• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2

    2022-10-26 09:47:10ZhenWang王振HengcanZhao趙恒燦MengLyu呂孟JunsenXiang項俊森QingxinDong董慶新GenfuChen陳根富ShuaiZhang張帥andPeijieSun孫培杰
    Chinese Physics B 2022年10期
    關(guān)鍵詞:王振張帥

    Zhen Wang(王振) Hengcan Zhao(趙恒燦) Meng Lyu(呂孟) Junsen Xiang(項俊森)Qingxin Dong(董慶新) Genfu Chen(陳根富) Shuai Zhang(張帥) and Peijie Sun(孫培杰)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Science,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: Dirac semimetal,low-energy phonon,thermal conductivity,lattice instability

    1. Introduction

    In addition to their electrical and optical properties that have been subjected to intensive investigation, topological semimetals also show intriguing lattice dynamics and thermal properties that remain largely unexplored. Most of these properties concern the interplay between topological electronic bands and low-energy phonons, as highlighted in the following cases: chiral magnetic effect can alter optical phonons via intrinsic plasmon modes in an external magnetic field;[1]topological singularity in electronic bands is able to induce chiral Kohn anomaly in the phonon dispersions;[2]topological phononic and electronic bands in a class of triplepoint metals are expected to offer a strategy for enhanced thermoelectricity,[3]etc.

    The titled compound Cd3As2is a prototypical Dirac semimetal.[4]It has, on one hand, very high electron mobility derived from symmetry protected Dirac nodes and,on the other hand, surprisingly low lattice thermal conductivity that is indicative of strong phonon scatterings (Refs. [5–8]). The latter phenomenon becomes interesting because of the topological Dirac bands that appear to be highly relevant to lattice dynamics. Thus far, low thermal conductivity has been intensively investigated in thermoelectric materials, most of which host weak chemical bonds that are crucial for reducing phonon velocity and increasing scattering.[9]For Cd3As2,a group of soft optical phonons showing Kohn anomaly associated with the Dirac nodes have been identified byab initiocalculations.[10]These soft optical modes were ascribed to be the leading reason of the low thermal conductivity by increasing the scattering rate of heat-carrying acoustic phonons.In fact, significant softening of low-energy phonons is generically expected in semimetals near topological phase transition, where Kohn anomalies due to intranode or internode electron–phonon scattering may occur near the Brillouinzone center.[11]Accordingly,Raman scattering of Cd3As2has shown significant deviations of selected optical-phonon frequencies from the expectation based on lattice anharmonicity belowT ≈100 K (Ref. [12]). This has been ascribed to the strong fluctuations of lattice degrees of freedom interacting with Dirac electrons.

    From a crystallographic point of view,Cd3As2at ambient conditions crystalizing in the tetragonally distorted antifluorite structure (space groupI41/acd) that hosts topological Dirac bands is located close to a lattice instability. Upon heating to only about 220°C, it transforms to a Zn3As2-type structure with space group(P42/nbc),with at least two more structural phase transitions taking place at higher temperatures,[13,14]Alternatively, application of pressure causes a couple of structural phase transitions as well,starting from the one at a relatively low pressure of~2.3 GPa.[14–16]Given the complex lattice instability as introduced above, an in-depth investigation on this compound by a comprehensive set of thermodynamic probes appears to be essential in characterizing the lattice dynamics and, more importantly, its potential interaction with Dirac electrons.

    2. Experimental methods

    Single crystals of Cd3As2were prepared by self-transport technique;see Ref.[5]for the details of structural characterization and crystal orientation. The specific heat was measured by thermal relaxation method in a commercial physical properties measurement system (PPMS, Quantum Design), and the thermal conductivity by conventional steady-state method with two thermometers and one heater.[5]The measurements of thermal expansion were performed by using a miniaturized capacitance dilatometer and an Andeen-Hagerling 2500A capacitance bridge.[17]We have also measured the transverse and longitudinal ultrasound velocitiesυTandυLof a large polycrystalline sample(2.67×1.97×0.96 mm3). Here,the sound velocities were measured by a phase comparison technique,[18]where the frequency of the input acoustic wave was continuously adjusted during the temperature scan in order to maintain a constant phase of a given output echo. The elastic moduli were calculated from the ultrasound velocities asCi=dυ2i(i=L or T),withdbeing the sample density.

