• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and superconductivity in yttrium superhydrides under high pressure

    2022-10-26 09:47:10YingyingWang王瑩瑩KuiWang王奎YaoSun孫堯LiangMa馬良YanchaoWang王彥超BoZou鄒勃GuangtaoLiu劉廣韜MiZhou周密andHongboWang王洪波
    Chinese Physics B 2022年10期
    關鍵詞:周密馬良

    Yingying Wang(王瑩瑩) Kui Wang(王奎) Yao Sun(孫堯) Liang Ma(馬良) Yanchao Wang(王彥超)Bo Zou(鄒勃) Guangtao Liu(劉廣韜) Mi Zhou(周密) and Hongbo Wang(王洪波)

    1State Key Laboratory of Superhard Materials,College of Physics,Jilin University,Changchun 130012,China

    2International Center of Computational Method&Software,College of Physics,Jilin University,Changchun 130012,China 3International Center of Future Science,Jilin University,Changchun 130012,China

    Keywords: high pressure,superhydride,superconductivity

    1. Introduction

    The search for high-temperature superconductors (HTS)with superconducting transition temperature(Tc)above liquidnitrogen temperature has long been recognized as an intriguing topic since the discovery of Hg withTc=4.2 K.[1]According to the Bardeen–Cooper–Schrieffer theory,[2]metallic hydrogen (MH) is one of the best candidates for achieving HTS; however, the quest for MH has proven extremely challenging due to the requirements of ultrahigh pressure conditions. Satterthwaiteet al.discovered~8 K superconductivity in thorium hydride in 1970,implying that hydrogen-rich metal hydrides would be HTS.[3]Then, Gilman[4]and Ashcroft[5]further proposed that MH could be achieved in hydrogenrich compounds at lower pressures because the heavier atoms played a chemical precompression role in hydrogen,ushering in a new era of HTS research in hydrogen-rich compounds at high pressures. However, despite significant efforts, there were no experimental breakthroughs for a long time until the observation of 203 K superconductivity at 155 GPa in covalent H3S,[6]which further inspired the search for HTS in conventional phonon-mediated hydride superconductors.

    In contrast to covalent superhydrides such as H3S, ionic metal hydrides offer more options for finding HTS. Wangetal.(2012) predicted the first CaH6clathrate hydride with a very highTcof 235 K at 150 GPa.[7]Following this study, a long list of clathrate REH6,REH9,and REH10superhydrides(RE: rare earth metal) were predicted to have highTcvalues close to or even above room temperature.[8–10]Stimulated by these predictions,a series of clathrate superhydrides,such as CaH6,[11]LaH10,[12,13]CeH9,CeH10,[14]ThH9,ThH10,[15](La,Y)H10,[16]were successfully synthesized withTcranging from 57 K–260 K.Among ionic superhydrides,yttrium superhydrides piqued the interest of researchers due to their abundant stoichiometries, they are predicted to have highTc, e.g.,84 K–95 K at 120 GPa in YH4,[10,17]251 K–264 K at 120 GPa in YH6,[10]21.5 K–43 K at 165 GPa in YH7,[18]253 K–276 K at 150 GPa in YH9,[8]and 305 K–326 K at 250 GPa in YH10.[9]Recently,Konget al.[19]successfully synthesized YH4and clathrate structured YH6and YH9with observedTcs of 220 K at 183 GPa and 243 K at 201 GPa for the last two yttrium superhydrides,respectively. Meanwhile,Troyanet al.also independently synthesized a clathrate YH6,[18]with an observedTcof 224 K at 166 GPa. Following that, Snideret al.synthesized YH9with aTcof up to 262 K using catalytic hydrogenation at about 182 GPa.[20]Furthermore, recent research has successfully observed 88 K superconductivity of YH4at 155 GPa.[21]

    Besides binary yttrium superhydrides, yttrium-bearing ternary hydrides, where the introduction of a third element other than hydrogen considerably expands the phase space,have attracted extensive attention. Lianget al.[22]and Xieet al.[23]predicted a clathrate CaYH12with an estimatedTcof 258 K at 200 GPa and 230 K at 180 GPa,respectively. Then,Lianget al.predicted a ternary YSH6with aTcof 91 K at 210 GPa.[24](La, Y)H6and (La, Y)H10[16]were synthesized experimentally at high pressures withTcs of 237 K and 253 K,respectively.

    Previous research has primarily concentrated on HTS(Tc>200 K),even though more superhydrides have been synthesized. Thus far, there has been a dearth of efforts to systematically investigate the superconductivity of all experimentally reported unconventional superhydrides. In this work,we first conducted detailed structure and superconductivity studies of YH4, which was chosen as an example due to its rare previous investigation. X-ray diffraction measurements revealed the successful synthesis of predictedI4/mmm-YH4at about 167 GPa and 1600 K,and its measuredTcof 82 K was evidenced by a sharp drop in resistance and a characteristic decrease in superconducting transition under a magnetic field up to 8.5 T. Further electrical transport measurements revealed a series of additional superconducting transitions at 29 K (162 GPa), 218 K (165 GPa), and 230 K (300 GPa),which arise from YH7and clathrate structured YH6,and YH9,respectively,inferred fromTcs consistency with previous studies.

