• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced single photon emission in silicon carbide with Bull’s eye cavities

    2022-10-26 09:49:34XingHuaLiu劉興華FangFangRen任芳芳JiandongYe葉建東ShuxiaoWang王書曉WeiZongXu徐尉宗DongZhou周東MingbinYu余明斌RongZhang張榮YoudouZheng鄭有炓andHaiLu陸海
    Chinese Physics B 2022年10期
    關(guān)鍵詞:興華陸海

    Xing-Hua Liu(劉興華) Fang-Fang Ren(任芳芳) Jiandong Ye(葉建東) Shuxiao Wang(王書曉)Wei-Zong Xu(徐尉宗) Dong Zhou(周東) Mingbin Yu(余明斌) Rong Zhang(張榮)Youdou Zheng(鄭有炓) and Hai Lu(陸海)

    1School of Electronic Science and Engineering,Nanjing University,Nanjing 210023,China

    2State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai 200050,China

    Keywords: single photon sources,4H-SiC,Bull’s eye cavities,color centers

    1. Introduction

    Quantum photonics, which is involved in the emerging quantum information technologies such as quantum communication, metrology, sensing, and quantum computation has been developed rapidly over the past few decades.[1]In the quest for realizing all these applications, robust, and efficient single photon sources(SPSs)on demand are highly desirable.Single photon emission has been demonstrated among a variety of physical systems, including trapped atoms, trapped ions, molecules, quantum dots (QDs), and color centers in wide-bandgap semiconductors.[2]Of the above different types of emitters,color centers in wide-bandgap semiconductors are considered as one of the most promising single photon emitters because it does not need to operate at cryogenic temperatures and has potential in integrated photonic circuits on chip.

    For an ideal SPS, a high brightness or emission rate, directional radiation, a high single photon purity, and indistinguishability are required. However,many free-standing semiconductor SPSs do not show distinct superiority in device performance compared with their counterparts due to the isotropic angular emission pattern and intrinsic low emission rate.[3]These limit the collection efficiency of emitted photons and the operating speed of whole system. Great efforts have been made to improve semiconductor SPSs by coupling the emitters with various photonic microcavities such as micropillars,[4]micro-disk,[5]and photonic crystals[6,7]to enhance intrinsic emission into the zero-phonon line (ZPL). In particular, by employing photonic crystal cavities in QDs and wide-bandgap semiconductors for enhancing photon emission, high quality factors were indeed achieved, whilst the improvement of farfield profile was still weak. The cavity-induced Purcell effect,which shortens the radiative lifetimes of the emitters,will also improve photon indistinguishability on short time scales.[8]

    Bull’s eye geometries are capable of photon extraction from emitters, in which the circular Bragg gratings (CBGs)serve as a resonant cavity that enables an enhancement of spontaneous emission rate with highly directional emission and therefore a higher photon collection efficiency. So far,the CBGs have been employed to enhance photon collection efficiency from QDs or color centers in diamond.[9,10]Silicon carbide(SiC)and diamond share most of the favorable properties of color centers in wide-bandgap semiconductors that are used for single photon emission. However, the implementation of Bull’s eye cavities in an SiC-based SPS is still vacant to be of our best knowledge.

    In this work,we present a design by introducing CBG into a 4H-SiC-based SPS where the emitter is embedded in a micropillar cavity in the center,i.e.,the so-called Bull’s eye cavity. Three-dimensional finite-difference time-domain(FDTD)method was employed to calculate the emission rates and farfield distributions of a target color center. With optimized geometric parameters,a bright and vertically emitting SiC-based SPS can be realized.

    2. Design and simulation

    An emitter in an optical cavity will experience a mediumenhanced radiation rate relative to that in a homogenous medium given by the Purcell factor(FP)[11]

    whereλis resonant wavelength in free space,nis the refractive index of cavity material,Qis the quality factor,andVmis the volume of the cavity mode. The exciton will radiate faster in a cavity than in free space if the Purcell factor is higher than one. The Purcell enhancement can be achieved by increasing the ratio of the quality factor to the mode volume,i.e.,Q/Vm.Here the quality factor (Q) is defined asQ=λ/FWHM,[12]where FWHM (full width at half-maximum) can be determined from the resonance intensity spectrum. The mode volume of a dielectric cavity is calculated using the ratio of the total electric energy to the maximum electric energy density[13]whereεis the permittivity andEis the electric field.

