• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent advances in quasi-2D superconductors via organic molecule intercalation

    2022-10-26 09:52:32MengzhuShi石孟竹BaoleiKang康寶蕾TaoWu吳濤andXianhuiChen陳仙輝
    Chinese Physics B 2022年10期
    關(guān)鍵詞:吳濤

    Mengzhu Shi(石孟竹) Baolei Kang(康寶蕾) Tao Wu(吳濤) and Xianhui Chen(陳仙輝)

    1Department of Physics,University of Science and Technology of China,Hefei 230026,China

    2CAS Key Laboratory of Strongly-coupled Quantum Matter Physics,University of Science and Technology of China,Hefei 230026,China

    3Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    4CAS Center for Excellence in Superconducting Electronics(CENSE),Shanghai 200050,China

    Keywords: organic molecular intercalation,two-dimensional superconductivity,organic-inorganic hybrid materials

    1. Introduction

    Superconductivity (SC) is a macroscopic quantum phenomenon. Generally, with reduced dimensionality, the increased spatial and temporal fluctuations will strongly suppress and even destroy superconductivity in systems.[1–5]Within classical theories, the famous Mermin–Wagner theorem points out that continuous spontaneous symmetry breaking is forbidden in neither one- nor two-dimensional systems at finite temperatures, thus disenabling conventional superconducting transitions at the 2D limit.[2]Nevertheless,the Berezinskii–Kosterlitz–Thouless(BKT)theory provides a compatible understanding for this issue. It predicts a thermodynamic instability in the form of vortex–antivortex pairs,which spontaneously dissociate into free vortices at a characteristic transition temperatureTBKT.[6–8]Such a transition is a topological phase transition without any form of symmetry breaking, which manifests itself as a jump in the power-law exponent in current–voltage (I–V) characteristic curves and in a disappearance of ohmic resistance obeying the Halperin–Nelson scaling law.[9,10]At present,BKT physics has become an important feature of 2D superconductors.

    In the past few decades, superconductivity at the 2D limit has become one of the hottest frontiers in the field of condensed matter physics. The emergent novel quantum phenomena, including anomalously enhancedHc2, quantum metallic states and quantum Griffiths singularity in conventional Bardeen–Cooper–Schrieffer (BCS) superconductors,shed light on not only fundamental research but also practical applications to non-dissipative micro/nanoelectronics.[11–16]Particularly, distinct from conventional BCS superconductors, all high-Tcsuperconductors have a layered structure with varying degrees of anisotropy. Very recently,monolayer Bi2Sr2CaCu2O8+δ(Bi2212) has been reported to display all the fundamental physics of high-Tcsuperconductivity as its three-dimensional (3D) counterparts, verifying the quasi-2D nature of its bulk state.[17]Coincidentally, for iron-based superconductors that have a more 3D layered structure,the discovery of exotic high-Tcsuperconductivity in a single-layer FeSe film on a SrTiO3substrate (FeSe/STO) further highlights the key role of reduced dimensionality.[18,19]It exhibits a large superconducting gap of approximately 20 meV with a gap opening temperature of approximately 65 K, while the zero-resistance critical temperature (Tc0) determined by electrical transport measurements is mostly below 40 K.[20–23]Such a result reveals much enhanced high-Tcsuperconductivity compared to its 3D bulk phase and possible links with the pseudogap behavior in high-Tccuprate superconductors.[24–27]The apparent dichotomy with conventional BCS superconductors hints at great importance for the quasi-2D nature of both cuprate and iron-based superconductors,which provides a unique perspective for the experimental study of high-Tcsuperconductors.

    In the early days, the most popular methods for the fabrication of 2D superconductors were thermal evaporation and sputtering of granular and amorphous metallic film.[28,29]Driven by the rapid advancement in film growth techniques,including molecular beam epitaxy(MBE)and pulsed laser deposition(PLD),the existence of 2D superconductors with truly atomic-scale thickness and the fabrication of complicated heterostructures have been established.[15,30,31]In addition to the bottom-up approaches that start from the atomic ingredients,mechanical exfoliation and liquid exfoliation provide an alternative to fabricate 2D superconductors through up-bottom approaches.[32–34]However,restricted by the limited size and intrinsic features of thin films, intensive studies in the traditional experimental framework based on bulk samples, such as specific heat,anisotropic electrical transport and NMR measurements,have been totally impeded. Here,we explore a series of quasi-2D superconductors in bulk phase,which are synthesized through a simple and gentle method, that is, electrochemical intercalation.[35–38]New advances in these quasi-2D superconductors in the bulk phase are the focus of this review article. Our results establish dimensionality as an effective parameter for studying novel physics in both BCS superconductors and high-Tcsuperconductors.

    2. Experimental techniques

    There are several methods to achieve or enhance the twodimensionalization in 2D materials with high crystallinity.The first method to enhance the two-dimensionality is to insert inorganic insulating layers with different thicknesses between the functional layers. For example, in the study of cuprate superconductors,Tccan be gradually increased by inserting insulating inorganic layers with different thicknesses into the CuO2plane. Taking the Hg-Ba-Ca-Cu-O system as an example,theTcof the material gradually increases with increasing thickness of the inorganic insulating layer.[39]However, such a series of materials make it difficult to obtain large crystals,and only several limited systems have been reported. The second method to realize two-dimensionalization is to change the thickness of the material by the micromechanical exfoliation method or the growth of thin films through the molecular beam epitaxy(MBE)or chemical vapour deposition(CVD)method.This is a more general way to modify the physical properties of the material by dimensionality control. With decreasing thickness,different types of charge density wave(CDW)orders can be observed,and the magnetic transition temperature orTccan also be regulated. For example, the TaS2thin flake sample shows a thickness-dependent CDW state.[40]With decreasing thickness, the CDW transition temperature of 1T-TaS2gradually decreases and finally disappears. TheTcof NbSe2decreases with decreasing thickness.[41]However,theTcof single layer FeSe/SrTiO3as high as 65 K is much higher than that of bulk FeSe,[20–23]which has a lowTcof only approximately 8 K. Despite the many advantages mentioned above,the problem of these thin layer samples is that it is difficult to obtain large enough samples for structural research, specific heat testing, anisotropic resistance, anisotropic susceptibility and NMR measurements.