    2. Experimental methods

    According to the different target pressures, symmetric diamond anvil cells (DACs) outfitted diamond anvils with a culet size of~30 μm–60 μm beveled at 8.5°to a diameter of~250 μm. The composite gasket was composed of rhenium outer annulus and a mixture of epoxy resin and Al2O3powder. The insulating gasket was pre-indented to a thickness of 10 μm,and the corresponding sample chamber with a diameter of 20 μm–30 μm was drilled using a laser drilling system.Commercially available yttrium ingot(Alfa Aesar,99.9%purity) and NH3BH3(AB) powder (Sigma-Aldrich, 97%) were loaded into the sample chamber inside a glovebox filled with Ar atmosphere with O2and H2O contents of<0.01 ppm. The Y foil and Au electrodes with thicknesses of 2 μm and 1 μm,respectively, were sandwiched between the AB layers. The application of Au electrodes can effectively avoid the chemical reaction[25]between the electrodes and hydrogen, which can result in the formation of undesirable superconductors,as well as help to maintain a hydrogen-rich environment. AB serves as a hydrogen source while also acting as thermal insulation layers. Subsequently, the samples were compressed to the required synthesis pressure. The pressure in the sample chamber was calibrated using the high-frequency edge of the diamond Raman line.[26]The laser heating of the sample was performed using a pulsed YAG infrared laser,and the temperature was determined using the black-body radiation fit within the Planck function.In situhigh-pressure angle-dispersive x-ray diffraction (ADXRD) experiments were performed at the Shanghai Synchrotron Radiation Facility’s BL15U1 beamline(5 μm×12 μm)with a monochromatic beam wavelength of 0.6199 ?A and an average acquisition time of 120 s. Before the experiment, the relevant geometric parameters were calibrated using a CeO2standard. Diffraction patterns were collected using a Mar165 CCD detector and analyzed using DIOPTAS software, yielding one-dimension profiles.[27]The Le Bail profile matching refinements were performed using the GSAS+EXPGUI programs.[28]Based on the four-probe van der Pauw method,[29]the resistance measurements were performed with currents of 10-6–10-4A(Keithley 2182A nanovoltmeter and 6221 AC and DC source)and the selected data were warming cycles with a controlled rate of approximately 1 K·min-1. Furthermore, non-magnetic DACs made of Be–Cu alloy were used for resistance measurements in an external magnetic field of up to 8.5 T.

    3. Results and discussion

    In this work, we prepared 11 samples, labeled as samples 1 through sample 11,to synthesize yttrium superhydrides from a mixture of Y and AB, and explore their superconductivity. Previous excellent results have shown AB to be a reliable H2source.[11,13,18,19,21]At high temperatures, AB would decompose into H2plus c-BN, the latter avoiding the problem of poor contact between the synthesized product and electrodes. The diagram of the assembly used for synthesis and four-probe electrical resistance measurements is shown in Fig. 1(a). In sample 1, the reactants were compressed to 167 GPa[Fig.S1(a)]before being heated to about 1600 K.The clear H–H vibration from H2molecular [Fig. S1(b)] demonstrates a hydrogen-rich environment. The sample turned black after laser heating,indicating that a chemical reaction occurred[inset in Fig. 1(b)]. Representative electrical resistance measurements as a function of temperature reveal a superconducting transition at 82 K, as evidenced by the sharp drop in the resistance,as shown in Fig.1(b). This superconducting transition can be perfectly reproduced in several independent experiments (Fig. 2 and Fig. S2), further confirming the reliability of our results. To determine the highest value ofTc,we evaluated the pressure dependence ofTc,as shown in Fig.2(b).Tcfluctuates in the pressure range of 145 GPa–170 GPa in different experiments and the highestTcof 84 K at 162 GPa is consistent with the previous theoretical estimate of 84 K–95 K for YH4.Furthermore,as pressure decreases,the superconducting transition disappears at about 143 GPa[Figs.S2(a)and S2(b)],indicating a possible superconducting phase decomposition.

    Fig.1. (a)Schematic of the experimental setup for synthesis and four-probe superconducting electrical resistance measurements. (b)Temperature dependence of resistance in sample 1(S1)at 167 GPa. The insets show an optical micrograph of the sample before and after laser heating. The value of the Tc is defined as the crossing point of the resistance slopes before and after the resistance drop. (c)Synchrotron XRD pattern of S1 at 167 GPa.The inset displays a two-dimensional XRD pattern. Unidentified weak reflections are marked by asterisks. (d)Crystal structures of I4/mmm-YH3 and I4/mmm-YH4. Big and small balls represent Y and H atoms,respectively.