    The schematic diagrams of the proposed SiC-based SPS and the referenced structures are shown in Fig. 1. Structure A is an SiC epitaxial on an SiC substrate wafer without any nanostructures. According to Ref. [14], we suppose an oxidation-related color center in 4H-SiC whose luminescence spectrum displays a peak around wavelength of 600 nm.Structure B with a micropillar cavity surrounding the color center can be formed by window etching on structure A.By introducing a CBG structure into structure B,we expand to structure C with a Bull’s eye cavity which potentially enables an improved Purcell factor due to a higherQ-factor and a smaller mode volume. The Bull’s eye cavity is also capability of far-field modulation for an improved emission directionality. The top-view and cross-sectional schematics of structure C are sketched in Figs.1(b)and 1(c),respectively. Here,r,Λ,g,w,anddrepresent the cylinder radius,grating period,teeth width,and the width and depth of the etched circular trenches. The number of the teeth around the central cylinder is denoted by the period numberN. Given that a pure dielectric antenna can preferably avoid the metal-related ohmic loss and emission quenching,[15]we use an all-dielectric design for the Bull’s eye cavity due to the potential of higher Purcell enhancement and the ease of fabrication process.[16]

    Fig. 1. Schematic diagram of the proposed SiC-based SPS. (a) Evolution of the SPS structure design from structure A to structure B and structure C. (b)Top-view and(c)cross-section schematics of structure C with N=4.

    During the simulation, a dipole source was placed at the center (x=0,y=0,z=-300 nm) with a depth of 300 nm beneath the top surface of the SiC epilayers. This dipole depth is optimal for achieving a high Purcell factor based on simulations (not shown). The transverse magnetic (TM) and transverse electric(TE)modes are defined for the magnetic or electric fields parallel to the slab(i.e.,xy-plane),respectively.Considering the dipole orientation can be selected as any of horizontal and vertical directions, we calculated both polarizations individually and the results were similar. Thus, only the case of horizontally oriented dipole was studied in this letter. To ensure an efficient vertical light extraction at 600 nm,FDTD method was employed to optimize all the structural parameters. Although these parameters are interlinked in fact and there is a trade-off between them, we carry out separate analyses since they allow us to distinguish different influences or mechanisms among the central cavity and the surrounding grating. For simplicity,we assumeg=w. The collection efficiency(CE)can be calculated as the ratio of photons collected by an objective lens with a numerical aperture(NA)to all photons emitted into far field.[17]The formula reads as

    where far field electric fieldEis a function of the direction cosines(ux,uy), andθNAis the half-angle corresponding to a given NA.

    3. Results and discussion

    One important figure of merit of the device performance is radiative decay rate, which can be optimized for structures B and C by sweeping the geometrical parameters as shown in Fig. 2. For structure B, when sweeping the radius (r) from 100 nm to 500 nm by fixing the height of the cylinder cavity(d)to be 500 nm,a series of maxima in intensity are observed atr=13, 260, 375 nm,etc., as shown in Fig.2(a)due to the lateral mode resonances. Considering a compact device layout,we preferr=13 nm for structure B.It can be seen from Fig. 2(b) that the radiative rate also depends on the height of the cylinder cavity(d)in structure B.For the emission wavelength of 600 nm, the value ofdin the range of 450 nm–550 nm is favorable to ensure a high radiative rate. Whilst for structure C, the suitable value range ofdfor the same emission wavelength is from 690 nm to 720 nm (Fig. 2(c)). For simplicity,we fixdat 500 nm for structure B and 700 nm for structure C,respectively. Although deeper etching might also support a high radiative rate due to the multiple longitudinal modes in the Fabry–P′erot cavity,it will lead to tricky fabrication process for a larger depth ofd.

    When introducing a CBG antenna, the resonance modes exhibit more sensitive to the cylinder radius due to the enhancedQ-factors,which can be seen clearly by comparing the data between Figs. 2(a) and 2(d). Therefore, a more precise control of the cylinder size is required to make sure a cavity resonance for the color center in structure C.To ensure the device with a compact layout and also a feasible fabrication,we chooser=140 nm for structure C. As the period length (Λ)of the CBG increases from 100 nm to 700 nm(see Fig.2(e)),the calculated radiative rate of structure C varies periodically and its maxima occurs when Bragg conditions are satisfied,in which an efficient coupling occurs between the same forward and backward modes in a periodic single-mode guided wave structure. According to the coupled-mode theory, the Bragg condition can be written asmλ=2neffΛ, wheremis the diffraction order andneffis the SiC slab TE mode effective index. We may chooseΛ=18, 315, or 455 nm for structure C, corresponding tom= 1, 2, or 3 that satisfies the 1st, 2nd,or 3rd Bragg condition. Although the refraction index of SiC tends to be high,the mode number can be small owing to the subwavelength size of the structure.

    Fig. 2. Dependence of the normalized radiative decay rate spectra on (a) radius and (b) height of the cylinder cavity in structure B. Dependence of the normalized radiative decay rate spectra on(c)trench depth,(d)cylinder radius,and(e)grating period of structure C.

    Fig.3. (a)The normalized radiative decay rate spectra of structures A,B,and C with various period number N. (b)The simulated values of Q and FP with different N. Practically,N=0 represents the case of structure B.(c)The calculated collection efficiency of structures A,B,and C with various NA.

