SECUF)and China’s Steady High Magnetic Field Facility(SHMFF).

    Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400203 and 2018YFA0305900), the National Natural Science Foundation of China(Grant Nos.52090024,11874175,12074139,12074138, 11874176, and 12034009), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB33000000),and Program for JLU Science and Technology Innovative Research Team(JLUSTIRT).

    猜你喜歡
    周密馬良
    父親
    馬丹丹 馬良作品
    大眾文藝(2021年14期)2021-08-15 18:40:12
    當閨蜜變成姑嫂
    分憂(2021年6期)2021-07-19 20:56:44
    我讀《神筆馬良》
    我想成為神筆馬良
    Мероприятия и контакты
    中國(俄文)(2018年5期)2018-05-24 13:53:06
    照應周密,行文流暢
    我的神筆馬良
    童話世界(2017年11期)2017-05-17 05:28:26
    夏天的風秋天的霧
    小馬良認錯
    久久久久久久大尺度免费视频| 中国国产av一级| 久久久久久久久免费视频了| 欧美久久黑人一区二区| 岛国在线观看网站| 天天影视国产精品| 国产一区二区激情短视频 | 亚洲avbb在线观看| 美女国产高潮福利片在线看| 丝袜喷水一区| 大陆偷拍与自拍| 一区在线观看完整版| 精品熟女少妇八av免费久了| 这个男人来自地球电影免费观看| 咕卡用的链子| 亚洲精品av麻豆狂野| 亚洲欧美日韩高清在线视频 | 午夜激情久久久久久久| 色视频在线一区二区三区| 国产成+人综合+亚洲专区| 少妇 在线观看| 曰老女人黄片| 久久久久久免费高清国产稀缺| 亚洲伊人色综图| 日韩电影二区| 日本欧美视频一区| 狂野欧美激情性bbbbbb| 18禁黄网站禁片午夜丰满| 老司机福利观看| 日韩大片免费观看网站| 菩萨蛮人人尽说江南好唐韦庄| 老司机午夜福利在线观看视频 | av线在线观看网站| 欧美av亚洲av综合av国产av| 美女午夜性视频免费| 色视频在线一区二区三区| 日本一区二区免费在线视频| 久久久久国内视频| 婷婷成人精品国产| 欧美在线黄色| 女性生殖器流出的白浆| tocl精华| 亚洲av男天堂| 男女国产视频网站| 女人爽到高潮嗷嗷叫在线视频| 一级黄色大片毛片| 国产亚洲av片在线观看秒播厂| 国产一区二区三区综合在线观看| 日韩人妻精品一区2区三区| 免费不卡黄色视频| 制服人妻中文乱码| 午夜福利影视在线免费观看| 女性被躁到高潮视频| 水蜜桃什么品种好| 性色av一级| 成人国产一区最新在线观看| tube8黄色片| 欧美黑人精品巨大| 久久精品熟女亚洲av麻豆精品| 一区二区日韩欧美中文字幕| 另类亚洲欧美激情| 亚洲av美国av| 啦啦啦 在线观看视频| 国产三级黄色录像| 宅男免费午夜| 大香蕉久久网| 老司机影院毛片| 老司机影院毛片| 国产色视频综合| 国产成人免费观看mmmm| 欧美一级毛片孕妇| 亚洲欧洲精品一区二区精品久久久| 热re99久久国产66热| 狂野欧美激情性bbbbbb| 自线自在国产av| 男女无遮挡免费网站观看| 久久久久精品人妻al黑| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲色图综合在线观看| 新久久久久国产一级毛片| 