    Recently, a new method for the synthesis of twodimensional bulk materials has attracted much attention.[35,36]It enables the measurement of the correlated electronic properties of two-dimensional systems with strong anisotropy.That is the organic molecules intercalation method where the organic molecules are inserted into the interlayer of twodimensional materials.

    Intercalation is a widely used method for material preparation. Many ions, molecular and inorganic structural layers can be inserted into the two-dimensional materials, which is very significant in graphite intercalation compounds. Compared with the inserted alkali metals, the insertion of organic molecules can greatly increase the interlayer distance and realize a two-dimensional structure.At the same time,due to the poor conductivity of the organic molecular layer,the transport of electrons can only be confined in the inorganic layer within theabplane, and it is difficult to transmit between layers in thec-axis direction, which may lead to the two-dimensional transport characteristics of charges and spin.

    In our previous work,we adopted the electrochemical intercalation method to tune the physical properties, especially the superconductivity of 2D materials. Electrochemical intercalation can be easily realized through the driving force of the current.As shown in Fig.1(a),an electrolytic cell is assembled with the target material as the working electrode,the Ag piece as the counter electrode and the solution containing quaternary ammonium cations as the electrolyte.[42]A constant current is applied to the above electrolytic cell. When the current passes through the cell,the counter electrode loses electrons,and the working electrode obtains electrons accompanied by the insertion of organic ions to maintain the charge balance.

    Taking TaS2as an example,the above process can be expressed by the following equations:

    After cleaning and drying the product, we obtained the organic ion intercalated bulk sample for further physical measurements. Through the above electrochemical intercalation process, we can quickly obtain crystals with anabplane size greater than 1 mm for various bulk measurements, including structure characterization, anisotropic resistance and susceptibility measurements, specific heat tests and NMR measurements.

    Fig.1. (a)Schematic of the electrolytic cell;(b)and(c)crystal structures of TaS2 and(CTA)xTaS2;(d)and(e)resistivity curve and Hall coefficient for(CTA)xTaS2;(f)resistivity curve for(CTA)0.1TaS2 under different magnetic fields;(g)upper critical field of(CTA)0.1TaS2 from the data in(f).Panel(a)is from Ref.[42],(b)–(f)are from Ref.[38].

    3. Quasi-2D superconductors through organic molecule intercalation

    3.1. Tunable superconductivity in TaS2 via organic molecule intercalation

    As a typical transition metal disulfide compound, the CDW and SC states in TaS2and the competition between them have attracted the attention of researchers.[43,44]The link between S–Ta–S covalent bonds leads to different coordination polyhedrons,and the alternating stacking of coordination polyhedrons in thec-axis direction brings rich isomers.[45]The most typical structures are the 1T phase and 2H phase.[46]In the 1T phase,Ta and S form octahedra;in the 2H phase,Ta and S form prisms. 1T-TaS2exhibits a series of CDW transitions with decreasing temperature, from incommensurate CDW at 600 K and near-commensurate CDW at 350 K to commensurate CDW at 180 K.[47]In 2H phase TaS2, superconductivity and CDW can coexist.

    In 1T-TaS2, the CDW state can be regulated by reducing the thickness of the thin flake sample,and superconductivity can be induced through the lithium-ion-gel gating method.In 2H-TaS2, the coexistence of CDW and SC attracts attention to investigate the completion of these different orders with the regulation of electron doping and dimensionality control.Therefore, we used electrochemical intercalation of the organic molecules to study the influence of charge doping and dimensionality reduction on the superconductivity and CDW in 2H-TaS2.[38]

    Before the intercalation of the organic molecules,the resistance curve of the bulk 2H-TaS2exhibits a kink near 70 K(Fig.1(d)),and the Hall coefficient changes sign near this temperature (Fig. 1(e)), corresponding to the change in the main carrier type and the formation of the CDW state.[48]Further lowering the temperature, the resistance curve shows superconductivity at 0.8 K, showing the coexistence of superconductivity with CDW.[49]After the intercalation of the organic molecule, the interlayer distance of 2H-TaS2increases from the initial 6 ?A (Fig. 1(b)) to approximately 32 ?A (Fig. 1(c)),which is consistent with the sum of the thickness of monolayer TaS2and the length of the CTA+molecule. This indicates that the structure of(CTA)xTaS2is composed of one layer of TaS2and one layer of CTA+molecules with a vertical arrangement alternately stacked along thecaxis. Moreover,the lattice parameter of the intercalation products in thec-axis increases slowly with increasing doping amount, which may be related to the angle change of the arrangement of organic molecules in the interlayer.[50]The TEM images of TaS2and (CTA)xTaS2also confirm the structure model in Fig.1(c).[38]