    Fig. 4. The simulated near-field (|E|) (logarithmic scale) distributions in (a) structure A, (b) structure B (r=140 nm), and (c) structure C (r=140 nm,d=700 nm,Λ =315 nm,N=3)in the xy,xz,and yz planes at the wavelength of 600 nm.

    As described above,the Purcell factor(FP)is proportional to the ratio ofQandVm, which can be calculated based on FDTD simulations. Figure 3(a)displays the calculated radiative decay rate spectra of structures A–C. During the simulation,the light source was set as an electric dipole at the color center with a unit amplitude of electric field and the orientation aligned along they-axis direction, exciting only TE slab waves.The groove numberNin structure C is varied from 1 to 5. As shown in Fig.3(a),the radiative decay rates of structure A are quite low and no peaks can be observed throughout entire wavelength range from 560 nm to 660 nm,which means a heavy emission loss in the block material. In the case of structure B,a broad peak around 600 nm appears indicating a lowQ-factor.As discussed above,introducing CBG is a promising way to significantly enhance the intensity of the photon emission, which can be seen from the higher and narrower peaks in the spectra of structure C.As compared to structure A,the radiative decay rate at 600 nm can be enhanced by 12.8 times in structure C (N ≥3). For clarity, we extract the FWHM values from the radiative decay rate spectra and calculatedQfactor as shown in Fig. 3(b). It shows a remarkable increase ofQ-factor which reaches saturation when the period numberNexceeds 2. By using the FDTD simulation, the mode volumeVmof each dielectric cavity can be calculated and then the Purcell factorFPcan be obtained according to Eq.(1). When compared to structure B, theQ-factor is increased by~30.5 times in structure C withN ≥3. The mode volumeVmis 0.21(λ/n)3in structure B whilst increases up to~0.82 (λ/n)3in structure C,where the refractive index of SiC is considered asn=2.64 at the wavelength of 600 nm.[18]Eventually, the Purcell factor(FP)in structure C is about 7.6 times as high as structure B.As shown in Fig.3(c),the collection efficiency as a function of the NA is theoretically enhanced from structure A to structure C (N=5), which is mainly contributed by the improved emission directionality. However, the CE of structure B is the lowest especially when NA less than 0.7, which might be due to the scattering by the central cylinder.

    To further understand the Purcell factor enhancement,we plot out the electromagnetic field configurations in logarithmic scale at the wavelength of 600 nm in structures A,B,and C (withN=3) in Fig. 4. The light source was set as same as Fig.3. Apparently,the electromagnetic field extends over a relatively large area in bulk SiC(i.e.structure A).In structure B, the emission starts to be concentrated by the micrometerscale resonator due to Fabry–P′erot resonance, while the resonant TE mode becomes leaky and features the capability of interacting with outside owing to the small geometric size. By coupling with CBG in structure C, the electromagnetic field is squeezed into the area of Bull’s eye rings whenN ≥3, indicating that our designed structure has been optimized for a Purcell factor as high as possible. As shown in Fig. 4(c), a lower bound of spatial field distribution is found with two secondary maximum pots appearing on the sidewall of the central cylinder. This indicates a larger mode volume that has been discussed above. As explained in Ref.[19],vertical light scattering at the CBG antenna in structure C is partial,so that the 2nd-order Bragg reflections towards the central cavity lead to a vertically leaky cavity resonance as shown in Fig.4(c). At the SiC-air interfaces of trenches,the large index contrast leads to strong reflections and out-of-slab-plane scattering, which are evidenced by the strong field concentration at the Bull’s eye center and a fast field decay in the couple of trenches from the center.[19]It interprets the larger enhancement of field intensity in structure C,eventually higherQ-factors and Purcell factors.

    Fig.5. (a)–(c)Simulated far-field polar plot(|E|2)of structures A–C at λ =600 nm. (d)Normalized electric field distribution(|E|)along the propagating direction in xz-plane of structure C(left),and along the dotted gray line for changed period length(right). (e)The dependence of the maximum E intensity at the focal point on the period number.