    Fig.2. (a)Temperature dependence of resistance in sample 3(S3)at 162 GPa. Inset: crystal structures of Imm2-YH7. Big and small balls represent Y and H atoms, respectively. (b) Pressure dependence of Tc for I4/mmm YH4 (circle) and Imm2-YH7 (star). Different colors represent different samples. The cited experimental data for YH4 are represented by open circles.[21]Dark cyan symbols depict the calculated data from Troyan et al.[18]

    To further determine the structure of the high-temperature superconducting phase, we performedin situhigh-pressure ADXRD measurements of sample 1, which revealed that the products were dominated byI4/mmm-YH3andI4/mmm-YH4as shown in Fig.1(c)and the refined structural information is listed in Table S1.The tetragonal YH3,which possessed a new high-pressure phase in addition to the conventional fcc phase,was synthesized for the first time after prediction.[17]Moreover, no superconductivity was predicted inI4/mmm-YH3up to 200 GPa. Consequently, the observed-superconducting transition in sample 1 should be attributed to YH4.

    Due to the small sample size,measuring the Meissner effect in ultra-high-pressure experiments remains a significant challenge to this day. An applied external magnetic field can break the Cooper pairs, reducing the value ofTc; thus, the suppression of superconducting transitions by an applied magnetic field can be used to investigate the nature of the superconducting states. Figure 3(a)shows the measured resistance of sample 2 under different magnetic fields at 170 GPa.TheTcdecreased from 77 K to 53 K as the magnetic field increased to 8.5 T,indicating the superconducting nature of the transition.The extrapolated upper critical fieldμ0Hc2(T)and coherence length towardT=0 K are 14.9 T and 47 ?A,as well as 18.7 T and 42 ?A,respectively, as shown in Fig.3(b), and were fitted by the Ginzburg–Landau (GL)[30]and Werthamer–Helfand–Hohenberg (WHH)[31]models. Furthermore, besides the superconductivity of YH4,we observed another low-temperature superconductivity of 17 K [inset in Fig. 3(a)] in this experiment,which can be attributed to the element yttrium based on the agreement with theTcof the unheated sample (Fig. S3).Similar results for YH4were independently reported by another group.[21]

    Furthermore, after laser heating sample 3 to approximately 1750 K at 162 GPa, we observed step-down behavior in electrical resistance measurements at 81 K,29 K,and 18 K(Fig. 2(a)). As aforementioned, the first and third resistance drops,result from superconducting transitions of YH4and element Y,respectively. Based on previous theoretical work,[18]we hypothesized that the second resistance drop at 29 K may originate from the superconducting transition ofImm2-YH7,which was also reproduced in sample 7 [Fig. S2(c)]. Figure 2(b) summarizes the pressure dependency ofTcfor YH7and YH4. Similar to the variation trend of YH4, theTcof YH7was relatively stable in the pressure range of 142 GPa–170 GPa. Although bothI4/mmm-YH4andImm2-YH7have a molecular“H2”unit[Fig.1(d)and Fig.2(a)],theTcof YH4with a high-symmetry structure is higher than that of YH7due to stronger electron-phonon coupling.[18]

    In the following work, we tuned the heating temperature and pressure, to synthesize the high-temperature superconducting clathrate YH6, YH9, or even YH10. When we increased the heating temperature to 2200 K at 165 GPa for sample 4,aTcof 218 K was observed,as shown in Fig.4(a). Subsequently,sample 5 was compressed to a superhigh pressure of 300 GPa[Fig.S1(a)]and heated to about 2000 K,and the electrical resistance measurement curve revealed superconductivity at 230 K (Fig. 4(a)). As shown in Fig. 4(b) theTcs of samples 4 and samples 5 perfectly match the reported experimental results for clathrate structured YH6and YH9,[18,19]respectively. The highTcofImˉ3m-YH6andP63/mmc-YH9was attributed to their hydrogen cage structure,and particularly the significant contribution of the H-derived electronic density of states at the Fermi level.[8,10]Unfortunately,we found no evidence of clathrate YH10,which may be synthesized at higher pressures.

    Fig.3. (a)The temperature dependence of the resistance for I4/mmm-YH4 under external magnetic fields of μ0H=0 T,1 T,3 T,5 T,7 T,and 8.5 T at 170 GPa in sample 2(S2). Inset: the temperature-resistance curve without external magnetic fields. (b)Upper critical field versus temperature,μ0H(0)was fitted with the GL and WHH models.