    As a result, the physical properties of the intercalated products have changed greatly. In terms of electrical transport,the CDW transition near 70 K disappears after the insertion of organic molecules into TaS2. The Hall coefficient is negative in the whole temperature range of 2–300 K,indicating that the organic molecule intercalation introduces electron doping to TaS2(Fig.1(e)). At the same time,the intercalated samples show superconductivity between 2–3.5 K(Fig.1(d)),which is much higher than that of the primitive TaS2. This implies that the organic ions introduce carriers after intercalation, which destroys the CDW order and increases theTc.This indicates that there may be competition between the SC and CDW orders in TaS2.Tcis suppressed gradually with increasing applied magnetic field(Fig.1(f)). The upper critical field shows a positive curvature (Fig. 1(g)), which confirms the type II superconductivity under the clean limit. The upper critical field obtained by fitting is 0.63 T,which is much higher than the 0.11 T of the parent TaS2but still lower than the Pauli limit.[51]

    It has been reported that theTcof 2H-TaS2can be improved from 0.5 K in the bulk sample to 2.2 K for the 3.5 nm thin flake sample.[52]The enhanced superconductivity is attributed to an enhancement of the effective electron–phonon coupling constant as the layers thin down. However,it is necessary to note that the resistivity curve of (CTA)0.1TaS2in Fig.1(f)does not resemble the features observed in quasi-2D superconductivity,although the interlayer distance of TaS2has been greatly increased to more than 3 nm. The increasedTcof TaS2is mainly attributed to the electron doping effect.

    The above results show that in TaS2intercalated by organic molecules, the interlayer distance is increased, and the introduction of carriers inhibits the CDW order and improves theTc. This suggests that the electrochemical organic molecule intercalation method can effectively regulate the physical properties of two-dimensional materials.

    In fact,the intercalation method is a frequently used way to achieve superconductivity in TMDs due to the easy control of carrier doping. For example,the organic amine intercalated TaS2obtained through a solvothermal reaction achieves superconductivity,and theTcdepends on the doping level of charge transferred from the organic amine.[53]Furthermore,the liquid ammonia method is also successfully applied on Td-WTe2[54]and 2H-MoS2[55]and achieves superconductivity with the intercalation of alkaline metal. However,it is difficult to obtain high-quality crystals in this way, which makes further bulk physical characterization impossible.

    3.2. BKT physics in organic molecules intercalated SnSe2

    Apart from the improvement of theTcin CTA+intercalated TaS2, the intercalation of organic molecules into 2D materials can also induce superconductivity in an insulator.As a layered dichalcogenide compound, 1T-SnSe2is a direct band gap semiconductor with an energy gap of 1.0 eV.[56]In this material, superconductivity can be introduced through the growth of thin films,[57]ionic liquid gating[58]and Li intercalation.[59]In particular, the coexistence of superconductivity and ferromagnetism can also be observed when cobaltocene molecules are inserted into the adjacent layer of SnSe2.[60]Recently,through the cointercalation of lithium and organic molecules, a close relationship betweenTcand interlayer distance was reported, whereTcwas independent of the content of intercalation species.[59]Finding the appropriate way to further increase the interlayer distance of SnSe2and study its transport behavior is crucial for understanding the superconducting physics of SnSe2.

    The interlayer distance of intercalation products can be well controlled by changing the size of organic molecules by electrochemical intercalation. Using this method, CTA+and TBA+molecules can be inserted into the interlayer of SnSe2,[37]and the interlayer distances are increased from 6.12 ?A (Fig. 2(a)) to 14.74 ?A (Fig. 2(b)) and 18.62 ?A(Fig. 2(c)), respectively. TheTcvalues of the corresponding products are 7.1 K and 6.4 K (Fig. 2(g)), respectively. As shown in Fig. 2(g), the phase diagram withTcand the interlayer distance shows a dome-like behavior. Similar behavior has been observed in the intercalated HfNCl system.

    Fig.2. (a)–(c)Crystal structures of SnSe2,(CTA)xSnSe2 and(TBA)xSnSe2,respectively; (d)the magnetic susceptibility curve of(CTA)0.5SnSe2 with the field H//c and H//ab plane;(e)the in-plane(in black)and out-of-plane(in red)resistivity curves of(CTA)0.5SnSe2;(f) the temperaturedependent anisotropy resistivity ratio(ρc/ρa(bǔ)b)of SnSe2 (in black)and(CTA)0.5SnSe2 (in blue). Panels(a)–(f)are from Ref.[37].

    Fig.3. (a)The I–V curves of(CTA)0.5SnSe2 at different temperatures around Tc;(b)the resistivity curve of(CTA)0.5SnSe2 with the Y-axis on the[dlnR/dT]-2/3 scale;(c)the temperature-dependent α obtained from(a)with the fitting function V ∝Iα. Panels(a)–(c)are from Ref.[37].

    Previously, the quasi-2D SC withTc= 3.9 K was observed in the ionic liquid gated 1T-SnSe2thin flake sample.[58]The intrinsic 2D superconductivity is suggested through transport measurement. The angle-dependent upper critical field of the gated thin flake 1T-SnSe2obeys the 2D Tinkham model.Furthermore,similar transport behavior is also observed in the ion-gated insulator ZrNCl, indicating the universality of such novel transport properties.[12]Our organic molecule intercalation shows an improvedTcand quasi-2D SC due to the increase of the interlayer distance in a bulk sample.These results indicate that 2D SC can also be supported in bulk samples.