    The directionality of emission can be quantified by examining the angular distribution of the emitted light in farfield(see Figs.5(a)–5(c)). During the simulation,the dipole source was set as same as Fig. 3. Comparing the results obtained from structure A, the simulated emission intensities of structures B and C are enhanced by one or two orders owing to the resonance. However,the directionality of structure B remains poor with an emission angle of about 50°, which is consisted with the low collection efficiency.Importantly,an obvious improvement of far-field directionality can be seen from structure C, clearly indicating that the Bull’s eye cavity not only supplies a higherQ-factor but also strongly governs the propagation direction of light emitted from the center cylinder. To clearly illustrate the physical mechanism of the light-focusing functionality, we calculated the electric field distribution of structure C in thexz-plane at the wavelength of 600 nm (see the left image of Fig.5(d)). A bright focal spot can be seen atz=5 μm in free space. The focusing process can be attributed to the scattering of the emitted light at different positions of the grooves and the corresponding in phase field superposition due to the constructive interference on the optical axis.[20]In the simulation, we additionally included a linear profile monitor for structure C(i.e.,the dotted gray line shown in the left image of Fig.5(d)).This allowed us to examine theE-field crosssectional profile cut along thezaxis. As shown in the right image of Fig. 5(d), when the period (Λ) varies from 100 nm to 600 nm with fixed parameters ofd=70 nm,r=140 nm,andN=5, the focal point (where the maximumEintensity occurs)moves gradually. It can be understood that the period length decides the groove locations where the scattering or reflection will happen. The variation leads to the change of the near field distribution, and ultimately influences the intensity and location of the focal spot. Confirmed by the calculated far-field distributions shown in Fig. 5(c), the CBG antenna withΛ=315 nm acts as a near-field focusing lens to a small degree (~15°), which can concentrate more emission in the vertical direction and bring excellent far-field directionality.This is also verified by the increase of CE. It was found that the directionality depends on the period numberNas shown in Fig. 5(e). WhenNincreases, theE-field at the focal point is gradually enhanced due to an improved focusing capability of CBGs and then saturates whenN ≥6 where the Bragg scattering is balanced by the leakage of light in the plane of grating.AlthoughN=3 is enough to reach the saturation value ofQorFP,the period number still needs to be increased up to 6 for an optimal directionality.

    4. Conclusion and perspectives

    In summary, we demonstrated the improvement of photon emission and beam directionality in an SiC-based singlephoton source by employing circular Bragg gratings coupled with a cylinder cavity, in which a resonance cavity mode at 600 nm with Bragg reflection occurred. The structural parameters,including cylinder radius,grating period,and trench depth,etc., are identified and optimized based on FDTD numerical simulations. For quantum light emitters, Purcell enhancement, and convergent angular distribution of the emitted light in far field are achieved, which indicated that this structure allows for efficient transmission of light in SiC.The proposed structure design plays a vital role in quantum electrodynamics and could have potential in application of highperformance quantum light sources.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.91850112,61774081,62004099,and 61921005), in part by Shenzhen Fundamental Research Program (Grant Nos. JCYJ20180307163240991 and JCYJ20180307154632609),in part by the State Key Research and Development Project of Jiangsu Province, China (Grant No. BE2018115), in part by the Natural Science Foundation of Jiangsu Province, China(Grant No.BK20201253), in part by the State Key Research and Development Project of Guangdong Province, China (Grant No. 2020B010174002),and in part by Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB43020500).

