• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency

    2022-10-26 09:54:00XiaoPingXie謝小平QianYuBai白倩玉GangLiu劉剛PengDong董鵬DaWeiLiu劉大偉YuFengNi倪玉鳳ChenBoLiu劉晨波HeXi習鶴WeiDongZhu朱衛(wèi)東DaZhengChen陳大正andChunFuZhang張春福
    Chinese Physics B 2022年10期
    關鍵詞:劉大偉劉剛

    Xiao-Ping Xie(謝小平) Qian-Yu Bai(白倩玉)Gang Liu(劉剛) Peng Dong(董鵬)Da-Wei Liu(劉大偉) Yu-Feng Ni(倪玉鳳) Chen-Bo Liu(劉晨波) He Xi(習鶴)Wei-Dong Zhu(朱衛(wèi)東) Da-Zheng Chen(陳大正) and Chun-Fu Zhang(張春福)

    1Qinghai Huanghe Hydropower Development CO.,LTD.,Xining 810008,China

    2State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology,Xidian University,Xi’an 710071,China

    Keywords: two-dimensional,device simulation,antireflection layers,tandem solar cells

    1. Introduction

    Silicon (Si) solar cells have dominated the photovoltaic market so far due to their high performance and high reliability since their advent in 1954.[1]Now their power conversion efficiency(PCE)has reached 26.67%,[2]which is approaching their maximum theoretical PCE of 29.4%.[3]To break through this efficiency bottleneck at a lower cost, a tandem technology of metal halide perovskite top cells and crystalline Si bottom cells has attracted explosively increasing attention in both academia and industry areas.[4,5]This is due to the perovskite solar cells(PSC)possessing the advantages of tunable bandgap, bipolar transport, high carrier mobility, easy fabrication process, low cost, and the rapidly increased PCE from 3.8%to 25.7%during ten years.[6–10]Also the theoretical PCE of perovskite/Si tandem cells is as high as 43%,[11]what is more exciting is that they have achieved a laboratory PCE of 29.80% (certified), an efficiency over the theoretical limit of Si cells.

    Perovskite/Si tandem solar cells mainly include two structures of two-terminal (2T, monolithic) and four-terminal(4T,mechanically stacked)devices.[12,13]Comparing with the 2T devices,the main issue of current matching does not exist in 4T devices,where the top perovskite cell and bottom Si cell can be fabricated separately and optimized individually, presenting the natural process compatibility. Nowadays, a PCE of 28.3% has been reported in 4T-perovskite/Si devices,[14]which is also very close to the theoretical limit of Si cells.More importantly, owing to the intrinsic instability of perovskite under light,heat,and moisture conditions induced by the organic cation(MA+or FA+)components,[15]the lifetime of organic–inorganic hybrid perovskite devices(several years)is shorter than that of Si cells(>20 years),which will significantly shorten the operating life of 2T-perovskite/Si tandem devices. While in the 4T tandem modules, the degraded top cells can be replaced easily by new PSCs and the bottom Si modules keep working, which provides another route to improving the longtime stability of perovskite/Si tandem devices in practical applications.

    To further improve the stability of perovskite material,it has been proved to be effective to substitute MA+or FA+by inorganic cation (Cs+), however, the relatively wide bandgap of more stable CsPbIBr2(~2.0 eV)[16]or CsPbBr3(~2.3 eV)[17]limits the ability to absorb light and the PCE of corresponding PSCs; the high crystal temperature (over 200°C)[18]is also not expected for the cost-effective PSCs.Fortunately,the emerging quasi-2D perovskite materials have been considered as one of the most promising strategies to address the instability problem, and found wide applications in light-emitting diodes,photodetectors,and solar cells.[19,20]The quasi-2D perovskite was obtained by cutting off a piece of traditional 3D perovskite along its crystallographic plane and inserting big organic cations to separate the inorganic parts, which behaves like multilayer quantum wells and exhibits greatly improved air, phase, and thermal stability.[21]Simultaneously,the PCE of quasi-2D PSCs increased steadily and exceeded 20%[22,23]by orientation adjustment, organicspacer-cations design, composition engineering, and device engineering.[21]

    The most studied Ruddlesden–Popper(RP)2D perovskite showed a structure of (RNH3)2An-1MnX3n+1, whereRrepresents an aliphatic alkylammonium or aromatic cation,ndenotes the ‘quantum-well’ thickness or the layer number of perovskite sheets.[24]Particularly, both thenand organic components can be used to modulate the bandgap, absorbance, and exciton binding energy of 2D perovskite material. In 2016, the successful fabrication of vertically oriented(BA)2(MA)3Pb4I13by hot-casting[19]paved the way to develop RP 2D-PSCs, and now the PCE over 18% has been reported.[25–27]Songet al.performed a systematic spectroscopic ellipsometry study and extracted the optical dielectric functions and complex refractive indices of phase-pure RP and DJ phase perovskite, which opens the door for modeling and simulating 2D perovskite-based optoelectronic devices.[28]