    Fig. 4. (a) The schematic crystal structure of (CTA)xFeSe (cetyltrimethyl ammonium, CTA+).[35] The distance between adjacent FeSe layers is~14.5 ?A. (b) The schematic crystal structure of (TBA)xFeSe (tetrabutylammonium, TBA+).[36] The distance between adjacent FeSe layers is~15.5 ?A.(c)Temperature dependence of anisotropic magnetic susceptibility for(TBA)xFeSe. An external magnetic field of 5 Oe is applied along the ab-plane(blue)and c-axis(red). (d)The anisotropy ratio of resistivity(ρc/ρa(bǔ)b)for(TBA)xFeSe and pristine FeSe. The FeSe data are adopted from Ref.[68]. (e)Temperature dependence of the Knight shift(upper panel)and its first derivative(lower panel)for(TBA)xFeSe. (f)Temperature evolution of the spin-lattice relaxation rate divided by temperature (upper panel) and its first derivative (lower panel) for (TBA)xFeSe. (g) The high-field magnetic susceptibility χab and χc measured in field-cooling mode with a magnetic field of 7 T applied along the ab-plane(green)and c-axis(orange),respectively. The black solid lines are the extrapolation fitting curves of high-temperature behavior. The arrow indicates the onset of diamagnetism. (h) Temperature dependence of the Nernst effect under a magnetic field of 13.5 T applied along the c-axis. A vortex-related Nernst signal is observed well above Tc0. The arrow shows the onset of the vortex-related Nernst effect at ~65 K.It should be noted that the Tp determined by the Nernst effect is slightly higher than that determined by the other probes,which suggests that the Nernst effect is more sensitive to detecting superconducting fluctuations. Panels(c)–(h)are from Ref.[63].

    3.3. Pseudogap behavior in quasi-2D high-Tc FeSe-based superconductors

    Apart from the improvement of theTcand induction of the quasi-2D SC, the intercalation of organic molecules into 2D superconductors can also favor novel transport behaviors,such as pseudogap behavior, due to the extremely improved anisotropy.

    As a high-Tciron-based superconductor with the simplest van der Waals layered structure, FeSe provides an ideal platform to study the dimensional crossover effect and underlying physics.At ambient pressure,FeSe exhibits a superconducting transition atTc~8.5 K.[62]By employing the electrochemical intercalation method,two new kinds of FeSe-based superconductors,namely,(CTA)xFeSe and(TBA)xFeSe,withTc0above 40 K,have been synthesized.[35,36]As shown in Figs.4(a)and 4(b), the organic-ion-intercalated FeSe-based superconductors consist of alternate stacking of FeSe layers and organic molecules. With the intercalation of chemically inert organic molecules, the enhanced superconductivity and anisotropy have been confirmed by both anisotropic magnetic susceptibility and electrical transport measurements.Taking(TBA)xFeSe as an example,as shown in Figs.4(c)and 4(d),the significant difference in the diamagnetic shielding fraction between the two field orientations, even up to dozens of times, suggests a strong 2D character. Dramatically, the anisotropy ratio of resistivity is enhanced by approximately 5 orders of magnitude compared to bulk FeSe, supporting an intercalation-induced dimensional crossover from 3D to 2D.[63]

    Nuclear magnetic resonance (NMR) is a bulk-sensitive local probe to measure electronic spin susceptibility (χs),which is commonly used to reveal the pseudogap behavior in high-Tccuprate superconductors.[64,65]As shown in Figs.4(e)and 4(f), by measuring the Knight shift and nuclear spinlattice relaxation rate, an intrinsic pseudogap behavior belowTp~60 K is unambiguously revealed. A weak 2D diamagnetic signal and remarkable Nernst effect far aboveTc0further indicate the existence of strong superconducting fluctuations[Figs.4(g)and 4(h)],confirming the preformed Cooper pairing scenario. In addition,the power-law transition withV~I(xiàn)αin the characteristicI–Vcurves and the disappearance of ohmic resistance obeying the Halperin–Nelson scaling law reveal the BKT-like superconducting transition in these organic-ionintercalated FeSe-based superconductors, definitely verifying the quasi-2D nature.

    Such a result hints that the same preformed Cooper pairing scenario may be applied to FeSe/STO at the extreme 2D limit as well. The preformed pairing scenario in FeSe/STO has been clarified throughin situspectroscopic and electrical transport measurements.[66,67]The enhanced superconductivity and emergent pseudogap behavior reveal that dimensionality is an effective parameter to study the novel physics in iron-based superconductors. The similar pseudogap behavior observed in both cuprate superconductors and iron-based superconductors possibly suggests a crucial role of reduced dimensionality in high-Tcsuperconductors, especially in the emergence of pseudogap behavior.

    The pseudogap behavior in organic molecule intercalated FeSe suggests that it is a powerful method to find novel transport behavior in other layered 2D superconductors.

    4. Summary and prospects

    Using the organic molecule intercalation method,we obtained high-quality bulk single crystals for the study of quasi-2D superconductivity and observed pseudogap behavior in the intercalated FeSe.

    In recent years,thanks to the development of micro/nano processing technology, researchers have developed a new method to study quasi-2D superconductivity, which provides thin flake crystals with high crystallinity. In particular, the newly developed fieldeffect transistor using ionic liquid as the dielectric provides a clean method to tune the quasi-2D superconductivity. As a newly developed method, the organic molecule intercalation method can provide a large single crystal for further bulk measurements, which provides a new research platform for further understanding quasi-2D superconductivity.

    Of course,the materials obtained by organic molecule intercalation still have some drawbacks to overcome. For example,it is still difficult to continuously control the interlayer distance and doping concentration. The intercalated samples are sensitive to air and water,and the two-dimensional materials that can be intercalated with organic molecules are limited.With the development of new methods for material preparation and modulation, the study of 2D superconductivity will gradually deepen and gradually clarify the intrinsic physical connotation between superconductivity and dimensionality.