    Fig. 4. (a) Temperature dependence of resistance in sample 4 (S4) at 165 GPa and sample 5 (S5) at 300 GPa. The large residual resistance in S4 and S5 is mainly from the coexistence of multiple phases. Furthermore, the pseudo-four-electrode method was used in the electrical measurement for S5, thus introducing additional resistance from the electrodes.Inset:crystal structures of Imˉ3m-YH6 and P63/mmc-YH9.Big and small balls represent Y and H atoms,respectively. (b)Pressure dependence of Tc for Imˉ3m-YH6 (star)and P63/mmc-YH9 (hexagon). The symbols of dark cyan, orange,and red correspond to the data of Kong et al.,[19] Troyan et al.,[18] and this work,respectively.

    A series of superhydrides with highTchave been synthesized under high pressures; however, the absence of resistive transition broadening with increasing magnetic field in some works[12,16,32]has led to a debate about their superconductivity.[33]Using YH4as an example,we observed a clear broadening of the resistive transition under applied magnetic fields (Fig. S4), which follows a similar trend to that of typical standard superconductors such as MgB2[34]and NbN,[35]further demonstrating the veracity of our results. As a member of superhydride, the results of electrical transport measurements under external magnetic fields in YH4will help clarify the debate on the superconductivity in superhydrides.

    4. Conclusion and perspectives

    In summary, we have successfully synthesized YH4,YH6,YH7,and YH9,which exhibitedTcs of 82 K at 167 GPa,218 K at 165 GPa, 29 K at 162 GPa, and 230 K at 300 GPa,respectively. Furthermore, a tetragonal phase as a new highpressure structure of conventional YH3was synthesized for the first time at 167 GPa. These findings confirm the original theoretical prediction and provide a foundation for future research into HTS on the doped Y-based polynary superhydrides.

    Acknowledgments

    XRD measurements were performed at BL15U1 station in Shanghai Synchrotron Radiation Facility(SSRF)and 4W2 station in Beijing Synchrotron Radiation Facility(BSRF).The measurements of superconducting transition under external magnetic fields were supported by the Synergic Extreme Condition User Facility(SECUF)and China’s Steady High Magnetic Field Facility(SHMFF).

    Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400203 and 2018YFA0305900), the National Natural Science Foundation of China(Grant Nos.52090024,11874175,12074139,12074138, 11874176, and 12034009), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB33000000),and Program for JLU Science and Technology Innovative Research Team(JLUSTIRT).