    猜你喜歡
    興華陸海
    上海出發(fā)愛達世界
    毛焰藝術(shù)風(fēng)格中的自我表達
    陸海之縱
    興華市林湖鄉(xiāng):村企聯(lián)建共走振興路
    華人時刊(2021年17期)2021-11-12 20:09:49
    村長外號叫“老邪”
    陸海新通道鐵海聯(lián)運班列今年開行破1000班
    攝影作品欣賞
    金沙江文藝(2019年7期)2019-07-29 01:57:06
    書法,何者為要——從沃興華的創(chuàng)作瓶頸談起
    藝術(shù)品(2018年5期)2018-06-29 02:14:58
    陸海統(tǒng)籌推進海岸帶地質(zhì)調(diào)查
    馬興華攝影作品欣賞
    金沙江文藝(2017年4期)2017-03-31 07:35:16
    av福利片在线观看| 日韩欧美一区二区三区在线观看| 日韩三级视频一区二区三区| 国产精品久久久av美女十八| 精品一区二区三区视频在线观看免费| 亚洲专区国产一区二区| h日本视频在线播放| 国产精品乱码一区二三区的特点| 欧美日韩国产亚洲二区| 99久久99久久久精品蜜桃| 国产精品亚洲美女久久久| 两性午夜刺激爽爽歪歪视频在线观看| 一区二区三区国产精品乱码| 亚洲欧美日韩高清在线视频| 最新美女视频免费是黄的| 国产精品亚洲美女久久久| 欧美又色又爽又黄视频| 成人特级av手机在线观看| 后天国语完整版免费观看| 伦理电影免费视频| 夜夜看夜夜爽夜夜摸| 国产免费av片在线观看野外av| 女生性感内裤真人,穿戴方法视频| 亚洲专区字幕在线| 国产91精品成人一区二区三区| 成人三级黄色视频| 巨乳人妻的诱惑在线观看| 日韩欧美 国产精品| 精品人妻1区二区| 啦啦啦免费观看视频1| 91av网一区二区| 啦啦啦免费观看视频1| 久久人人精品亚洲av| 国产免费av片在线观看野外av| 嫩草影院精品99| 中亚洲国语对白在线视频| 一边摸一边抽搐一进一小说| 国产黄色小视频在线观看| 99精品欧美一区二区三区四区| 成人午夜高清在线视频| 国产精品香港三级国产av潘金莲| 午夜福利在线在线| 男人舔女人的私密视频| 天天躁狠狠躁夜夜躁狠狠躁| 色吧在线观看| 久久久水蜜桃国产精品网| 亚洲无线在线观看| 色播亚洲综合网| 欧美成狂野欧美在线观看| 国产成人aa在线观看| 亚洲成a人片在线一区二区| 欧美国产日韩亚洲一区| 久久午夜综合久久蜜桃| 中文字幕最新亚洲高清| 麻豆一二三区av精品| 又黄又爽又免费观看的视频| 最新中文字幕久久久久 | 男人舔奶头视频| 国产成人影院久久av| av在线天堂中文字幕| 日韩av在线大香蕉| 久久九九热精品免费| 99久久精品国产亚洲精品| 欧美极品一区二区三区四区| 夜夜躁狠狠躁天天躁| 国产亚洲精品一区二区www| 女同久久另类99精品国产91| 欧美日韩黄片免| 97碰自拍视频| 丰满的人妻完整版| 成在线人永久免费视频| 亚洲第一欧美日韩一区二区三区| h日本视频在线播放| 黄色女人牲交| 亚洲成av人片免费观看| 波多野结衣巨乳人妻| 又粗又爽又猛毛片免费看| 久久久国产精品麻豆| 午夜激情福利司机影院| 免费在线观看视频国产中文字幕亚洲| 国产伦精品一区二区三区视频9 | 午夜福利在线观看吧| 亚洲国产中文字幕在线视频| 日本黄色视频三级网站网址| 88av欧美| 给我免费播放毛片高清在线观看| 夜夜夜夜夜久久久久| 国产精品亚洲美女久久久| 在线视频色国产色| 91久久精品国产一区二区成人 | 亚洲国产精品久久男人天堂| 手机成人av网站| 国产主播在线观看一区二区| 好男人在线观看高清免费视频| 啦啦啦韩国在线观看视频| 国产爱豆传媒在线观看| 日韩欧美免费精品| 亚洲av电影不卡..在线观看| 久久香蕉精品热| 亚洲av美国av| 欧美色欧美亚洲另类二区| 久久精品亚洲精品国产色婷小说| 国产欧美日韩一区二区三| 俺也久久电影网| 高潮久久久久久久久久久不卡| 1000部很黄的大片| 欧美日韩中文字幕国产精品一区二区三区| 久久久色成人| 国产熟女xx| 亚洲成人中文字幕在线播放| 国产亚洲av嫩草精品影院| 精品国产乱子伦一区二区三区| 我的老师免费观看完整版| 亚洲熟妇熟女久久| 亚洲欧美激情综合另类| 成年版毛片免费区| 99精品欧美一区二区三区四区| 日韩有码中文字幕| 成人高潮视频无遮挡免费网站| 午夜a级毛片| 俺也久久电影网| 欧美最黄视频在线播放免费| 97人妻精品一区二区三区麻豆| 亚洲黑人精品在线| 男女那种视频在线观看| 久久人人精品亚洲av| 欧美激情在线99| 高清在线国产一区| 又粗又爽又猛毛片免费看| 日韩欧美免费精品| 