    Acknowledgements

    Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000), the National Natural Science Foundation of China (Grant No. 11888101), the National Key R&D Program of China (Grant No. 2017YFA0303001), the Anhui Initiative in Quantum Information Technologies,China(Grant No.AHY160000),and the Key Research Program of Frontier Sciences,CAS(Grant No.QYZDYSSW-SLH021).

    猜你喜歡
    吳濤
    紅燈亮了
    好詩與好人
    觀巖畫
    Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake?
    Module 10 Units 3-4單元點(diǎn)撥
    高考語法考點(diǎn)專項練習(xí)題
    Module 10 Units 1—2 單元點(diǎn)撥
    模塊1—4知識點(diǎn)盤點(diǎn)與高考鏈接
    跑個步,賺點(diǎn)小錢
    幸福(2016年17期)2016-07-25 12:05:04
    跑個步,賺點(diǎn)小錢
    幸福·悅讀(2016年6期)2016-04-08 06:39:08
    a级一级毛片免费在线观看| 亚洲欧美一区二区三区国产| 国产精品日韩av在线免费观看| 一个人看视频在线观看www免费| 国产精品永久免费网站| 亚洲天堂国产精品一区在线| 狂野欧美激情性xxxx在线观看| 日韩制服骚丝袜av| 亚洲中文字幕日韩| 韩国av在线不卡| 日本-黄色视频高清免费观看| 中文亚洲av片在线观看爽| 视频中文字幕在线观看| 久久人人爽人人爽人人片va| 免费观看人在逋| 男女视频在线观看网站免费| 日本色播在线视频| 国产一区二区三区av在线| av视频在线观看入口| 丰满人妻一区二区三区视频av| 国产免费一级a男人的天堂| 久久久a久久爽久久v久久| 久久久a久久爽久久v久久| 可以在线观看毛片的网站| 亚洲成av人片在线播放无| 久久这里有精品视频免费| 国产在线一区二区三区精 | 干丝袜人妻中文字幕| 天堂影院成人在线观看| 国产精品人妻久久久久久| 国产伦精品一区二区三区四那| 春色校园在线视频观看| 精华霜和精华液先用哪个| 国产不卡一卡二| 免费电影在线观看免费观看| 成年女人永久免费观看视频| 丰满少妇做爰视频| 亚洲人与动物交配视频| 国产乱来视频区| 狂野欧美白嫩少妇大欣赏| 美女高潮的动态| 国产乱人偷精品视频| 午夜激情福利司机影院| 久久精品人妻少妇| 黄色一级大片看看| 国产成人freesex在线| 人人妻人人看人人澡| 久久久久国产网址| 秋霞在线观看毛片| 国产精品美女特级片免费视频播放器| 2021少妇久久久久久久久久久| 午夜免费激情av| 欧美成人a在线观看| 久久久精品欧美日韩精品| 国产一区二区在线av高清观看| 亚洲精品乱久久久久久| 久久久久久久久大av| 亚洲综合色惰| 亚洲av.av天堂| 村上凉子中文字幕在线| 日韩一本色道免费dvd| 天天躁夜夜躁狠狠久久av| 亚洲在线观看片| 色播亚洲综合网| 久久国内精品自在自线图片| 午夜爱爱视频在线播放| 色噜噜av男人的天堂激情| 国产v大片淫在线免费观看| 亚洲av.av天堂| 国内少妇人妻偷人精品xxx网站| 国产伦理片在线播放av一区| 蜜桃亚洲精品一区二区三区| 免费av毛片视频| 欧美bdsm另类| 亚洲精品亚洲一区二区| 国产午夜精品论理片| 国产一区有黄有色的免费视频 | 中文字幕av成人在线电影| 久久久午夜欧美精品| 五月玫瑰六月丁香| 欧美日本亚洲视频在线播放| 老司机影院毛片| 天堂网av新在线| 综合色av麻豆| 三级国产精品欧美在线观看| 久久精品久久精品一区二区三区| 1024手机看黄色片| 可以在线观看毛片的网站| 内地一区二区视频在线| 日本一本二区三区精品| 最近的中文字幕免费完整| 亚洲国产精品成人久久小说| 日本欧美国产在线视频| 国产亚洲av嫩草精品影院| 亚洲av福利一区| 22中文网久久字幕| 一级爰片在线观看| 日本一本二区三区精品| 伦精品一区二区三区| 日韩成人伦理影院| 欧美日本视频| 欧美激情国产日韩精品一区| 亚洲av中文字字幕乱码综合| 赤兔流量卡办理| 可以在线观看毛片的网站| 在线播放国产精品三级| 秋霞在线观看毛片| 99热全是精品| 最近2019中文字幕mv第一页| 国产精品久久久久久精品电影小说 | 日韩欧美精品免费久久| 一本久久精品| 在线免费十八禁| 日韩欧美三级三区| 亚洲怡红院男人天堂| 春色校园在线视频观看| 国产黄片美女视频| 免费黄色在线免费观看| 一级黄片播放器| 亚洲国产成人一精品久久久| 丝袜喷水一区| 精品熟女少妇av免费看| 国产伦理片在线播放av一区| .