    猜你喜歡
    周密馬良
    父親
    馬丹丹 馬良作品
    大眾文藝(2021年14期)2021-08-15 18:40:12
    當閨蜜變成姑嫂
    分憂(2021年6期)2021-07-19 20:56:44
    我讀《神筆馬良》
    我想成為神筆馬良
    Мероприятия и контакты
    中國(俄文)(2018年5期)2018-05-24 13:53:06
    照應周密,行文流暢
    我的神筆馬良
    童話世界(2017年11期)2017-05-17 05:28:26
    夏天的風秋天的霧
    小馬良認錯
    天天添夜夜摸| 精品一区二区三卡| 制服人妻中文乱码| av一本久久久久| 国产麻豆69| 女性生殖器流出的白浆| 97人妻天天添夜夜摸| 国产成人91sexporn| 无限看片的www在线观看| 国产黄色免费在线视频| 免费黄频网站在线观看国产| 国产精品久久久久成人av| 麻豆国产av国片精品| 人人妻人人澡人人爽人人夜夜| 老汉色∧v一级毛片| 亚洲情色 制服丝袜| 亚洲国产中文字幕在线视频| 欧美日韩亚洲国产一区二区在线观看 | 国产成人精品无人区| 好男人电影高清在线观看| 久久人人爽人人片av| 国产免费视频播放在线视频| 99热国产这里只有精品6| 国产亚洲欧美在线一区二区| www日本在线高清视频| 午夜日韩欧美国产| 好男人视频免费观看在线| 91精品国产国语对白视频| 伦理电影免费视频| 51午夜福利影视在线观看| 午夜免费男女啪啪视频观看| 在线观看免费日韩欧美大片| 999精品在线视频| 9色porny在线观看| 在线观看免费午夜福利视频| av有码第一页| 丝袜喷水一区| 国产成人91sexporn| 国产色视频综合| 十八禁人妻一区二区| 国产成人影院久久av| a级毛片在线看网站| 国产成人欧美| 99热网站在线观看| 欧美精品一区二区大全| 天天躁夜夜躁狠狠躁躁| 啦啦啦啦在线视频资源| 亚洲国产欧美网| 99久久综合免费| 一级毛片电影观看| 久久久精品国产亚洲av高清涩受| 波多野结衣一区麻豆| 青草久久国产| 国产精品成人在线| 欧美精品一区二区免费开放| 亚洲国产欧美一区二区综合| 一级片免费观看大全| 1024视频免费在线观看| 日韩av在线免费看完整版不卡| 亚洲成人免费av在线播放| 999精品在线视频| 久久影院123| 日韩一本色道免费dvd| 宅男免费午夜| 国产亚洲精品第一综合不卡| 男男h啪啪无遮挡| 在线观看免费日韩欧美大片| 亚洲国产av影院在线观看| 岛国毛片在线播放| 捣出白浆h1v1| 99国产精品免费福利视频| 深夜精品福利| 日本黄色日本黄色录像| 大香蕉久久网| 岛国毛片在线播放| 亚洲人成77777在线视频| 国产免费现黄频在线看| 免费高清在线观看日韩| 99久久人妻综合| 午夜激情av网站| 国产精品三级大全| 久久久欧美国产精品| 啦啦啦视频在线资源免费观看| 99精品久久久久人妻精品| 男女之事视频高清在线观看 | 黄片小视频在线播放| 搡老岳熟女国产| 久久精品国产a三级三级三级| 老司机靠b影院| 亚洲午夜精品一区,二区,三区| netflix在线观看网站| 人人妻人人澡人人看| 日韩一本色道免费dvd| 国产在线一区二区三区精| 大片免费播放器 马上看| 咕卡用的链子| 午夜91福利影院| 9色porny在线观看| 久久久国产一区二区| 亚洲免费av在线视频| 亚洲综合色网址| 国产精品三级大全| 极品人妻少妇av视频| 男女免费视频国产| 国产av一区二区精品久久| 18禁观看日本| 国产成人欧美| 三上悠亚av全集在线观看| 一边摸一边抽搐一进一出视频| 国产精品一区二区精品视频观看| 一级a爱视频在线免费观看| 久久久精品区二区三区| 老司机靠b影院| 日本五十路高清| 日本五十路高清| 日韩 欧美 亚洲 中文字幕| 国产午夜精品一二区理论片| 国产一区有黄有色的免费视频| videos熟女内射| 91成人精品电影| 日韩视频在线欧美| 赤兔流量卡办理| 建设人人有责人人尽责人人享有的| 高潮久久久久久久久久久不卡| 日韩伦理黄色片| 男女边摸边吃奶| 深夜精品福利| 亚洲av在线观看美女高潮| 黄网站色视频无遮挡免费观看| 亚洲 欧美一区二区三区| 国产精品免费大片| 一边亲一边摸免费视频| 国产一区亚洲一区在线观看| 成人18禁高潮啪啪吃奶动态图| 久久国产精品人妻蜜桃| 午夜日韩欧美国产| 狂野欧美激情性bbbbbb| 亚洲精品在线美女| 午夜福利视频在线观看免费| 精品视频人人做人人爽| 