    3. Results and discussion

    The thermal conductivityκ(T) measured within the asgrown(112)plane of a single crystal is shown in Fig.1. Thermal measurements in the(100)plane have revealed very similar data,[8]indicating weak anisotropy of the thermal conductivity in Cd3As2. The electronic contributionκe(T)calculated based on the Wiedemann–Franz law and the measured electrical resistivity (Fig. 1 inset) are also shown. In estimating the electronic part, we assume that the Sommerfeld value of the Lorenz number applies to this material in the temperature window of interest. We note, however, that to what extent the Wiedemann–Franz law holds in Dirac materials remains an issue of debate. For example,the Sommerfeld value of the Lorenz number may change significantly when a magnetic field is applied[19]or the Fermi level crosses the Dirac point;[20]the two situations that do not apply to the current work and Cd3As2. In spite of a moderate sample dependence of theκ(T)profiles reported in the literature,[7,8,21]they are qualitatively similar with two marked features: a nearly temperature-independent, small value ofκ(T) atT >100 K and a markedκ(T)maximum atT≈10 K.The lattice thermal conductivity (κL≈κ-κe) atT >100 K falls into the range of the uncertainties(±0.6 W/mK at room temperature)in our measurements,whereas the averageκLreported in Ref.[8]is only 0.7 W/mK in the wide temperature range of 100-300 K.The small value ofκL(T) and its weak temperature dependence atT >100 K indicate that the phonon mean free path is probably reduced to about its lower limit in this temperature

    Fig. 1. The thermal conductivity κ(T) measured within the as-grown(112)plane of Cd3As2. Error bars denote standard deviations estimated from the average of measurements under multiple temperature gradients. The electronic contribution κe(T) (red solid line) is estimated fromtheWiedemann–Franzlaw,κeρ/T=L0,withthe Sommerfeld valueoftheLorenznumberL0≡=2.44×10-8 W·Ω·K-2.

    Considering a reasonable value ofκL≈0.7 W/mK forT >100 K(Ref.[8]),the phonon mean free pathlis estimated to be 6.96 ?A,which is even shorter than the lattice parameters of Cd3As2,i.e.,a=b=12.67 ?A andc=25.35 ?A.Note that,this is only a naive and rough estimate because on one hand the kinetic description of thermal conductivity is likely on the brink of failure for Cd3As2with a large primitive cell,[22]and on the other hand the real phonon mean free path is actually mode dependent. Nevertheless, such estimate is meaningful because it confirms that the lattice thermal conductivity is already at or not far from its lower limit. The pronounced increase ofκ(T)below 50 K is a typical feature originated from phonon–phonon Umklapp processes,and the drastic decrease below about 10 K can be attributed to boundary scatterings of heat-carrying phonons in semimetals and semiconductors.[23]Here, the temperature-dependent specific heat determines the temperature profile ofκ(T) because the phonon mean free path is a constant. Though how the Dirac electrons impact onκLcannot be straightforwardly observed, it can be reliably inferred fromκLas a function of the field: whileκLis vanishingly small in zero and small fields (B <2 T) where Dirac electrons are highly mobile, it increases gradually and becomes dominant in higher fields where Dirac electrons are spatially constrained by the magnetic fields; seeκ(B) shown in Fig.2(e)of Ref.[5].

    Before proceeding with other experimental results, we stress that a simple inspection into the crystal structure of Cd3As2can already yield important insight into the unusually lowκLvalues. Cd3As2crystallizes in a large primitive cell with the number of formula unitZ= 16, i.e., totallyN=80 atoms in one primitive cell. A large primitive cell means that the reciprocal space is predominantly occupied by a large number(3N-3)of optical modes. As a result,the thermodynamically-weighted heat capacity and the Debye temperature for heat-carrying acoustic phonons are greatly suppressed. This causes a reducedκLfrom purely crystallographic reasons, as can be inferred from the aforementioned kinetic description for thermal conductivity. Such a strong reduction trend ofκLwith increasing primitive cell volume has been already reported previously.[24]

    Fig. 2. (a) The low-temperature specific heat of Cd3As2 depicted as C/T3 vs T. The data is fitted by considering a Debye term and two Einstein modes (blue solid line). Dotted and dashed lines are individual contributions from the Debye term and the leading Einstein mode,respectively(see text). (b)The low-temperature C(T)deviates strongly from Debye’s T-cube law that is commonly described by a linear dependence of C/T versus T2. By contrast, the description based on the combined Debye and Einstein terms(blue solid line)can reasonably reproduce the curved C/T(T2)line. Inset: T-dependent specific heat of Cd3As2.

    With the unusual thermal conductivity in mind,below we examine the specific heat carefully. Figure 2(a) displays the low-temperature specific heat asC/T3versusT. While the specific heat within Debye’s description will obey aT-cube law and appear constant in this representation, an enhanced and broad peak is observed for Cd3As2atT ≈10 K. This is a thermodynamic signature of dominant low-energy optical modes, and has been intensively studied for cage compounds with“rattling”guest ion.[25]According to a rule of thumb obtained previously, the Einstein temperatureθEcharacterizing these modes is five times the temperature position of theC/T3vs.Tmaximum,which meansθE≈50 K in this case.