精品国产一区二区三区久久久樱花| 少妇人妻久久综合中文| 欧美性长视频在线观看| 欧美午夜高清在线| 中文字幕人妻熟女乱码| 高清欧美精品videossex| 亚洲成人免费av在线播放| 丝袜美腿诱惑在线| 亚洲成国产人片在线观看| 精品第一国产精品| 国产成人免费无遮挡视频| 久久国产精品人妻蜜桃| 亚洲欧美精品自产自拍| 大陆偷拍与自拍| 高清黄色对白视频在线免费看| 交换朋友夫妻互换小说| 国产精品偷伦视频观看了| 亚洲av男天堂| 人妻久久中文字幕网| 日日爽夜夜爽网站| 久久99热这里只频精品6学生| 五月开心婷婷网| 美女午夜性视频免费| 久久中文看片网| 肉色欧美久久久久久久蜜桃| 中文欧美无线码| 法律面前人人平等表现在哪些方面 | 国产片内射在线| 大香蕉久久成人网| 人人妻人人澡人人看| 国产精品秋霞免费鲁丝片| 亚洲欧洲精品一区二区精品久久久| 一区二区三区乱码不卡18| 国产精品一二三区在线看| 少妇精品久久久久久久| 亚洲精品久久成人aⅴ小说| 亚洲av国产av综合av卡| 国产成人av激情在线播放| 欧美日韩亚洲高清精品| 最近最新中文字幕大全免费视频| 夫妻午夜视频| 久久久久久人人人人人| 亚洲av日韩在线播放| 日韩一卡2卡3卡4卡2021年| 国产精品 欧美亚洲| 久久久精品94久久精品| 操出白浆在线播放| 一个人免费看片子| 亚洲精品在线美女| 最近最新免费中文字幕在线| 天堂中文最新版在线下载| 青草久久国产| 国产精品免费大片| 国产免费一区二区三区四区乱码| 超碰97精品在线观看| 搡老岳熟女国产| 久久久久久久久久久久大奶| 免费一级毛片在线播放高清视频 | 国产成人系列免费观看| 伊人亚洲综合成人网| av天堂久久9| 亚洲国产欧美日韩在线播放| 久久人妻熟女aⅴ| 大片免费播放器 马上看| 丝瓜视频免费看黄片| 欧美xxⅹ黑人| 精品国产乱子伦一区二区三区 | 大码成人一级视频| 国产亚洲一区二区精品| 久久女婷五月综合色啪小说| 国产成人啪精品午夜网站| 在线观看www视频免费| 大香蕉久久网| 爱豆传媒免费全集在线观看| 老熟妇乱子伦视频在线观看 | 欧美日韩亚洲国产一区二区在线观看 | 免费高清在线观看视频在线观看| 99久久99久久久精品蜜桃| 国产精品久久久av美女十八| 免费看十八禁软件| 王馨瑶露胸无遮挡在线观看| 他把我摸到了高潮在线观看 | 亚洲精品av麻豆狂野| 免费黄频网站在线观看国产| 亚洲美女黄色视频免费看| 精品卡一卡二卡四卡免费| 天天影视国产精品| 午夜精品久久久久久毛片777| 一本久久精品| 十八禁网站免费在线| 国产极品粉嫩免费观看在线| 亚洲一区中文字幕在线| 国产三级黄色录像| 男女国产视频网站| av线在线观看网站| 汤姆久久久久久久影院中文字幕| 亚洲欧美一区二区三区久久| 久久av网站| 精品国产一区二区久久| 亚洲精品成人av观看孕妇| 亚洲精品粉嫩美女一区| 亚洲国产中文字幕在线视频| 久久人人爽人人片av| 女性生殖器流出的白浆| 中文字幕最新亚洲高清| 男女午夜视频在线观看| 香蕉国产在线看| 欧美乱码精品一区二区三区| 80岁老熟妇乱子伦牲交| 啪啪无遮挡十八禁网站| 欧美人与性动交α欧美精品济南到| 精品第一国产精品| 在线观看免费高清a一片| 又紧又爽又黄一区二区| 国产精品久久久av美女十八| 成年人免费黄色播放视频| 最近最新免费中文字幕在线| 午夜激情久久久久久久| 欧美精品啪啪一区二区三区 | 国产精品一区二区在线观看99| 一区二区三区精品91| 色播在线永久视频| 亚洲男人天堂网一区| 夜夜夜夜夜久久久久| 黑人巨大精品欧美一区二区mp4| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利在线观看吧| 91精品国产国语对白视频| 成年动漫av网址| 一区在线观看完整版| 我要看黄色一级片免费的| 1024香蕉在线观看| 久久久国产一区二区| 黄色 视频免费看| 亚洲欧美一区二区三区黑人| 