在线观看免费视频网站a站| 丰满饥渴人妻一区二区三| 日日夜夜操网爽| 欧美精品人与动牲交sv欧美| 侵犯人妻中文字幕一二三四区| 这个男人来自地球电影免费观看| tube8黄色片| 亚洲av片天天在线观看| bbb黄色大片| 波野结衣二区三区在线| 乱人伦中国视频| 精品高清国产在线一区| 精品熟女少妇八av免费久了| 亚洲男人天堂网一区| 一级黄色大片毛片| 高清av免费在线| 国产一区二区三区av在线| 国产午夜精品一二区理论片| 搡老岳熟女国产| 国产又色又爽无遮挡免| 十八禁网站网址无遮挡| 最近中文字幕2019免费版| 亚洲精品自拍成人| 99精品久久久久人妻精品| 久久久久国产一级毛片高清牌| 久久人人爽av亚洲精品天堂| 一区二区三区乱码不卡18| 九色亚洲精品在线播放| 一本久久精品| 午夜福利视频精品| 精品久久久精品久久久| 老司机亚洲免费影院| 蜜桃国产av成人99| 欧美精品高潮呻吟av久久| 成人国产一区最新在线观看 | 成人亚洲欧美一区二区av| 欧美精品一区二区大全| 别揉我奶头~嗯~啊~动态视频 | 黄色片一级片一级黄色片| 久久久久视频综合| 色视频在线一区二区三区| 日韩免费高清中文字幕av| 97人妻天天添夜夜摸| 三上悠亚av全集在线观看| tube8黄色片| 80岁老熟妇乱子伦牲交| 国产1区2区3区精品| 少妇被粗大的猛进出69影院| 国产在线观看jvid| 在线观看www视频免费| 精品国产国语对白av| 99九九在线精品视频| 久久久精品94久久精品| 日韩伦理黄色片| 99久久精品国产亚洲精品| 欧美黄色淫秽网站| 日本wwww免费看| 成人三级做爰电影| xxxhd国产人妻xxx| 亚洲一区中文字幕在线| 亚洲精品国产区一区二| 欧美97在线视频| 国产精品二区激情视频| 51午夜福利影视在线观看| 如日韩欧美国产精品一区二区三区| 亚洲av男天堂| 国产精品欧美亚洲77777| bbb黄色大片| 美女大奶头黄色视频| 99热国产这里只有精品6| www.精华液| 午夜免费鲁丝| 免费不卡黄色视频| 性色av乱码一区二区三区2| 在线观看人妻少妇| 2021少妇久久久久久久久久久| 欧美日韩亚洲国产一区二区在线观看 | 咕卡用的链子| 日韩人妻精品一区2区三区| 在线观看一区二区三区激情| 纯流量卡能插随身wifi吗| 99九九在线精品视频| 国产日韩欧美视频二区| 纯流量卡能插随身wifi吗| 亚洲午夜精品一区,二区,三区| 狠狠精品人妻久久久久久综合| 国产一卡二卡三卡精品| 男女下面插进去视频免费观看| 色婷婷av一区二区三区视频| 久久热在线av| 国产精品久久久久成人av| 少妇 在线观看| 亚洲专区中文字幕在线| 巨乳人妻的诱惑在线观看| 精品少妇黑人巨大在线播放| 波野结衣二区三区在线| 久久久久久久久久久久大奶| 国产精品秋霞免费鲁丝片| 少妇人妻久久综合中文| 国产精品一区二区免费欧美 | 日日摸夜夜添夜夜爱| 侵犯人妻中文字幕一二三四区| 国产免费又黄又爽又色| 国产在线免费精品| 国产精品偷伦视频观看了| 国产精品免费大片| 午夜91福利影院| 久久国产亚洲av麻豆专区| 久久国产精品影院| avwww免费| 久久久欧美国产精品| 精品人妻在线不人妻| 黑丝袜美女国产一区| 国产精品一区二区在线观看99| 波野结衣二区三区在线| 欧美日韩亚洲综合一区二区三区_| 国产一区二区激情短视频 | 涩涩av久久男人的天堂| 天天躁狠狠躁夜夜躁狠狠躁| 男人添女人高潮全过程视频| 老汉色av国产亚洲站长工具| 一级片免费观看大全| 午夜老司机福利片| 免费一级毛片在线播放高清视频 | 黄网站色视频无遮挡免费观看| 午夜免费观看性视频| 国产成人精品久久久久久| 亚洲av成人精品一二三区| 中国国产av一级| 女人爽到高潮嗷嗷叫在线视频| 性色av一级| 中文字幕制服av| 少妇精品久久久久久久| 欧美人与善性xxx| 午夜福利在线免费观看网站| cao死你这个sao货| 国产熟女午夜一区二区三区| 大片电影免费在线观看免费| 久久精品久久精品一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 成人手机av| 久久久久视频综合| 啦啦啦视频在线资源免费观看| 亚洲精品一卡2卡三卡4卡5卡 | √禁漫天堂资源中文www| 亚洲精品国产av成人精品| 纯流量卡能插随身wifi吗| 精品人妻在线不人妻| 欧美日本中文国产一区发布| 国产免费福利视频在线观看| 美女主播在线视频| 亚洲精品久久午夜乱码| 亚洲熟女毛片儿| 18禁国产床啪视频网站| 在线观看免费日韩欧美大片| 欧美大码av| 