    In this work,the semitransparent quasi-2D PSCs with an absorber of(BA)2(MA)n-1PbnI3n+1(n=1,2,3,4,5)is used as a top cell to construct a 4T-tandem solar cell with an Siheterojunction bottom cell. The tandem device model has been established by Silvaco Atlas based on the experimental parameters, and the photovoltaic performances for quasi-2D perovskite/Si PSCs have been studied systematically. Simulation results for single-junction PSCs show that the device presents a senior PCE of 17.64%when thenvalue is chosen as 4,which is consistent with the experimental report. In the 4Ttandem device, the top cell(n=4)obtains a PCE of 17.39%and the filtered Si bottom cell possesses a PCE of 11.44%,thus an overall PCE arrives at 28.83%.Furthermore,when a 90-nm LiF anti-reflection layer is introduced,theJscof the top cell is enhanced from 15.56 mA/cm2to 17.09 mA/cm2,i.e., the increment is 9%, the corresponding PCE reaches 19.05% and the overall PCE of the tandem device rises to 30.58%. Simultaneously,in the case ofn=3,n=4,andn=5,all the tandem PCE exceeds 30%,which is greater than the limiting theoretical efficiency of silicon cells. Therefore,besides the improved long-term stability,the 4T quasi-2D perovskite/Si devices provide a more cost-effective tandem strategy to break through the theoretical efficiency limit of Si cells and hold their dominance in the PV market.

    2. Theory and methods

    Silvaco TCAD Atlas device simulator is used to establish the model of single-junction quasi-2D RP PSCs and 4Tperovskite/Si-heterojunction tandem based on the optical and electrical parameters (see Tables S1 and S2 in supporting information)in experimental reports.[29–37]In addition,because the carrier dynamics of quasi-2D perovskite films are closely related to thenvalue, the mobility, carrier concentration and effective state density are inconsistent with differentnvalues.Taking the perovskite film withn=4 as a reference, the perovskite model with different mobilities,doping carrier concentration,and effective state density is analyzed and calculated.Figure S1 in supporting information shows the relationship between the electrical performance and mobility of the device. It can be seen that the change in mobility has no great influence on the electrical performance of the device. Table S3 shows the relationship between the electrical properties of the device and the carrier concentration. When the carrier concentration(ND) changes, the electrical properties of the device do not change significantly. From Table S4, with the increase of the state density(NCandNV),only the open-circuit voltage(Voc)of device changes within the theoretical range[34,38,39]and other parameters are basically unchanged. Therefore, since the electron mobility(Mun),hole mobility(Mup),ND,NC,andNVhave little influence on the overall calculation,n=1, 2,3, 4, and 5 are calculated on the basis ofMun=Mup=50,ND=1×1013,andNC=NV=1×1020. The device geometry as well as the structure of quasi-2D (BA)2(MA)n-1PbnI3n+1perovskite whenn=1,n=2,n=3,n=4,andn=5 is shown in Fig.1. Here,it is assumed that the quantum-well structured quasi-2D perovskite has homogeneous energy landscape and shows no cascade energy transfer behaviors. The top cell possesses a structure of ITO/SnO2/quasi-2D perovskites/spiro-OMeTAD/ITO, the LiF acts as an anti-reflection layer, and the parameters of Si-heterojunction cells are identical to those in our previous research.[40]In addition, a refractive matching layer[41]with a refractive index of about 1.414 is used between the top cell and the bottom cell to reduce the light loss at the interface between the sub-cells. Then the light absorption,J–Vcharacteristics,and optical electric field distributions are systemically studied to obtain an optimal tandem device structure and understand the photoelectric conversion mechanism.The simulations are mainly based on three basic equations,i.e.Poisson’s equation, carrier continuity equation, and driftdiffusion equation,[42]and the detailed calculation method can be found in our previous researches.[40,43,44]

    Fig. 1. (a) The 4T-tandem solar cell structure and (b) schematic crystal structure of quasi-2D RP (BA)2(MA)n-1PbnI3n+1 perovskites with various values of n and bandgap.

    3. Results and discussion

    Comparing the conventional 3D perovskites,the remarkably enhanced stability against moisture of the 2D perovskites can be attributed to the Van der Waals interactions between the organic spacer cations.The lower the value ofn,the higher the stability for 2D perovskite is.[45]It has been verified that the 2D perovskite withn=1 immersing in water can be maintained several minutes without any decomposition from perovskite to lead iodide.[46]On the other hand, the bandgap of 2D perovskites increases with the decreasing ofnvalue, and the wider bandgap will limit their light absorption range and the PCE of PSCs.

    Fig.2. (a)Calculated J–V curves and(b)photovoltaic parameters of single junction quasi-2D(BA)2(MA)n-1PbnI3n+1 PSCs with varying n values.