国产精品久久| 亚洲精品aⅴ在线观看| 亚洲av男天堂| 长腿黑丝高跟| 免费观看人在逋| 久久国内精品自在自线图片| 麻豆乱淫一区二区| 最近中文字幕高清免费大全6| 一边亲一边摸免费视频| 免费观看a级毛片全部| 波多野结衣高清无吗| 久久热精品热| 成人亚洲欧美一区二区av| 国产探花极品一区二区| 十八禁国产超污无遮挡网站| 中文字幕免费在线视频6| 国产精品永久免费网站| 亚洲在线自拍视频| kizo精华| 在线观看66精品国产| 国产三级中文精品| 特级一级黄色大片| 天天一区二区日本电影三级| 免费av不卡在线播放| 色网站视频免费| 成人毛片60女人毛片免费| 高清午夜精品一区二区三区| 永久网站在线| 国产av在哪里看| 永久免费av网站大全| ponron亚洲| 日本五十路高清| 欧美日韩精品成人综合77777| 国产国拍精品亚洲av在线观看| 午夜福利在线在线| 日韩av不卡免费在线播放| 日韩一本色道免费dvd| 中文欧美无线码| 爱豆传媒免费全集在线观看| 高清av免费在线| 亚洲av福利一区| 亚洲av成人av| 亚洲激情五月婷婷啪啪| 一个人看视频在线观看www免费| 欧美激情国产日韩精品一区| h日本视频在线播放| 国产免费男女视频| 久热久热在线精品观看| 午夜福利成人在线免费观看| 伊人久久精品亚洲午夜| 亚洲中文字幕日韩| 久久99精品国语久久久| 久久精品人妻少妇| 国内精品美女久久久久久| 日本午夜av视频| 国产亚洲午夜精品一区二区久久 | 99在线人妻在线中文字幕| 国产av不卡久久| 日韩高清综合在线| 国产高清三级在线| av天堂中文字幕网| 亚洲伊人久久精品综合 | 中文字幕亚洲精品专区| 亚洲一区高清亚洲精品| 特级一级黄色大片| 亚洲国产精品sss在线观看| 校园人妻丝袜中文字幕| 国产精品久久电影中文字幕| 日本熟妇午夜| 亚洲精品日韩av片在线观看| 久久精品久久精品一区二区三区| 又爽又黄无遮挡网站| 99热精品在线国产| 日日啪夜夜撸| 久久综合国产亚洲精品| 欧美另类亚洲清纯唯美| 在线天堂最新版资源| 久久久久久久久久黄片| 美女内射精品一级片tv| 直男gayav资源| 最近中文字幕2019免费版| 日本与韩国留学比较| 激情 狠狠 欧美| 99久久无色码亚洲精品果冻| 麻豆精品久久久久久蜜桃| 国产老妇伦熟女老妇高清| 校园人妻丝袜中文字幕| 色视频www国产| 中文字幕久久专区| 看片在线看免费视频| 久久99精品国语久久久| 最近手机中文字幕大全| 国产大屁股一区二区在线视频| 成人午夜精彩视频在线观看| 国产精品综合久久久久久久免费| 三级国产精品欧美在线观看| ponron亚洲| 久久这里只有精品中国| 成人无遮挡网站| 欧美成人午夜免费资源| 人人妻人人看人人澡| 熟妇人妻久久中文字幕3abv| 欧美精品一区二区大全| 99热网站在线观看| 欧美zozozo另类| 亚洲欧美精品综合久久99| 在线播放无遮挡| 汤姆久久久久久久影院中文字幕 | 99久久无色码亚洲精品果冻| 久久精品国产亚洲网站| 99久国产av精品| 日韩视频在线欧美| 久久精品熟女亚洲av麻豆精品 | 久久亚洲国产成人精品v| 国产女主播在线喷水免费视频网站 | 激情 狠狠 欧美| 免费观看的影片在线观看| 午夜激情欧美在线| 亚洲人成网站在线观看播放| 婷婷色麻豆天堂久久 | 亚洲综合精品二区| 中文字幕免费在线视频6| 网址你懂的国产日韩在线| 人人妻人人澡欧美一区二区| 长腿黑丝高跟| 一夜夜www| 欧美xxxx性猛交bbbb| 一级爰片在线观看| 国内精品一区二区在线观看| 男的添女的下面高潮视频| 色哟哟·www| 亚洲国产欧洲综合997久久,| 乱人视频在线观看| 亚洲国产精品成人久久小说| 高清在线视频一区二区三区 | 久久精品国产亚洲av涩爱| 亚洲精品日韩在线中文字幕| 美女黄网站色视频| 免费观看性生交大片5| 欧美极品一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看| 久久精品综合一区二区三区| 国产精品美女特级片免费视频播放器| 赤兔流量卡办理| 欧美日韩精品成人综合77777| 日本欧美国产在线视频| 一级毛片久久久久久久久女| 尤物成人国产欧美一区二区三区| 欧美变态另类bdsm刘玥| 国产精品99久久久久久久久| 欧美潮喷喷水| 人人妻人人看人人澡| 神马国产精品三级电影在线观看| 综合色av麻豆| 99久国产av精品| 日本熟妇午夜| 可以在线观看毛片的网站| 赤兔流量卡办理| 中文欧美无线码| 综合色av麻豆| 欧美高清性xxxxhd video| 精品国产露脸久久av麻豆 | 