国产1区2区3区精品| avwww免费| 亚洲一卡2卡3卡4卡5卡精品中文| 黄片播放在线免费| 亚洲自偷自拍图片 自拍| 亚洲精品日韩在线中文字幕| 国产一区二区三区av在线| 亚洲avbb在线观看| 久久精品亚洲熟妇少妇任你| 国产精品久久久av美女十八| 天堂中文最新版在线下载| 精品欧美一区二区三区在线| 亚洲av成人一区二区三| 亚洲国产成人一精品久久久| 91字幕亚洲| 国产亚洲一区二区精品| 久久国产精品男人的天堂亚洲| 亚洲视频免费观看视频| 亚洲人成77777在线视频| 亚洲性夜色夜夜综合| 成在线人永久免费视频| 欧美日韩视频精品一区| 中文精品一卡2卡3卡4更新| 欧美日韩av久久| 亚洲精品久久成人aⅴ小说| 电影成人av| 国产成人啪精品午夜网站| 精品少妇一区二区三区视频日本电影| 久久精品aⅴ一区二区三区四区| 免费在线观看黄色视频的| 一二三四在线观看免费中文在| 一个人免费在线观看的高清视频 | 美国免费a级毛片| 免费在线观看完整版高清| 久久久久国产一级毛片高清牌| 国产一级毛片在线| 亚洲精品久久久久久婷婷小说| 一本大道久久a久久精品| 日韩,欧美,国产一区二区三区| 免费久久久久久久精品成人欧美视频| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩一区二区精品| 侵犯人妻中文字幕一二三四区| 国产av精品麻豆| 午夜免费鲁丝| 精品乱码久久久久久99久播| 午夜久久久在线观看| 精品人妻1区二区| 制服诱惑二区| 狂野欧美激情性bbbbbb| 天天操日日干夜夜撸| 精品高清国产在线一区| 欧美日本中文国产一区发布| 黑人欧美特级aaaaaa片| 国产又色又爽无遮挡免| 夫妻午夜视频| 成年动漫av网址| 性少妇av在线| 成人国产一区最新在线观看| 久久久国产成人免费| 岛国在线观看网站| 天天影视国产精品| 首页视频小说图片口味搜索| 两个人看的免费小视频| 又紧又爽又黄一区二区| 亚洲av成人不卡在线观看播放网 | 亚洲av欧美aⅴ国产| 人人澡人人妻人| 成年av动漫网址| 久久精品人人爽人人爽视色| 少妇人妻久久综合中文| 在线十欧美十亚洲十日本专区| 久久天堂一区二区三区四区| 成人手机av| 老司机在亚洲福利影院| 精品久久久久久久毛片微露脸 | h视频一区二区三区| 操美女的视频在线观看| 欧美+亚洲+日韩+国产| 中文欧美无线码| 午夜激情av网站| 成人免费观看视频高清| 啦啦啦视频在线资源免费观看| 国产又色又爽无遮挡免| 大片电影免费在线观看免费| 日韩视频在线欧美| 亚洲国产欧美在线一区| 丝袜喷水一区| 各种免费的搞黄视频| 亚洲专区中文字幕在线| 久9热在线精品视频| 国产精品免费视频内射| 最近最新免费中文字幕在线| 美女国产高潮福利片在线看| 人成视频在线观看免费观看| 老熟妇乱子伦视频在线观看 | 男男h啪啪无遮挡| 国产精品二区激情视频| 黑人欧美特级aaaaaa片| 亚洲av美国av| 欧美精品av麻豆av| 热99久久久久精品小说推荐| 欧美另类一区| 国产精品久久久人人做人人爽| av又黄又爽大尺度在线免费看| 女人高潮潮喷娇喘18禁视频| 日本撒尿小便嘘嘘汇集6| 亚洲国产欧美日韩在线播放| 国产熟女午夜一区二区三区| 亚洲精品中文字幕在线视频| 亚洲天堂av无毛| 不卡av一区二区三区| 亚洲久久久国产精品| 老司机亚洲免费影院| 国产日韩欧美视频二区| 亚洲国产日韩一区二区| 一级片免费观看大全| 自拍欧美九色日韩亚洲蝌蚪91| 一区在线观看完整版| 亚洲人成77777在线视频| 国产区一区二久久| 一二三四在线观看免费中文在| 精品人妻在线不人妻| 桃红色精品国产亚洲av| 久久影院123| 韩国精品一区二区三区| 亚洲欧美一区二区三区黑人| 久久热在线av| 午夜免费成人在线视频| 久久久久久久久久久久大奶| 老熟妇乱子伦视频在线观看 | 国产成人一区二区三区免费视频网站| 亚洲av成人不卡在线观看播放网 | 美女午夜性视频免费| 爱豆传媒免费全集在线观看| 啦啦啦免费观看视频1| 18禁裸乳无遮挡动漫免费视频| 午夜免费成人在线视频| 首页视频小说图片口味搜索| 午夜影院在线不卡| 熟女少妇亚洲综合色aaa.