    Consequently,the cases ofn ≤5 for Ruddlesden–Popper(BA)2(MA)n-1PbnI3n+1perovskite are investigated in this work. For the single junction 2D PSCs with an opaque Ag electrode, the calculatedJ–Vcurves and photovoltaic parameters are shown in Figs.2(a)and 2(b). It can be observed that theJscincreases withnvalue increasing, but theVocshows the opposite trend, and there is no significant change for theFF,the resulting PCE continuously increases when the value ofnis lower than 4 and begins to degrade when the value ofnis set to 5. Thus the quasi-2D PSCs withn=3, 4, and 5 (PCE=15.34%, 17.63%, and 17.53%) can achieve higher PCE and more balance between photovoltaic performance and stability, which is consistent with the experimental result.[47]For the lowernof 1 and 2, the wider bandgaps(2.14 eV and 2.41 eV) limit theJscand PCE, although the corresponding PSCs have largerVocand better stability. However, owing to the low absorption coefficients and poor carrier transport caused by the strong quantum confinement effect,the 2D perovskite withn=1,2 cannot be preferred for photovoltaic applications.

    For the 4T-tandem device of 2D perovskite top cell and Si bottom cell,the efficient segmented spectral absorption between sub-cells is a key to optimizing the overall PCE of tandem devices. Here,the semitransparent 2D PSCs(n=1,2,3,4,5)with an ITO rear electrode are stacked with the Si heterojunction cells. Figure 3 displays the calculated photon absorption andJ–Vcurves of 4T perovskite/Si tandem devices. It can be seen that the semitransparent 2D PSCs mainly absorb the incident photons at short wavelength and the Si bottom cell harvests the long wavelength photons filtered by the top cell,and the light absorption of sub-cells can be tuned by thenvalue of 2D perovskite. When it comes to the photoelectric conversion capacity,the semitransparent 2D PSC shows a lower PCE than that of opaque 2D PSC(Fig.2),which is due to the transmission loss caused by the ITO electrode. Even so,their PCEs increase with thenvalue increasing from 10.40%(n=1)to 17.39%(n=4). However,comparing with the reference Si cell with a PCE of 24.4%andJscof 36.83 mA/cm2,theJscand PCE of the filtered Si bottom cell rapidly degrade to 25.88 mA/cm2(by 36.9%)and 15.39%(by 29.7%)whennequals 1, and further decreases to 18.59 A/cm2and 11.29%with the value ofnincreasing from 1 to 5. The corresponding overall PCEs of 4T tandem devices are 25.79% (n=1),28.29%(n=2),28.51%(n=3),28.83%(n=4),and 28.67%(n=5),respectively. Obviously,the tandem devices with top 2D PSCs(n=3,4,5)have acquired a PCE close to the theoretical efficiency limit of Si cells.

    Fig.3. Calculated absorption spectra and J–V curves of quasi-2D perovskite/Si tandem solar cells with different n values.

    In order to further improve the PCE of perovskite/silicon tandem solar cells, reducing the refection loss at the topcell/air interface may be an efficient optical strategy,and typical various thickness anti-reflection layers of LiF are used to cap the top 2D PSCs. Compared with the highest PCE of 2D perovskite (n= 4)/Si tandem devices, the overall PCE as a function of LiF thickness is shown in Fig.4(a), and it can be observed that the optimal thickness of LiF anti-reflection layer is about 90 nm, corresponding to an improvement of 30.58%in PCE. Also in Fig. 4(b), for the 2D top PSCs with 90nmthick LiF and different values ofn, all the PCEs of tandem devices are enhanced noticeably and exceed 30% when the value ofnequals 3, 4, and 5. The detailedJ–Vcurves of sub-cells can be found in Fig. S1 in the supporting information. Therefore, only by adding an anti-reflection layer, the PCE of quasi-2D perovskite/Si tandem device can surpass the theoretical efficiency limit of Si cells,which is also comparable to those of both 4T 3D-perovskite(hybrid or inorganic)/Si tandem devices and the 2T perovskite/Si tandem cells. At the same time,the quasi-2D perovskites provide a selection of tandem structure with longer operation stability.

    The optimized photovoltaic performance of quasi-2D perovskite (n= 4)/Si tandem device is further discussed in Fig. 5. The top PSC shows a PCE of 19.05% withJsc=17.09 mA/cm2,Voc=1.39 V, andFF=0.8; the bottom Si cell realizes a PCE of 11.53% withJsc= 19.00 mA/cm2,Voc=0.76 V, andFF=0.8; and the tandem device achieve a total PCE as high as 30.58%. It is apparent that the substantially enhancedJscby 9.8% is responsible for the champion PCE,which is confirmed by the obvious increase of photoabsorption in the wavelength from 500 nm to 700 nm as shown in Fig.5(b). The relatively large intensity of optical electric field at 540 nm and 640 nm in Fig.5(d)accord well with the above results. Simultaneously,the introduction of LiF layer triggers off an oscillation behavior of absorption in the Si bottom cell(Fig. 5(c)), but still be helpful for the Si bottom cell asJsc(0.15 mA/cm2)increases slightly. In addition,the PCE andJscloss of bottom Si cell are 52.7%and 48.4%in comparison with those of the reference Si cell,respectively,which,however,are still lower than the 63.7%and 63.8%of the most efficient 3Dperovskite/Si tandem cells.[14]In other words, the employing of quasi-2D top PSC in 4T tandem devices can make the total PCE exceed 30%and reduce the power loss of Si bottom cells.