日韩一区二区视频免费看| 久久久午夜欧美精品| 久久久久久伊人网av| 九九热线精品视视频播放| 一本一本综合久久| 亚洲人成网站在线播| 人妻制服诱惑在线中文字幕| 3wmmmm亚洲av在线观看| 69av精品久久久久久| 欧美成人精品欧美一级黄| 看黄色毛片网站| 亚洲国产高清在线一区二区三| 久久热精品热| 午夜a级毛片| 久久人人爽人人爽人人片va| 日韩亚洲欧美综合| 国产成人午夜福利电影在线观看| 日本黄色视频三级网站网址| 97人妻精品一区二区三区麻豆| 国产精品爽爽va在线观看网站| 一本久久精品| 成年av动漫网址| 麻豆一二三区av精品| 国产女主播在线喷水免费视频网站 | 成人无遮挡网站| 中文字幕精品亚洲无线码一区| 天堂网av新在线| 夫妻性生交免费视频一级片| 精品久久久久久久久亚洲| 性插视频无遮挡在线免费观看| 日韩欧美国产在线观看| 国产午夜福利久久久久久| 亚洲熟妇中文字幕五十中出| 美女xxoo啪啪120秒动态图| 成人鲁丝片一二三区免费| 国产精品无大码| 国产成人福利小说| 99在线人妻在线中文字幕| 欧美色视频一区免费| 一级爰片在线观看| 午夜福利网站1000一区二区三区| 狂野欧美激情性xxxx在线观看| 国产av一区在线观看免费| 国产精品国产三级专区第一集| 欧美激情在线99| 极品教师在线视频| 国产老妇女一区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲熟妇中文字幕五十中出| 插阴视频在线观看视频| 又黄又爽又刺激的免费视频.| 国产免费又黄又爽又色| 久久99精品国语久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人性生交大片免费视频hd| 中文字幕制服av| 亚洲av二区三区四区| 亚洲国产欧美人成| 少妇熟女欧美另类| 亚洲在久久综合| av又黄又爽大尺度在线免费看 | 日本熟妇午夜| 男女边吃奶边做爰视频| 亚洲国产色片| 国产人妻一区二区三区在| 伦精品一区二区三区| 色噜噜av男人的天堂激情| 国产精品美女特级片免费视频播放器| 精品国产露脸久久av麻豆 | 亚洲国产高清在线一区二区三| 国产成年人精品一区二区| 午夜激情福利司机影院| 亚洲av二区三区四区| 国产一区亚洲一区在线观看| 99热全是精品| 亚洲成人av在线免费| 国产精品爽爽va在线观看网站| 国产精品久久电影中文字幕| 国产女主播在线喷水免费视频网站 | 2021天堂中文幕一二区在线观| 六月丁香七月| 美女cb高潮喷水在线观看| 亚洲最大成人av| 乱系列少妇在线播放| 日韩成人伦理影院| 国产成人91sexporn| 精品欧美国产一区二区三| 欧美变态另类bdsm刘玥| 人妻夜夜爽99麻豆av| 激情 狠狠 欧美| 欧美成人午夜免费资源| 少妇高潮的动态图| 久久热精品热| 亚洲美女视频黄频| 偷拍熟女少妇极品色| 嘟嘟电影网在线观看| 91狼人影院| 久久久久精品久久久久真实原创| 国产精品久久久久久av不卡| 久久久久久久亚洲中文字幕| 国产精品一区二区三区四区久久| 亚洲高清免费不卡视频| 97超碰精品成人国产| 九草在线视频观看| 九九久久精品国产亚洲av麻豆| 午夜老司机福利剧场| 夜夜爽夜夜爽视频| 男人舔奶头视频| 国产成年人精品一区二区| 一个人观看的视频www高清免费观看| 亚洲人成网站高清观看| 国内少妇人妻偷人精品xxx网站| 激情 狠狠 欧美| 成年av动漫网址| 九草在线视频观看| 亚洲国产欧美在线一区| 日韩亚洲欧美综合| 麻豆成人av视频| 久久久久久久久大av| 成人性生交大片免费视频hd| 亚洲人成网站在线观看播放| 亚洲怡红院男人天堂| 成人av在线播放网站| 看黄色毛片网站| 午夜日本视频在线| 国产亚洲最大av| 国产亚洲av片在线观看秒播厂 | 亚洲婷婷狠狠爱综合网| 久久久久久久久久久丰满| 午夜福利在线观看免费完整高清在| 午夜亚洲福利在线播放| 久久久精品大字幕| 最新中文字幕久久久久| 精品人妻熟女av久视频| 岛国毛片在线播放| 国产国拍精品亚洲av在线观看| 国产视频内射| 三级男女做爰猛烈吃奶摸视频| 一级毛片久久久久久久久女| 亚洲三级黄色毛片| 五月伊人婷婷丁香| 国产真实乱freesex| 国产精品99久久久久久久久| 爱豆传媒免费全集在线观看| 亚洲四区av| 国产白丝娇喘喷水9色精品| 色综合站精品国产| 女的被弄到高潮叫床怎么办| 久久久久国产网址| 亚洲综合色惰| 99热全是精品| 国产成人精品久久久久久| 狠狠狠狠99中文字幕| 高清毛片免费看| 白带黄色成豆腐渣| 青春草亚洲视频在线观看| 亚洲精品乱码久久久v下载方式| 你懂的网址亚洲精品在线观看 | 啦啦啦啦在线视频资源| 赤兔流量卡办理| 中文精品一卡2卡3卡4更新| 国产精品伦人一区二区| 91久久精品电影网| 国产不卡一卡二| 床上黄色一级片| 日韩一区二区三区影片| 