国产高清三级在线| 欧美日本亚洲视频在线播放| 两个人视频免费观看高清| 丰满人妻熟妇乱又伦精品不卡| 精品国产超薄肉色丝袜足j| 变态另类丝袜制服| 一卡2卡三卡四卡精品乱码亚洲| 午夜两性在线视频| 亚洲中文av在线| 国产亚洲欧美98| 婷婷亚洲欧美| 国产亚洲欧美在线一区二区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲人成网站在线播放欧美日韩| 亚洲熟妇熟女久久| 最新在线观看一区二区三区| 熟女电影av网| 亚洲性夜色夜夜综合| 美女扒开内裤让男人捅视频| 国内少妇人妻偷人精品xxx网站 | 999精品在线视频| 一个人免费在线观看的高清视频| 色尼玛亚洲综合影院| 国产极品精品免费视频能看的| 亚洲中文av在线| www国产在线视频色| av福利片在线观看| 午夜福利免费观看在线| 亚洲国产精品久久男人天堂| 人人妻,人人澡人人爽秒播| 成人午夜高清在线视频| 国产激情偷乱视频一区二区| 欧美在线黄色| a在线观看视频网站| 天堂av国产一区二区熟女人妻| 午夜福利18| 在线观看午夜福利视频| 小蜜桃在线观看免费完整版高清| 九九久久精品国产亚洲av麻豆 | 三级男女做爰猛烈吃奶摸视频| АⅤ资源中文在线天堂| 亚洲av电影不卡..在线观看| 大型黄色视频在线免费观看| 午夜福利在线观看吧| 国产av麻豆久久久久久久| 91av网一区二区| 桃红色精品国产亚洲av| 无限看片的www在线观看| 1024香蕉在线观看| 欧美3d第一页| av在线蜜桃| 成在线人永久免费视频| 久久午夜综合久久蜜桃| 丁香欧美五月| 可以在线观看的亚洲视频| 亚洲无线观看免费| 一二三四社区在线视频社区8| 一进一出抽搐动态| 天堂av国产一区二区熟女人妻| 欧美日本亚洲视频在线播放| 亚洲国产欧美一区二区综合| 在线看三级毛片| 人妻丰满熟妇av一区二区三区| 国产免费男女视频| 日本黄大片高清| 中文字幕人成人乱码亚洲影| 午夜亚洲福利在线播放| 免费在线观看成人毛片| 丁香六月欧美| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品美女久久久久99蜜臀| 免费观看的影片在线观看| 精品久久久久久久久久久久久| 国产黄片美女视频| 精华霜和精华液先用哪个| 亚洲狠狠婷婷综合久久图片| 国产美女午夜福利| 国产1区2区3区精品| 国产高潮美女av| 欧美性猛交黑人性爽| 国产精品久久电影中文字幕| 国产三级在线视频| 国产欧美日韩一区二区精品| 变态另类成人亚洲欧美熟女| 免费观看人在逋| xxx96com| 美女午夜性视频免费| 午夜精品在线福利| 免费av不卡在线播放| 欧美一区二区国产精品久久精品| 真实男女啪啪啪动态图| 美女免费视频网站| 国产成人一区二区三区免费视频网站| 成年女人看的毛片在线观看| 欧美黑人巨大hd| 丁香六月欧美| 亚洲av美国av| 丰满人妻熟妇乱又伦精品不卡| 久久久久亚洲av毛片大全| 免费看十八禁软件| 免费看日本二区| 亚洲一区二区三区色噜噜| 一夜夜www| 天堂网av新在线| 国产真人三级小视频在线观看| 在线观看日韩欧美| 99视频精品全部免费 在线 | 午夜福利在线观看免费完整高清在 | 成人18禁在线播放| 五月伊人婷婷丁香| aaaaa片日本免费| 欧美三级亚洲精品| 久久精品91无色码中文字幕| 欧美激情久久久久久爽电影| 久久中文字幕一级| 人人妻人人看人人澡| 香蕉av资源在线| 性欧美人与动物交配| 国内精品美女久久久久久| 亚洲欧美日韩卡通动漫| 国产午夜精品论理片| 男女床上黄色一级片免费看| 日韩欧美国产在线观看| 色噜噜av男人的天堂激情| 国产成人一区二区三区免费视频网站| 12—13女人毛片做爰片一| 国产精品久久久久久人妻精品电影| 免费一级毛片在线播放高清视频| 国产成年人精品一区二区| 老司机午夜福利在线观看视频| 麻豆久久精品国产亚洲av| 母亲3免费完整高清在线观看| 一区二区三区国产精品乱码| 国产黄a三级三级三级人| 高清在线国产一区| 亚洲片人在线观看| 狂野欧美激情性xxxx| 一区二区三区高清视频在线| 午夜免费激情av| 9191精品国产免费久久| 中文亚洲av片在线观看爽| 成人鲁丝片一二三区免费| 国产精品精品国产色婷婷| 亚洲片人在线观看| www.www免费av| 一级毛片女人18水好多| 日韩精品青青久久久久久| 淫秽高清视频在线观看| 99久国产av精品| 亚洲精品一卡2卡三卡4卡5卡| 免费av毛片视频| 亚洲国产色片| 亚洲国产日韩欧美精品在线观看 | 午夜福利在线在线| а√天堂www在线а√下载| 色尼玛亚洲综合影院| 色哟哟哟哟哟哟| 最近视频中文字幕2019在线8| 国产亚洲欧美98| 