    Fig. 4. Overall PCEs of tandem solar cells (a) with various thickness LiF anti-reflection layers and(b)with/without(w/o)a 90-nm LiF layer at different values of n.

    Fig. 5. (a) Calculated J–V curves of optimal quasi-2D perovskite (n=4)/Si tandem solar cells with a 90-nm-thick LiF antireflection layer,absorption curves of(b)top cell,and(c)bottom cell,and(d)optical electric field distributions of top cell at wavelengths of 550 nm and 640 nm with/without(w/o)antireflection layer.

    Fig. 6. Optical electric field distributions of tandem cells (a) with and (b)without LiF antireflection layer. (c)Difference between electric field distributions in panels(a)and(b)after adding LiF antireflection layer.

    Furthermore,the 3D images of optical electric field distributions as a function of wavelength and position in top quasi-2D(n=4)PSCs are shown in Fig.6 to understand the optical mechanisms. Here,E1andE2represent the optical electric field in 2D PSCs without and with an LiF antireflection layer.In Figs.6(a)and 6(b),most of the photons at short wavelengths in a range of 300 nm–700 nm are absorbed by the top 2D perovskites;while the electric field distributions at the long wavelength ranging from 700 nm to 1100 nm determine the photon energy that can be harvested by the Si bottom cell and the obvious oscillation of electric field distributions accords with the behavior of photoabsorption in Fig.5(c).At the same time,the overall intensity of optical electric field in quasi-2D PSCs is slightly enhanced after utilizing the LiF anti-reflection layer,which can be clearly distinguished by the difference in electric field intensity displayed in Fig. 6(c). Here, the negative intensity near 750 nm and 900 nm are consistent with the interference minimum of absorption in Fig.5(c),and the positive intensities at all other wavelengths prove the optical modulation effect of LiF anti-reflection layer. On the other hand,the 4T quasi-2D(n=5)perovskite/Si tandem devices also obtain a total PCE of 30% (see Fig. S5); what is interesting is the current density of top and bottom cells (17.79 mA/cm2and 18.17 mA/cm2) are very close to each other, thus the natural current matching makes it possible to construct a 2T-tandem devices of quasi-2D(n=5)PSCs and Si bottom cells. Therefore,this work may open the door to the design and fabrication of quasi-2D perovskite/Si tandem devices with both 4T and 2T structures. Of course,the more efficient reflective layers(double or triple), organic-spacer-cation design, composition and device engineering can be used to improve the performance of quasi-2D top PSCs,and the experimental investigation will go further in future.

    4. Conclusions

    Semitransparent quasi-2D RP PSCs are introduced for the first time to construct 4T tandem devices with the Siheterojunction bottom cells. By establishing the Atlas device model and performing systemic simulations from optical and electrical aspects, a PCE over 30% is achieved for quasi-2D(BA)2(MA)n-1PbnI3n+1)/Si tandem cells with three values ofn(3, 4, and 5) and the LiF anti-reflection layer at the air/top cell interfaces.Whennequals 4,corresponding to a perovskite bandgap of 1.9 eV, the optimized top quasi-2D PSC and bottom Si cell show a PCE of 19.05%and 11.53%,respectively,and the total PCE of the tandem device reaches 30.58%,which exceeds the theoretical efficiency limit of Si based solar cells.More importantly,compared with the traditional 3D PSC,the quasi-2D PSC possesses a comparable PCE and can obviously improve air, phase, and thermal stability. Therefore, the 4T quasi-2D perovskite/Si device provides a more cost-effective tandem strategy and long-term stability solution. This work is instructive for designing and fabricating the perovskite/Si tandem solar cells.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.62004151,62274126,62274126,61874083,and 61804113)and the China Postdoctoral Science Foundation(Grant No.2020T130490).