| videos熟女内射| 欧美亚洲 丝袜 人妻 在线| 成人18禁高潮啪啪吃奶动态图| 精品一区在线观看国产| 91麻豆av在线| 少妇 在线观看| 国产精品.久久久| 2018国产大陆天天弄谢| 黑人巨大精品欧美一区二区mp4| 亚洲男人天堂网一区| 国产男人的电影天堂91| 手机成人av网站| 黄色 视频免费看| 欧美人与性动交α欧美软件| 久久精品国产亚洲av香蕉五月 | 人妻 亚洲 视频| 欧美精品一区二区免费开放| www日本在线高清视频| www.av在线官网国产| 丁香六月天网| 国产在线免费精品| 法律面前人人平等表现在哪些方面 | 黄网站色视频无遮挡免费观看| 欧美日韩亚洲综合一区二区三区_| 爱豆传媒免费全集在线观看| 精品卡一卡二卡四卡免费| 日韩精品免费视频一区二区三区| 中文欧美无线码| 99久久综合免费| 免费少妇av软件| tocl精华| 国产精品熟女久久久久浪| 久久精品aⅴ一区二区三区四区| 欧美精品一区二区免费开放| 国产成人免费无遮挡视频| 日韩电影二区| 精品熟女少妇八av免费久了| 成年人午夜在线观看视频| 在线精品无人区一区二区三| bbb黄色大片| 婷婷色av中文字幕| 国产av又大| 欧美亚洲日本最大视频资源| 欧美成狂野欧美在线观看| 国产亚洲一区二区精品| 亚洲熟女精品中文字幕| 欧美激情久久久久久爽电影 | a级片在线免费高清观看视频| 久久久久精品国产欧美久久久 | 色综合欧美亚洲国产小说| 天天躁夜夜躁狠狠躁躁| 亚洲精品久久久久久婷婷小说| 19禁男女啪啪无遮挡网站| 国产成人精品无人区| 一级片'在线观看视频| 国产精品久久久久成人av| 久久久国产欧美日韩av| 国产精品一区二区在线观看99| 一区二区av电影网| 美国免费a级毛片| 国产在线视频一区二区| 国产亚洲午夜精品一区二区久久| 亚洲成人免费av在线播放| 女人精品久久久久毛片| 欧美精品高潮呻吟av久久| 婷婷丁香在线五月| 两个人免费观看高清视频| 国产高清videossex| 久久毛片免费看一区二区三区| 亚洲欧洲精品一区二区精品久久久| 18禁国产床啪视频网站| 啦啦啦在线免费观看视频4| 女人久久www免费人成看片| 亚洲中文日韩欧美视频| 欧美xxⅹ黑人| 九色亚洲精品在线播放| 十八禁人妻一区二区| 亚洲三区欧美一区| 亚洲熟女精品中文字幕| 国产深夜福利视频在线观看| 91麻豆av在线| 热99久久久久精品小说推荐| xxxhd国产人妻xxx| av有码第一页| 国产成+人综合+亚洲专区| 我的亚洲天堂| 成年动漫av网址| 青春草亚洲视频在线观看| 一二三四社区在线视频社区8| 午夜福利视频精品| 亚洲七黄色美女视频| 国产精品1区2区在线观看. | 国产野战对白在线观看| 久久久国产一区二区| 国产欧美日韩一区二区三 | avwww免费| 久久影院123| 亚洲男人天堂网一区| 高清在线国产一区| av欧美777| 成人国产av品久久久| 亚洲va日本ⅴa欧美va伊人久久 | 男人操女人黄网站| 不卡av一区二区三区| 精品少妇黑人巨大在线播放| 一级毛片电影观看| 91成人精品电影| 麻豆国产av国片精品| av免费在线观看网站| 亚洲av日韩在线播放| 欧美人与性动交α欧美软件| 午夜福利在线观看吧| 免费在线观看影片大全网站| 18禁裸乳无遮挡动漫免费视频| 男人添女人高潮全过程视频| 黄片播放在线免费| 国产成人精品在线电影| 高清欧美精品videossex| 一级,二级,三级黄色视频| 建设人人有责人人尽责人人享有的| 久9热在线精品视频| 国产在线一区二区三区精| 少妇的丰满在线观看| 久久久欧美国产精品| 精品少妇久久久久久888优播| 免费高清在线观看日韩| 