身体一侧抽搐| 久久性视频一级片| 国产精品98久久久久久宅男小说| 我要搜黄色片| 国产伦一二天堂av在线观看| 国产精品自产拍在线观看55亚洲| 国产av麻豆久久久久久久| 久久久成人免费电影| 两人在一起打扑克的视频| 午夜两性在线视频| www.www免费av| 欧美不卡视频在线免费观看| 18禁美女被吸乳视频| 成人精品一区二区免费| 91麻豆精品激情在线观看国产| 别揉我奶头~嗯~啊~动态视频| 18禁国产床啪视频网站| 国产欧美日韩精品亚洲av| 国产精品爽爽va在线观看网站| 国产精品亚洲av一区麻豆| 亚洲午夜精品一区,二区,三区| 国产精品久久久久久久电影 | 精品无人区乱码1区二区| 91在线观看av| 一进一出抽搐gif免费好疼| 成年女人永久免费观看视频| 亚洲人成伊人成综合网2020| 亚洲天堂国产精品一区在线| 国产99白浆流出| 天天添夜夜摸| 久久精品国产99精品国产亚洲性色| 在线观看舔阴道视频| 成年女人看的毛片在线观看| 国产一区二区激情短视频| 老鸭窝网址在线观看| 黄色丝袜av网址大全| 免费在线观看影片大全网站| 舔av片在线| 欧美国产日韩亚洲一区| 国产精品综合久久久久久久免费| 叶爱在线成人免费视频播放| 一本精品99久久精品77| 久久欧美精品欧美久久欧美| cao死你这个sao货| 男女那种视频在线观看| av欧美777| 久久久国产成人精品二区| 波多野结衣高清无吗| 久99久视频精品免费| 麻豆久久精品国产亚洲av| 男插女下体视频免费在线播放| 精品福利观看| 日本 欧美在线| 国产精品国产高清国产av| 搡老妇女老女人老熟妇| 国产午夜精品论理片| 中文字幕熟女人妻在线| 香蕉久久夜色| 亚洲性夜色夜夜综合| 亚洲中文日韩欧美视频| 国产精品自产拍在线观看55亚洲| 国产熟女xx| 一个人免费在线观看的高清视频| 韩国av一区二区三区四区| 成年女人永久免费观看视频| 在线国产一区二区在线| 国产精品av久久久久免费| 一级毛片高清免费大全| 国产私拍福利视频在线观看| 亚洲人成伊人成综合网2020| 黄频高清免费视频| 久久精品国产99精品国产亚洲性色| 老汉色∧v一级毛片| 老汉色av国产亚洲站长工具| 欧美极品一区二区三区四区| 我的老师免费观看完整版| 中亚洲国语对白在线视频| 亚洲一区二区三区色噜噜| 天堂√8在线中文| 国产视频内射| 欧美三级亚洲精品| 免费人成视频x8x8入口观看| 看片在线看免费视频| 香蕉av资源在线| 中出人妻视频一区二区| 亚洲电影在线观看av| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产欧美网| 99精品欧美一区二区三区四区| 欧洲精品卡2卡3卡4卡5卡区| av中文乱码字幕在线| 国产亚洲精品久久久com| 亚洲中文日韩欧美视频| 日韩欧美三级三区| 欧美另类亚洲清纯唯美| 亚洲美女黄片视频| 99在线视频只有这里精品首页| 欧美乱色亚洲激情| 久久精品影院6| 国产v大片淫在线免费观看| 日本免费一区二区三区高清不卡| 嫩草影院入口| 真人做人爱边吃奶动态| 草草在线视频免费看| x7x7x7水蜜桃| 99视频精品全部免费 在线 | 久久人妻av系列| 五月伊人婷婷丁香| 1024手机看黄色片| 黄色日韩在线| 久久久精品欧美日韩精品| 国产在线精品亚洲第一网站| 国产成人系列免费观看| 久久久国产成人免费| 亚洲电影在线观看av| 免费看十八禁软件| 免费无遮挡裸体视频| 舔av片在线| 99热这里只有是精品50| 国产一区在线观看成人免费| 免费观看的影片在线观看| 香蕉久久夜色| 丰满人妻一区二区三区视频av | 一进一出好大好爽视频| 欧美色欧美亚洲另类二区| 欧美激情久久久久久爽电影| 国产精品九九99| 欧美中文综合在线视频| 人人妻,人人澡人人爽秒播| 亚洲五月婷婷丁香| 成人高潮视频无遮挡免费网站| 久久久久久久久久黄片| 91麻豆av在线| 成人国产一区最新在线观看| 美女cb高潮喷水在线观看 | 久久中文看片网| 亚洲人成伊人成综合网2020| 小说图片视频综合网站| 美女高潮喷水抽搐中文字幕| 色综合欧美亚洲国产小说| 国产成人福利小说| 久久久久久久午夜电影| 久久热在线av| 午夜福利欧美成人| 夜夜夜夜夜久久久久| 精品电影一区二区在线| 青草久久国产| 一二三四在线观看免费中文在| 午夜亚洲福利在线播放| 小蜜桃在线观看免费完整版高清| 一a级毛片在线观看| 久9热在线精品视频| 亚洲中文字幕日韩| 国产高清有码在线观看视频| 欧美高清成人免费视频www| 久久精品夜夜夜夜夜久久蜜豆| 欧美黑人巨大hd| 中文字幕高清在线视频| 在线视频色国产色| 后天国语完整版免费观看| 亚洲最大成人中文| 亚洲国产欧美人成| 亚洲av电影不卡..