    猜你喜歡
    劉大偉劉剛
    The state-of-the-art of atmospheric pressure plasma for transdermal drug delivery
    A homogeneous atmospheric pressure air plasma in a 10mm gap based on a threeelectrode configuration
    Plasma-activated hydrogel: fabrication,functionalization,and effective biological model
    Temporal electric field of a helium plasma jet by electric field induced second harmonic(E-FISH)method
    綠水青山 朗朗乾坤
    都市(2022年9期)2022-09-07 09:15:12
    高密400G數據中心交換機的系統設計和應用
    全球高通脹和貨幣政策轉向
    The enhanced aerosol deposition by bipolar corona discharge arrays
    敲詐
    禮物
    金山(2015年8期)2015-08-27 11:15:18
    亚洲欧美精品专区久久| 麻豆久久精品国产亚洲av| 亚洲成人久久爱视频| 久久精品久久久久久噜噜老黄| 日日摸夜夜添夜夜添av毛片| 亚洲精品第二区| 97热精品久久久久久| 午夜福利高清视频| 国产综合懂色| 亚洲国产精品成人久久小说| 九色成人免费人妻av| 亚洲一区二区三区欧美精品 | 国产有黄有色有爽视频| 夜夜爽夜夜爽视频| 麻豆精品久久久久久蜜桃| 高清午夜精品一区二区三区| 亚洲天堂国产精品一区在线| 亚洲综合精品二区| 有码 亚洲区| 国产爱豆传媒在线观看| 欧美人与善性xxx| 亚洲av在线观看美女高潮| 亚洲国产色片| 国产亚洲精品久久久com| 成人漫画全彩无遮挡| 国产有黄有色有爽视频| 久久久久国产网址| 别揉我奶头 嗯啊视频| 成人毛片60女人毛片免费| 少妇的逼水好多| 国产一区有黄有色的免费视频| 国产淫语在线视频| 麻豆成人午夜福利视频| 久久人人爽av亚洲精品天堂 | 18+在线观看网站| 黑人高潮一二区| 99精国产麻豆久久婷婷| 久久久久久久亚洲中文字幕| 日韩一区二区三区影片| 哪个播放器可以免费观看大片| 伦理电影大哥的女人| 国产精品一二三区在线看| av卡一久久| 日韩av免费高清视频| 婷婷色麻豆天堂久久| 久久久久国产网址| 大又大粗又爽又黄少妇毛片口| 成年人午夜在线观看视频| 国产真实伦视频高清在线观看| 在线看a的网站| 免费av不卡在线播放| 亚洲精华国产精华液的使用体验| 国产色婷婷99| 成人综合一区亚洲| 亚洲在线观看片| 亚洲人成网站在线观看播放| 亚洲欧美日韩东京热| 亚洲色图综合在线观看| 街头女战士在线观看网站| 国模一区二区三区四区视频| 国产国拍精品亚洲av在线观看| 蜜臀久久99精品久久宅男| 人人妻人人澡人人爽人人夜夜| 国产淫语在线视频| 亚洲精品国产av蜜桃| 男人爽女人下面视频在线观看| 综合色丁香网| 国产成人91sexporn| 午夜福利高清视频| 亚洲欧美日韩无卡精品| 久久久久久久久久人人人人人人| 日韩一区二区视频免费看| 狠狠精品人妻久久久久久综合| 国产人妻一区二区三区在| 亚洲欧美日韩卡通动漫| 日本猛色少妇xxxxx猛交久久| 日韩伦理黄色片| 中文字幕av成人在线电影| 国产白丝娇喘喷水9色精品| 日韩一区二区视频免费看| 免费少妇av软件| 亚洲精品日本国产第一区| 三级国产精品片| 青春草亚洲视频在线观看| 丝袜美腿在线中文| 国产真实伦视频高清在线观看| 精品国产露脸久久av麻豆| 亚洲欧美精品自产自拍| 在线看a的网站| 在线看a的网站| 日本黄大片高清| 欧美最新免费一区二区三区| 欧美日本视频| 如何舔出高潮| 成人亚洲精品av一区二区| 亚洲精品一区蜜桃| 熟妇人妻不卡中文字幕| 亚洲精品国产av蜜桃| av线在线观看网站| 麻豆精品久久久久久蜜桃| 乱系列少妇在线播放| 在线 av 中文字幕| 亚洲av一区综合| 免费观看a级毛片全部| 免费不卡的大黄色大毛片视频在线观看| 国产成人精品福利久久| 亚洲成人av在线免费| 国产伦在线观看视频一区| 亚洲在线观看片| 一个人看视频在线观看www免费| 男人添女人高潮全过程视频| 伊人久久国产一区二区| 国产又色又爽无遮挡免| 人妻一区二区av| 在线观看一区二区三区激情| 天堂俺去俺来也www色官网| 久久精品国产鲁丝片午夜精品| videos熟女内射| 