久久久精品区二区三区| 亚洲男人天堂网一区| 成人黄色视频免费在线看| 亚洲国产欧美在线一区| 国产1区2区3区精品| 91成人精品电影| 天堂中文最新版在线下载| 人人妻人人澡人人看| 午夜免费鲁丝| 婷婷色av中文字幕| 久久亚洲国产成人精品v| 婷婷色麻豆天堂久久| 国产高清videossex| 下体分泌物呈黄色| tube8黄色片| 日本a在线网址| 午夜激情久久久久久久| 日本欧美国产在线视频| 午夜影院在线不卡| 欧美xxⅹ黑人| 又粗又硬又长又爽又黄的视频| 最近手机中文字幕大全| 国产精品麻豆人妻色哟哟久久| 精品国产乱码久久久久久男人| 亚洲免费av在线视频| 午夜福利视频精品| 老熟女久久久| 亚洲成色77777| 亚洲欧美成人综合另类久久久| 国产一区亚洲一区在线观看| 午夜福利影视在线免费观看| 美女国产高潮福利片在线看| 在线观看一区二区三区激情| 一区福利在线观看| 中文字幕另类日韩欧美亚洲嫩草| 日韩av不卡免费在线播放| av又黄又爽大尺度在线免费看| 亚洲av电影在线观看一区二区三区| 日日夜夜操网爽| av不卡在线播放| 丝瓜视频免费看黄片| 啦啦啦 在线观看视频| 色精品久久人妻99蜜桃| 丰满人妻熟妇乱又伦精品不卡| 99热全是精品| 天堂中文最新版在线下载| 飞空精品影院首页| 日本黄色日本黄色录像| 人人妻人人澡人人看| 99久久综合免费| 午夜福利视频在线观看免费| 伊人亚洲综合成人网| 亚洲情色 制服丝袜| 国产一级毛片在线| 久久女婷五月综合色啪小说| 亚洲成国产人片在线观看| 人人妻人人澡人人看| 国产免费视频播放在线视频| 国产爽快片一区二区三区| 色网站视频免费| 菩萨蛮人人尽说江南好唐韦庄| 又黄又粗又硬又大视频| 久久国产精品男人的天堂亚洲| 丝袜美腿诱惑在线| 两人在一起打扑克的视频| 国产人伦9x9x在线观看| 另类精品久久| 国产亚洲欧美在线一区二区| 亚洲免费av在线视频| 国产老妇伦熟女老妇高清| 国产av一区二区精品久久| 国产色视频综合| 日韩视频在线欧美| 天堂8中文在线网| 乱人伦中国视频| 亚洲精品一二三| 亚洲av国产av综合av卡| 亚洲av成人精品一二三区| 亚洲欧美日韩高清在线视频 | 久久精品国产a三级三级三级| 深夜精品福利| av网站免费在线观看视频| 91精品伊人久久大香线蕉| 极品少妇高潮喷水抽搐| 免费看十八禁软件| 大片电影免费在线观看免费| 国产精品国产三级国产专区5o| 深夜精品福利| 一区在线观看完整版| 国产在视频线精品| 久久狼人影院| 国产成人影院久久av| 国精品久久久久久国模美| 晚上一个人看的免费电影| 九草在线视频观看| 国产精品人妻久久久影院| 亚洲国产精品成人久久小说| 亚洲人成网站在线观看播放| 波多野结衣一区麻豆| 精品卡一卡二卡四卡免费| 国产精品麻豆人妻色哟哟久久| 国产福利在线免费观看视频| 国产人伦9x9x在线观看| 三上悠亚av全集在线观看| 精品久久久久久久毛片微露脸 | 天天躁狠狠躁夜夜躁狠狠躁| 久久国产精品大桥未久av| 婷婷色综合大香蕉| 亚洲精品国产色婷婷电影| 97人妻天天添夜夜摸| 国产欧美日韩一区二区三 | 男人爽女人下面视频在线观看| 国产在线一区二区三区精| 肉色欧美久久久久久久蜜桃| 2018国产大陆天天弄谢| 看免费av毛片| 婷婷色av中文字幕| 午夜免费男女啪啪视频观看| 91麻豆av在线| 人人妻人人添人人爽欧美一区卜| 亚洲国产欧美日韩在线播放| 看免费成人av毛片| 性少妇av在线| 9热在线视频观看99| 另类亚洲欧美激情| 日本色播在线视频| 无限看片的www在线观看| 人妻一区二区av| 免费不卡黄色视频| 亚洲自偷自拍图片 自拍| 亚洲成av片中文字幕在线观看| 成人国产av品久久久| 飞空精品影院首页| 成年美女黄网站色视频大全免费| 亚洲成国产人片在线观看| 在线观看免费午夜福利视频| 精品一区在线观看国产| 天堂俺去俺来也www色官网| 日韩熟女老妇一区二区性免费视频| 七月丁香在线播放| 国产精品免费视频内射| 美女高潮到喷水免费观看| 国产精品秋霞免费鲁丝片| 热99国产精品久久久久久7| 成人午夜精彩视频在线观看| 波多野结衣一区麻豆| 老司机亚洲免费影院| 日韩,欧美,国产一区二区三区| 可以免费在线观看a视频的电影网站| 国产精品一区二区精品视频观看| 欧美黑人欧美精品刺激| 日本wwww免费看| 97人妻天天添夜夜摸| 精品人妻熟女毛片av久久网站| 亚洲免费av在线视频| 麻豆乱淫一区二区| 久久精品人人爽人人爽视色| 各种免费的搞黄视频| 亚洲欧美日韩另类电影网站| 90打野战视频偷拍视频| 