国产精品久久久久久精品电影小说| 最近最新免费中文字幕在线| 在线亚洲精品国产二区图片欧美| 可以免费在线观看a视频的电影网站| 午夜福利一区二区在线看| 50天的宝宝边吃奶边哭怎么回事| 女性生殖器流出的白浆| 亚洲午夜精品一区,二区,三区| 久久九九热精品免费| 国产深夜福利视频在线观看| 99久久精品国产亚洲精品| 韩国精品一区二区三区| 一进一出抽搐动态| 性色av一级| 啪啪无遮挡十八禁网站| 国产亚洲精品一区二区www | 亚洲精品乱久久久久久| 亚洲三区欧美一区| 少妇裸体淫交视频免费看高清 | 黄片大片在线免费观看| 搡老熟女国产l中国老女人| 精品少妇黑人巨大在线播放| 99国产精品免费福利视频| 99久久国产精品久久久| 三上悠亚av全集在线观看| 欧美日韩视频精品一区| 另类精品久久| 久久精品亚洲av国产电影网| 国产亚洲一区二区精品| 久久天躁狠狠躁夜夜2o2o| 手机成人av网站| 交换朋友夫妻互换小说| 欧美日韩亚洲高清精品| 国产亚洲欧美精品永久| 国产欧美日韩精品亚洲av| 欧美人与性动交α欧美软件| 久久九九热精品免费| 亚洲伊人色综图| 国产激情久久老熟女| 久久久水蜜桃国产精品网| 亚洲va日本ⅴa欧美va伊人久久 | 午夜福利影视在线免费观看| 国产精品 国内视频| 中文字幕制服av| 自拍欧美九色日韩亚洲蝌蚪91| 99精品欧美一区二区三区四区| 亚洲精品国产av成人精品| 超色免费av| 亚洲伊人色综图| 国产片内射在线| 久久女婷五月综合色啪小说| 一级黄色大片毛片| 人人妻人人澡人人看| 日韩精品免费视频一区二区三区| 日日夜夜操网爽| 男女下面插进去视频免费观看| 悠悠久久av| av又黄又爽大尺度在线免费看| 精品乱码久久久久久99久播| 大片免费播放器 马上看| 麻豆av在线久日| 亚洲全国av大片| 亚洲欧洲日产国产| 成人亚洲精品一区在线观看| 亚洲精品第二区| 色婷婷av一区二区三区视频| 久久中文看片网| 国产亚洲精品一区二区www | 天天操日日干夜夜撸| 国产高清视频在线播放一区 | videos熟女内射| 91麻豆av在线| 日韩欧美一区视频在线观看| 久久久欧美国产精品| 久久国产精品大桥未久av| 五月天丁香电影| 国产精品久久久久久人妻精品电影 | 黄色片一级片一级黄色片| 一个人免费看片子| 国产激情久久老熟女| 亚洲成人国产一区在线观看| 免费av中文字幕在线| 在线天堂中文资源库| 又黄又粗又硬又大视频| 色精品久久人妻99蜜桃| 国产无遮挡羞羞视频在线观看| 免费观看a级毛片全部| 精品人妻1区二区| av又黄又爽大尺度在线免费看| a级片在线免费高清观看视频| 精品少妇内射三级| 老司机午夜福利在线观看视频 | 麻豆乱淫一区二区| 后天国语完整版免费观看| 三上悠亚av全集在线观看| 操出白浆在线播放| 人人妻,人人澡人人爽秒播| 国产精品亚洲av一区麻豆| 国产日韩欧美在线精品| 黑人猛操日本美女一级片| 18禁国产床啪视频网站| 黑人猛操日本美女一级片| 亚洲精品一二三| 午夜福利视频精品| 69av精品久久久久久 | 精品人妻1区二区| 一级片'在线观看视频| 在线精品无人区一区二区三| 中文字幕精品免费在线观看视频| 亚洲av日韩在线播放| 超碰97精品在线观看| 国产成人一区二区三区免费视频网站| 午夜福利视频在线观看免费| 欧美少妇被猛烈插入视频| 国产欧美日韩精品亚洲av| 夜夜骑夜夜射夜夜干| 老鸭窝网址在线观看| 国产亚洲一区二区精品| 日本撒尿小便嘘嘘汇集6| av在线老鸭窝| 法律面前人人平等表现在哪些方面 | 亚洲激情五月婷婷啪啪| 动漫黄色视频在线观看| 精品熟女少妇八av免费久了| 国产精品久久久av美女十八| www.熟女人妻精品国产| 日韩熟女老妇一区二区性免费视频| 免费在线观看视频国产中文字幕亚洲 | svipshipincom国产片| 99国产精品免费福利视频| av电影中文网址| a级毛片在线看网站| 美女视频免费永久观看网站|