亚洲电影在线观看av| 久久久久精品久久久久真实原创| 国产一区二区三区av在线| 精品人妻视频免费看| 久久久午夜欧美精品| 少妇人妻一区二区三区视频| 少妇人妻一区二区三区视频| 久久久久久久久大av| 婷婷色综合大香蕉| 制服丝袜香蕉在线| 久久久久久久久久人人人人人人| 特大巨黑吊av在线直播| 国产精品一二三区在线看| 大香蕉97超碰在线| 丝袜脚勾引网站| 久久久久精品性色| 国产免费一区二区三区四区乱码| av国产精品久久久久影院| 视频中文字幕在线观看| a级毛片免费高清观看在线播放| 日本av手机在线免费观看| 只有这里有精品99| freevideosex欧美| 在线看a的网站| 五月开心婷婷网| 国产毛片a区久久久久| 欧美老熟妇乱子伦牲交| 赤兔流量卡办理| 日韩一区二区视频免费看| 国产淫语在线视频| 国产免费又黄又爽又色| 男女那种视频在线观看| 国产乱人偷精品视频| 99久久人妻综合| 在线亚洲精品国产二区图片欧美 | 99九九线精品视频在线观看视频| 有码 亚洲区| 丰满人妻一区二区三区视频av| 免费观看a级毛片全部| 三级国产精品欧美在线观看| 成人亚洲精品一区在线观看 | 97精品久久久久久久久久精品| 欧美成人午夜免费资源| 熟妇人妻不卡中文字幕| 熟妇人妻不卡中文字幕| 熟妇人妻不卡中文字幕| 18禁动态无遮挡网站| 夫妻午夜视频| 九色成人免费人妻av| 深爱激情五月婷婷| 日韩免费高清中文字幕av| 嫩草影院入口| 国产亚洲精品久久久com| 国产精品一二三区在线看| 国产老妇伦熟女老妇高清| 亚洲国产精品成人久久小说| 国产成人aa在线观看| 人妻系列 视频| 狠狠精品人妻久久久久久综合| 亚洲成人一二三区av| 久久久色成人| 国产精品一区www在线观看| 丰满少妇做爰视频| 人妻少妇偷人精品九色| 韩国av在线不卡| 国产中年淑女户外野战色| 狠狠精品人妻久久久久久综合| 亚洲不卡免费看| 亚洲不卡免费看| 尤物成人国产欧美一区二区三区| 亚洲av成人精品一区久久| 亚洲精品国产av蜜桃| 亚洲最大成人av| 午夜亚洲福利在线播放| 狂野欧美激情性xxxx在线观看| 嫩草影院精品99| 亚洲av一区综合| 亚洲aⅴ乱码一区二区在线播放| 色播亚洲综合网| 欧美xxxx黑人xx丫x性爽| 高清欧美精品videossex| 在线播放无遮挡| av福利片在线观看| 日韩av在线免费看完整版不卡| xxx大片免费视频| 在线免费十八禁| tube8黄色片| 大又大粗又爽又黄少妇毛片口| 国产日韩欧美亚洲二区| 欧美一级a爱片免费观看看| 午夜免费观看性视频| 18+在线观看网站| 精品视频人人做人人爽| 人人妻人人爽人人添夜夜欢视频 | 国内揄拍国产精品人妻在线| 99久久精品热视频| 日韩不卡一区二区三区视频在线| 亚洲伊人久久精品综合| 亚洲国产欧美在线一区| 欧美另类一区| 国产亚洲av嫩草精品影院| 亚洲人成网站高清观看| 老司机影院毛片| 国产成人精品久久久久久| 日韩av不卡免费在线播放| 各种免费的搞黄视频| 久久国内精品自在自线图片| 亚洲av中文字字幕乱码综合| 神马国产精品三级电影在线观看| 国产国拍精品亚洲av在线观看| 简卡轻食公司| 赤兔流量卡办理| 亚洲欧美精品专区久久| 久久久久久久午夜电影| 国模一区二区三区四区视频| 免费黄频网站在线观看国产| 99视频精品全部免费 在线| 搡女人真爽免费视频火全软件| 久久6这里有精品| 亚洲av不卡在线观看| 久久久久久久久久久丰满| 国产精品麻豆人妻色哟哟久久| 午夜免费观看性视频| 看免费成人av毛片| 国产高潮美女av| 丰满人妻一区二区三区视频av| 我要看日韩黄色一级片| 丝袜美腿在线中文| 在线 av 中文字幕| 久久精品国产亚洲av天美| 欧美日本视频| 天天躁夜夜躁狠狠久久av| 少妇被粗大猛烈的视频| 麻豆国产97在线/欧美| 一级片'在线观看视频| 性色avwww在线观看| 国产精品麻豆人妻色哟哟久久| 看十八女毛片水多多多| 亚洲av男天堂| 亚洲精品日本国产第一区| 国产精品人妻久久久久久| 日韩av在线免费看完整版不卡| 青青草视频在线视频观看| 如何舔出高潮| 免费看光身美女| 精品人妻偷拍中文字幕| 日韩电影二区| 99久久九九国产精品国产免费| www.