在线观看| 久久精品人妻少妇| 欧美乱妇无乱码| 丁香六月欧美| 精华霜和精华液先用哪个| 日本黄色片子视频| 黑人操中国人逼视频| 丰满人妻一区二区三区视频av | 精品福利观看| 少妇人妻一区二区三区视频| 亚洲黑人精品在线| 国产欧美日韩精品一区二区| 日韩欧美国产一区二区入口| 精品欧美国产一区二区三| 激情在线观看视频在线高清| 国产精品日韩av在线免费观看| 亚洲精品456在线播放app | 成人国产一区最新在线观看| 一本久久中文字幕| 韩国av一区二区三区四区| 国产精品,欧美在线| 国产亚洲欧美98| 国产视频一区二区在线看| 女生性感内裤真人,穿戴方法视频| 日本撒尿小便嘘嘘汇集6| 成人国产综合亚洲| 亚洲av日韩精品久久久久久密| 欧洲精品卡2卡3卡4卡5卡区| 亚洲 欧美 日韩 在线 免费| 国产精品九九99| 男女视频在线观看网站免费| 国产伦精品一区二区三区四那| 国产三级中文精品| www.www免费av| 老司机在亚洲福利影院| 久久久久久久午夜电影| 亚洲 欧美一区二区三区| 男女床上黄色一级片免费看| 久久热在线av| 巨乳人妻的诱惑在线观看| 国产欧美日韩一区二区精品| 国语自产精品视频在线第100页| 五月玫瑰六月丁香| 色综合欧美亚洲国产小说| 国产乱人视频| 国产伦人伦偷精品视频| 日韩欧美在线乱码| 香蕉av资源在线| 久久久国产成人精品二区| 黄色 视频免费看| 又爽又黄无遮挡网站| 国产野战对白在线观看| 日本撒尿小便嘘嘘汇集6| 波多野结衣高清无吗| 熟女人妻精品中文字幕| 午夜福利高清视频| 熟女人妻精品中文字幕| 国产高清视频在线播放一区| 午夜精品在线福利| 变态另类成人亚洲欧美熟女| 欧美性猛交╳xxx乱大交人| 免费一级毛片在线播放高清视频| 日本精品一区二区三区蜜桃| 在线播放国产精品三级| 精品国产美女av久久久久小说| 最新在线观看一区二区三区| 变态另类成人亚洲欧美熟女| 午夜亚洲福利在线播放| 一本综合久久免费| 国产91精品成人一区二区三区| 在线看三级毛片| 久久国产精品影院| 九九热线精品视视频播放| 久久人妻av系列| 日韩欧美精品v在线| 很黄的视频免费| 日韩免费av在线播放| 精品欧美国产一区二区三| 国产一区二区三区视频了| 最近在线观看免费完整版| 亚洲成人久久性| 一进一出抽搐动态| 亚洲真实伦在线观看| 国产97色在线日韩免费| 国产男靠女视频免费网站| 欧美中文日本在线观看视频| 18禁黄网站禁片免费观看直播| 桃色一区二区三区在线观看| 在线视频色国产色| 99久国产av精品| 又紧又爽又黄一区二区| 亚洲精品中文字幕一二三四区| 超碰成人久久| 夜夜爽天天搞| 三级男女做爰猛烈吃奶摸视频| 最近最新免费中文字幕在线| 变态另类成人亚洲欧美熟女| 母亲3免费完整高清在线观看| 欧美一级a爱片免费观看看| 亚洲美女视频黄频| 国产成人欧美在线观看| 两个人的视频大全免费| 天天躁日日操中文字幕| 好看av亚洲va欧美ⅴa在| 久久久久久久午夜电影| 国产高清三级在线| 国产真人三级小视频在线观看| 久99久视频精品免费| 12—13女人毛片做爰片一| 亚洲成av人片免费观看| 精品不卡国产一区二区三区| 色精品久久人妻99蜜桃| 久久国产精品影院| 亚洲精华国产精华精| 无限看片的www在线观看| 俄罗斯特黄特色一大片| 一级毛片精品| 中文字幕人妻丝袜一区二区| 久久热在线av| 久久久久久久久久黄片| 99热这里只有是精品50| 亚洲性夜色夜夜综合| 国产伦在线观看视频一区| 国产av在哪里看| 99riav亚洲国产免费| 无限看片的www在线观看| 此物有八面人人有两片| 一边摸一边抽搐一进一小说| 窝窝影院91人妻| 亚洲国产欧洲综合997久久,| 亚洲成a人片在线一区二区| 老司机在亚洲福利影院| 欧美性猛交╳xxx乱大交人| 丰满人妻熟妇乱又伦精品不卡| 国内精品美女久久久久久| 国产黄色小视频在线观看| 国产激情欧美一区二区| 欧美午夜高清在线| 亚洲精品456在线播放app | 成人三级黄色视频| 性色avwww在线观看| 亚洲自偷自拍图片 自拍| 亚洲无线在线观看| 国产高清三级在线| 一区福利在线观看| 亚洲欧美精品综合久久99| 人人妻人人澡欧美一区二区| 久99久视频精品免费| 在线观看免费视频日本深夜| 欧美日韩乱码在线| 国产精品99久久久久久久久| 嫩草影院精品99| 免费观看精品视频网站| 波多野结衣高清作品| 国产精品永久免费网站| 国产真人三级小视频在线观看| 精品一区二区三区视频在线 | 亚洲av成人一区二区三| 久久精品影院6| 啦啦啦观看免费观看视频高清| 18禁国产床啪视频网站| 伦理电影免费视频| 国产精品,欧美在线| 国产人伦9x9x在线观看|