男女边吃奶边做爰视频| 最近手机中文字幕大全| 97在线人人人人妻| 成人亚洲欧美一区二区av| 免费观看人在逋| 国产淫语在线视频| 只有这里有精品99| 亚洲精品国产av成人精品| 一区二区日韩欧美中文字幕| 午夜av观看不卡| 91九色精品人成在线观看| 搡老岳熟女国产| 青草久久国产| 91九色精品人成在线观看| 国产真人三级小视频在线观看| 麻豆av在线久日| 精品少妇久久久久久888优播| 亚洲国产成人一精品久久久| 久久鲁丝午夜福利片| av片东京热男人的天堂| 老司机影院成人| 国产91精品成人一区二区三区 | 咕卡用的链子| 亚洲精品一二三| 99精品久久久久人妻精品| 亚洲欧美清纯卡通| 人妻 亚洲 视频| 亚洲欧洲国产日韩| 亚洲午夜精品一区,二区,三区| 深夜精品福利| 免费不卡黄色视频| 亚洲熟女毛片儿| 日韩大码丰满熟妇| 高清不卡的av网站| av不卡在线播放| 亚洲av在线观看美女高潮| 在线精品无人区一区二区三| 两性夫妻黄色片| 国产一区二区 视频在线| 在线观看www视频免费| 亚洲av日韩精品久久久久久密 | 精品一区二区三区四区五区乱码 | 三上悠亚av全集在线观看| 中文字幕人妻丝袜制服| 搡老乐熟女国产| 精品亚洲成a人片在线观看| 一级片免费观看大全| 国精品久久久久久国模美| 亚洲图色成人| 久久毛片免费看一区二区三区| 大型av网站在线播放| 9色porny在线观看| 女人被躁到高潮嗷嗷叫费观| 欧美精品高潮呻吟av久久| 亚洲美女黄色视频免费看| 欧美 亚洲 国产 日韩一| 91麻豆精品激情在线观看国产 | 国产精品久久久久久精品电影小说| 老熟女久久久| 国产精品一区二区在线观看99| 亚洲精品国产色婷婷电影| av在线app专区| 天天躁夜夜躁狠狠久久av| 王馨瑶露胸无遮挡在线观看| 日韩,欧美,国产一区二区三区| 国产一区二区在线观看av| 午夜激情av网站| 国产精品一区二区在线观看99| 亚洲欧洲精品一区二区精品久久久| 一级黄片播放器| 一区福利在线观看| 亚洲av国产av综合av卡| 国产精品一区二区免费欧美 | 久久人人爽人人片av| 日韩熟女老妇一区二区性免费视频| 99热网站在线观看| 在线观看www视频免费| 成人亚洲精品一区在线观看| 亚洲成国产人片在线观看| 麻豆乱淫一区二区| 国产一区二区激情短视频 | 亚洲精品自拍成人| 一区二区三区乱码不卡18| 一本一本久久a久久精品综合妖精| 国产一区二区在线观看av| 亚洲精品国产一区二区精华液| 无限看片的www在线观看| 午夜福利免费观看在线| 国产成人啪精品午夜网站| 激情视频va一区二区三区| 国产成人精品久久二区二区91| 国产免费一区二区三区四区乱码| 亚洲国产精品999| 国产精品欧美亚洲77777| 成年av动漫网址| 国产成人影院久久av| 久久久久网色| 精品国产一区二区三区久久久樱花| 又粗又硬又长又爽又黄的视频| 午夜视频精品福利| a级毛片在线看网站| 亚洲自偷自拍图片 自拍| 五月开心婷婷网| 国产人伦9x9x在线观看| 少妇精品久久久久久久| 99精品久久久久人妻精品| 一边摸一边做爽爽视频免费| 性色av乱码一区二区三区2| 久久影院123| 亚洲av在线观看美女高潮| 亚洲天堂av无毛| 亚洲精品日本国产第一区| 成人免费观看视频高清| 青春草亚洲视频在线观看| av天堂在线播放| 男人操女人黄网站| 精品国产国语对白av| 人人妻人人爽人人添夜夜欢视频| 一级毛片电影观看| 美女中出高潮动态图| 操美女的视频在线观看| 伊人久久大香线蕉亚洲五| 在线观看免费日韩欧美大片| a 毛片基地| 日本a在线网址| 午夜免费鲁丝| 亚洲视频免费观看视频| 欧美中文综合在线视频| 97在线人人人人妻| 欧美日韩成人在线一区二区| 五月天丁香电影| 国产一区二区激情短视频 | 亚洲视频免费观看视频| 国产成人欧美在线观看 | 99国产精品一区二区三区| 国产男女超爽视频在线观看| 一级毛片女人18水好多 | 国产亚洲午夜精品一区二区久久| 国产xxxxx性猛交| 国产97色在线日韩免费| 午夜精品国产一区二区电影| 最新的欧美精品一区二区| 曰老女人黄片| 黄频高清免费视频| 高清欧美精品videossex| 99国产综合亚洲精品| 色播在线永久视频| 欧美日韩亚洲综合一区二区三区_| 国产免费视频播放在线视频| 国产欧美亚洲国产| 色视频在线一区二区三区| 另类亚洲欧美激情| √禁漫天堂资源中文www| 欧美在线黄色| 国产精品免费大片| 午夜福利视频在线观看免费| 老司机午夜十八禁免费视频| www.自偷自拍.com| 亚洲国产av新网站|