色视频.com| 免费看a级黄色片| 1000部很黄的大片| 视频区图区小说| 国产高清有码在线观看视频| 成年免费大片在线观看| 国产淫语在线视频| 成年版毛片免费区| 欧美最新免费一区二区三区| 亚洲成人中文字幕在线播放| 久久久久久久午夜电影| 插阴视频在线观看视频| 乱码一卡2卡4卡精品| 久久精品国产亚洲av涩爱| 亚洲精品久久久久久婷婷小说| 国产精品一及| 一区二区三区乱码不卡18| 秋霞在线观看毛片| 伊人久久精品亚洲午夜| 亚洲熟女精品中文字幕| 好男人视频免费观看在线| 国产色爽女视频免费观看| 男女啪啪激烈高潮av片| 午夜激情久久久久久久| 热99国产精品久久久久久7| 极品少妇高潮喷水抽搐| 中文字幕久久专区| 大陆偷拍与自拍| 亚洲欧美日韩无卡精品| 国产亚洲午夜精品一区二区久久 | 国产亚洲一区二区精品| 一级爰片在线观看| 色网站视频免费| 国产伦精品一区二区三区视频9| 久久97久久精品| 亚洲高清免费不卡视频| 国产精品国产三级国产专区5o| 美女视频免费永久观看网站| 久久这里有精品视频免费| 国产男女超爽视频在线观看| 日韩av不卡免费在线播放| 最近最新中文字幕免费大全7| 欧美日韩综合久久久久久| 久久99蜜桃精品久久| 欧美精品国产亚洲| 久久99热这里只频精品6学生| 国产美女午夜福利| 日本一本二区三区精品| 国产精品一区二区三区四区免费观看| 亚洲av中文av极速乱| 在线观看三级黄色| 嫩草影院入口| 嘟嘟电影网在线观看| 赤兔流量卡办理| 国产成人精品久久久久久| 一区二区av电影网| 免费大片18禁| 国产黄色视频一区二区在线观看| 乱码一卡2卡4卡精品| 国产成人精品福利久久| 自拍偷自拍亚洲精品老妇| 一级片'在线观看视频| 日韩欧美精品免费久久| 91精品国产九色| 97超碰精品成人国产| 永久网站在线| 久久久久久久久大av| 一本久久精品| 一级爰片在线观看| 熟女电影av网| 午夜日本视频在线| 日韩大片免费观看网站| 性色avwww在线观看| 免费黄频网站在线观看国产| 亚洲国产精品999| 亚洲精品aⅴ在线观看| 国产男人的电影天堂91| 一二三四中文在线观看免费高清| 亚洲精品456在线播放app| 一个人看视频在线观看www免费| 久久女婷五月综合色啪小说 | 国产有黄有色有爽视频| 免费不卡的大黄色大毛片视频在线观看| 97热精品久久久久久| 国产高清三级在线| 亚洲国产日韩一区二区| 又大又黄又爽视频免费| 精品久久久精品久久久| 中文乱码字字幕精品一区二区三区| 丝袜喷水一区| 夫妻性生交免费视频一级片| 97超视频在线观看视频| 欧美日韩国产mv在线观看视频 | 美女内射精品一级片tv| 91精品国产九色| 人人妻人人爽人人添夜夜欢视频 | 国产精品av视频在线免费观看| 啦啦啦中文免费视频观看日本| 热re99久久精品国产66热6| 亚洲性久久影院| 成人国产麻豆网| 大片免费播放器 马上看| 久久久久久久久久久丰满| 全区人妻精品视频| 一边亲一边摸免费视频| 在线免费观看不下载黄p国产| 国产精品99久久久久久久久| 日韩中字成人| 欧美日韩国产mv在线观看视频 | 少妇 在线观看| 国产精品麻豆人妻色哟哟久久| 色网站视频免费| 一级片'在线观看视频| 国产中年淑女户外野战色| 国产精品99久久久久久久久| 亚洲美女视频黄频| 嫩草影院精品99| 亚洲国产成人一精品久久久| 国产熟女欧美一区二区| 在线观看一区二区三区| 久久午夜福利片| 乱码一卡2卡4卡精品| 黄色日韩在线| 99久久精品热视频| 人妻少妇偷人精品九色| 国产精品99久久久久久久久| eeuss影院久久| 亚洲精品国产av成人精品| 美女被艹到高潮喷水动态| av播播在线观看一区| 精华霜和精华液先用哪个| 成人漫画全彩无遮挡| 蜜桃久久精品国产亚洲av| 亚洲成色77777| 久久久久久久大尺度免费视频| 秋霞伦理黄片| 久久久午夜欧美精品| 久久影院123| 欧美3d第一页| 伊人久久精品亚洲午夜| eeuss影院久久| 王馨瑶露胸无遮挡在线观看| 中文在线观看免费www的网站| 欧美区成人在线视频| 一本色道久久久久久精品综合| 免费黄色在线免费观看| 女人久久www免费人成看片| 少妇人妻久久综合中文| 久久久久网色| 日韩一区二区视频免费看| 国产精品成人在线| 精品少妇久久久久久888优播| 老司机影院成人| 看免费成人av毛片| 97超视频在线观看视频| 日韩 亚洲 欧美在线| 美女脱内裤让男人舔精品视频| 亚洲精品国产成人久久av| 欧美xxxx性猛交bbbb| 色综合色国产| 日韩大片免费观看网站| 亚洲人与动物交配视频| 国产毛片a区久久久久| 五月玫瑰六月丁香| 成年免费大片在线观看| 亚洲,欧美,日韩| 少妇人妻久久综合中文| 久久久久精品性色| 欧美激情国产日韩精品一区| 久久99热这里只有精品18| 国内精品宾馆在线| 亚洲,欧美,日韩| 亚洲av免费在线观看| 久久精品夜色国产| 少妇高潮的动态图| 中文精品一卡2卡3卡4更新| 在线免费观看不下载黄p国产| 久久久久久久久久久免费av| 免费不卡的大黄色大毛片视频在线观看| 日韩亚洲欧美综合| 国产一区亚洲一区在线观看| 国产成人精品婷婷| 在线观看国产h片| 男人添女人高潮全过程视频| 