亚洲欧美日韩东京热| 免费电影在线观看免费观看| 非洲黑人性xxxx精品又粗又长| 亚洲经典国产精华液单| 日本免费一区二区三区高清不卡| 在线观看美女被高潮喷水网站| 亚洲国产精品国产精品| 嫩草影院新地址| 国产淫语在线视频| 国产av码专区亚洲av| av又黄又爽大尺度在线免费看 | a级毛色黄片| 国产激情偷乱视频一区二区| 亚洲电影在线观看av| 久久人人爽人人爽人人片va| 禁无遮挡网站| 国产精品99久久久久久久久| 自拍偷自拍亚洲精品老妇| 亚洲av成人av| 日韩欧美精品免费久久| 国产欧美日韩精品一区二区| 成人毛片a级毛片在线播放| 我的女老师完整版在线观看| 免费在线观看成人毛片| 亚洲人成网站高清观看| 久久欧美精品欧美久久欧美| 亚洲内射少妇av| 欧美成人精品欧美一级黄| 日日啪夜夜撸| 欧美zozozo另类| 夜夜爽夜夜爽视频| 日韩精品有码人妻一区| 国产单亲对白刺激| 你懂的网址亚洲精品在线观看 | 天堂影院成人在线观看| 人人妻人人澡欧美一区二区| 欧美激情在线99| 国产一级毛片七仙女欲春2| 久久99热这里只有精品18| 久久久久久久国产电影| 免费看a级黄色片| a级毛色黄片| 国产三级在线视频| 久久久久性生活片| 自拍偷自拍亚洲精品老妇| 能在线免费观看的黄片| 欧美区成人在线视频| 国模一区二区三区四区视频| 少妇熟女aⅴ在线视频| 中文字幕熟女人妻在线| 老女人水多毛片| 国产三级中文精品| 国产精品美女特级片免费视频播放器| 我的老师免费观看完整版| 2021少妇久久久久久久久久久| 日本免费在线观看一区| av视频在线观看入口| av天堂中文字幕网| 久久国内精品自在自线图片| 欧美三级亚洲精品| 亚洲欧美日韩高清专用| 一区二区三区高清视频在线| 精品欧美国产一区二区三| 国产精品人妻久久久影院| 欧美成人免费av一区二区三区| 国产欧美日韩精品一区二区| a级毛片免费高清观看在线播放| 日韩视频在线欧美| 亚洲欧美精品自产自拍| 在线免费十八禁| 免费看a级黄色片| 欧美成人精品欧美一级黄| 国产精品av视频在线免费观看| 精品99又大又爽又粗少妇毛片| 久久久久精品久久久久真实原创| 国产精品伦人一区二区| 国产精品av视频在线免费观看| av黄色大香蕉| 黑人高潮一二区| 免费人成在线观看视频色| 亚洲精品国产成人久久av| 伦精品一区二区三区| 日日摸夜夜添夜夜爱| 你懂的网址亚洲精品在线观看 | 两性午夜刺激爽爽歪歪视频在线观看| 美女内射精品一级片tv| 久久精品国产亚洲av涩爱| 日本av手机在线免费观看| 国产白丝娇喘喷水9色精品| 男人的好看免费观看在线视频| 国产精品一区二区在线观看99 | 日韩av在线大香蕉| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品456在线播放app| 久久亚洲精品不卡| 国产高清三级在线| 国产国拍精品亚洲av在线观看| 国产精品不卡视频一区二区| 亚洲精品国产成人久久av| 亚洲国产精品合色在线| 日韩欧美精品免费久久| 日韩人妻高清精品专区| 欧美成人精品欧美一级黄| 亚洲综合色惰| 成人午夜精彩视频在线观看| 狠狠狠狠99中文字幕| 亚洲国产高清在线一区二区三| 少妇人妻精品综合一区二区| 午夜福利在线在线| 亚洲精品乱码久久久v下载方式| 亚洲18禁久久av| 中文字幕亚洲精品专区| 亚洲av免费在线观看| 欧美变态另类bdsm刘玥| 日韩强制内射视频| 欧美人与善性xxx| 丰满少妇做爰视频| 91午夜精品亚洲一区二区三区| 国产精品国产三级国产专区5o | 亚洲国产精品久久男人天堂| 国产精品国产三级国产av玫瑰| 日韩欧美在线乱码| 日韩av在线大香蕉| 国产一级毛片七仙女欲春2| 在现免费观看毛片| 婷婷色麻豆天堂久久 | 久久精品久久久久久噜噜老黄 | 国产一区二区在线观看日韩| 亚洲国产精品久久男人天堂| 国产午夜精品久久久久久一区二区三区| 成年免费大片在线观看| 91久久精品电影网| 韩国av在线不卡| 2021天堂中文幕一二区在线观| 亚洲美女搞黄在线观看| 国产精品,欧美在线| 久久精品国产亚洲av天美| 亚洲成人中文字幕在线播放| 日韩欧美精品免费久久| 永久免费av网站大全| 人妻系列 视频| 亚洲成人精品中文字幕电影| 久久久久久久久久久丰满| 国产一区亚洲一区在线观看| 舔av片在线| 一个人看视频在线观看www免费| 性插视频无遮挡在线免费观看| 寂寞人妻少妇视频99o| 99热6这里只有精品| 精品熟女少妇av免费看| 国产精品美女特级片免费视频播放器| 精品人妻视频免费看| 高清在线视频一区二区三区 | 国产美女午夜福利| 自拍偷自拍亚洲精品老妇| 久久久久久久久久久丰满| 又粗又硬又长又爽又黄的视频| 尾随美女入室| 欧美成人a在线观看| 国产高潮美女av| 国产精品国产三级国产专区5o | 中文在线观看免费www的网站| 精品久久久久久久久av| 欧美人与善性xxx|