亚洲欧美一区二区三区黑人 | 日本午夜av视频| 精品人妻熟女av久视频| 日本熟妇午夜| 国产亚洲91精品色在线| 亚洲精品乱码久久久v下载方式| 熟女av电影| 爱豆传媒免费全集在线观看| 国产69精品久久久久777片| 日韩av不卡免费在线播放| 国产国拍精品亚洲av在线观看| 国产久久久一区二区三区| 国产真实伦视频高清在线观看| 色视频www国产| 黄片无遮挡物在线观看| 青春草国产在线视频| 国产黄色免费在线视频| 久久国内精品自在自线图片| 伊人久久精品亚洲午夜| 精品久久久久久久久亚洲| 成年版毛片免费区| 一级片'在线观看视频| 欧美 日韩 精品 国产| 国产精品一区二区性色av| 好男人视频免费观看在线| 亚洲三级黄色毛片| 哪个播放器可以免费观看大片| 热99国产精品久久久久久7| 日本熟妇午夜| 少妇的逼好多水| 熟妇人妻不卡中文字幕| 91aial.com中文字幕在线观看| 一级毛片我不卡| 高清视频免费观看一区二区| 在线观看三级黄色| 极品教师在线视频| 亚洲精品aⅴ在线观看| 一二三四中文在线观看免费高清| 亚洲av中文字字幕乱码综合| www.色视频.com| 色视频www国产| av在线蜜桃| 亚洲,一卡二卡三卡| 一级毛片aaaaaa免费看小| 国产一区二区在线观看日韩| 国产淫片久久久久久久久| 国产探花极品一区二区| 亚洲av福利一区| 中文字幕亚洲精品专区| 日韩欧美 国产精品| 少妇猛男粗大的猛烈进出视频 | 亚洲自拍偷在线| 国语对白做爰xxxⅹ性视频网站| 日日摸夜夜添夜夜添av毛片| 国产欧美另类精品又又久久亚洲欧美| 伊人久久国产一区二区| 亚洲综合色惰| av在线app专区| 搡女人真爽免费视频火全软件| 丝瓜视频免费看黄片| 亚洲熟女精品中文字幕| 久久久久网色| 人人妻人人爽人人添夜夜欢视频 | 搡老乐熟女国产| 老师上课跳d突然被开到最大视频| 亚洲精品视频女| 一本久久精品| 日韩,欧美,国产一区二区三区| 久久久国产一区二区| 欧美高清性xxxxhd video| 汤姆久久久久久久影院中文字幕| 最近手机中文字幕大全| 亚洲最大成人中文| 欧美另类一区| 真实男女啪啪啪动态图| 国产精品人妻久久久影院| 乱码一卡2卡4卡精品| 亚洲欧美成人综合另类久久久| 美女高潮的动态| 久久热精品热| 亚洲国产色片| 国产免费一级a男人的天堂| 美女cb高潮喷水在线观看| 亚洲经典国产精华液单| 一区二区三区四区激情视频| 国产精品人妻久久久久久| 麻豆国产97在线/欧美| 男女那种视频在线观看| 国产伦精品一区二区三区视频9| 特大巨黑吊av在线直播| 日本色播在线视频| 欧美日韩亚洲高清精品| 哪个播放器可以免费观看大片| 99热全是精品| 在线观看av片永久免费下载| 亚洲国产精品成人久久小说| 美女脱内裤让男人舔精品视频| 久久韩国三级中文字幕| 91精品一卡2卡3卡4卡| 国产精品三级大全| 天堂网av新在线| 一级片'在线观看视频| 国产精品麻豆人妻色哟哟久久| 免费av毛片视频| 亚洲久久久久久中文字幕| av免费观看日本| 免费看av在线观看网站| 精品久久久久久电影网| 婷婷色av中文字幕| 日本与韩国留学比较| 一级黄片播放器| 国产有黄有色有爽视频| 一级毛片我不卡| 三级经典国产精品| 女人十人毛片免费观看3o分钟| 99久久九九国产精品国产免费| 日韩成人av中文字幕在线观看| 欧美日本视频| 欧美性感艳星| 熟女av电影| 一级二级三级毛片免费看| 国产精品人妻久久久久久| 男女边吃奶边做爰视频| 亚洲丝袜综合中文字幕| 在线观看三级黄色| 在线观看一区二区三区激情| 国产成人免费观看mmmm| 别揉我奶头 嗯啊视频| 在线观看一区二区三区| 男人狂女人下面高潮的视频| 国产精品成人在线| 国产精品一二三区在线看| 在线观看av片永久免费下载| 亚洲欧美中文字幕日韩二区| 人妻夜夜爽99麻豆av| 一本一本综合久久| 国产免费福利视频在线观看| 美女cb高潮喷水在线观看| 国产有黄有色有爽视频| 最后的刺客免费高清国语| 欧美xxⅹ黑人| 国产成人aa在线观看| 在线看a的网站| 国产精品99久久99久久久不卡 | av在线播放精品| 久久精品国产亚洲av涩爱| 观看美女的网站| 欧美激情国产日韩精品一区| 视频中文字幕在线观看| 特级一级黄色大片| 久久久久久久精品精品| 免费av观看视频| 亚洲av电影在线观看一区二区三区 | 一级黄片播放器| 欧美亚洲 丝袜 人妻 在线| 一级黄片播放器| 日产精品乱码卡一卡2卡三| 建设人人有责人人尽责人人享有的 | 最近手机中文字幕大全| 亚洲国产高清在线一区二区三| 禁无遮挡网站| 久久久久久九九精品二区国产| 秋霞在线观看毛片| 哪个播放器可以免费观看大片| 亚洲国产成人一精品久久久|