    The specific heat shown asC/TversusT2forT <8 K in Fig. 2(b) further demonstrates the importance of low-energy Einstein modes. Different to the expectation from Debye’s description,theC/T(T2)variation deviates significantly from a straight line. A linear dependence ofC/T(T2),if any,appears only atT2<5,namely,below about 2 K,where the contribution of low-energy optical models freezes out.Considering the significant contribution from soft optical phonons in the temperature window of interest,we combine Debye’s description and a couple of local Einstein modes to fitC(T),

    HereRis the gas constant,andAnis the number of Einstein oscillations andN0is the number of atoms per formula unit. The result of fitting is shown by the blue solid line in Figs.2(a)and 2(b), from which we obtainθD=111 K andθE1=42 K. A second Einstein mode withθE2=101 K,which is less important compared to the first one, was also included for a better fitting. Markedly, the fit can capture the prominent features in specific heat including the broad peak inC/T3versusT(Fig.2(a))and the curvedC/TversusT2at low temperatures(Fig.2(b)).

    Fig. 3. Longitudinal (CL) and transverse (CT) elastic moduli and the calculated bulk modulus K =CL-CT as a function of temperature for Cd3As2. The corresponding longitudinal (υL) and transverse (υT)sound velocities are also shown(right axis).

    From the longitudinal and transverse sound velocities of Cd3As2,the average sound velocity ˉυcan be calculated as follows:

    From Eq.(2),one readily obtains ˉυ=1943 m/s for 200 K and 2005 m/s for 10 K. The moderately small sound velocities,which measure the phonon dispersions at the Brillouin zone center,are not the leading reason of the extremely low thermal conductivity. For comparison, FeSb2, which has an average sound velocity of 3110 m/s (less than double ˉυof Cd3As2)reveals a lattice thermal conductivity of several tens of W/mK at 100 K(Ref.[26]). Furthermore,the Debye temperatureθDcan also be estimated from the average phonon velocity

    HereVis the primitive cell volume andhthe Planck’s constant. The estimated Debye temperature,θD=187 K,is considerably larger than that evaluated from the specific heat,θD=111 K.Unlike the specific heat which measures the thermodynamics of all low-energy phonons via the phonon density of states,sound velocities probe the group velocities of acoustic phonons at the low frequency limit and are less influenced by low-energy optical modes. The strong disagreement between the two values ofθDhints at a strong deviation of the low-energy phonons from Debye’s description,again pointing to the importance of low-energy optical modes in the description of the thermodynamic properties.

    Figure 4 shows the linear thermal expansion coefficient estimated from the measured length change dL,α=1/L(dL/dT), as a function of temperature. Here,αis measured alongcaxis of single-crystalline Cd3As2, which is the direction where Dirac cones are located.[10]In general,α(T)behaves similar toC(T)(Fig.2 inset);it reveals,however,negative values below about 10 K.Given the experimental resultsK(T),C(T)andα(T),one can easily estimate the Gr¨uneisen ratioγ=3VmKα/Cas an experimental indicator of lattice anharmonicity,whereVmis the molar volume.

    Fig. 4. Thermal expansion coefficient α measured along c axis (left)and the estimated thermodynamic Gr¨uneisen ratio γ (right). Drastic drop of γ is observed at T <100 K,ending up with negative values at T <10 K.

    As shown in Fig.4(right axis),γ(T)remains 1.1(±0.1)in a wide temperature range above 100 K.This is a Gr¨uneisen ratio within the range of common expectation for simple solids.AtT <100 K,γ(T)reveals a drastic drop and becomes negative atT <10 K, corresponding to the low-temperature negative thermal expansion. The temperature window whereγ(T) drops significantly matches well to that where Einstein modes are observed in specific heat(Fig.2). Phenomenologically, the unusual behavior ofγ(T) originates from the temperature dependence ofα(T)that shows stronger decrease below 100 K relative to that ofC(T)towards negative values at low temperatures. Likewise, atT~100 K, strong frequency reduction of several optical phonons has been observed by Raman scattering,[12]and this temperature has been regarded as a characteristic energy scale of interband scattering in the Dirac states coupling to low-energy optical phonons. In line with the negative values ofγ(T) that indicate lattice instability at low temperatures, the tetragonal metallic phase of Cd3As2is indeed rather unstable and changes to a semiconducting monoclinic phase at a critical pressurepc≈2.3 GPa,[14,16]as has been mentioned above. Different from the general expectation that pressure drives an insulator or a semiconductor to a metallic phase due to band broadening,the opposite trend observed in Cd3As2indicates that the Dirac bands might play an important role in the structural instability,as inferred from our thermal expansion measurements. Because apparent anomaly is not observed in the elastic moduli,we speculate the unusualγ(T)behavior at low temperatures to be related to thermodynamics of low-energy optical modes.

    4. Summary

    To summarize, we have studied the low-energy phonons of Cd3As2by a comprehensive set of thermodynamic probes.As far as the extremely low lattice thermal conductivity is concerned, Cd3As2appears to be unusual in the following aspects: 1) A large unit cell sets a strong constraint on the thermodynamics of low-energy phonons, leading to reduced specific heat and enhanced phonon scattering rate of acoustic phonons; 2) Soft optical phonons, which are partially related to the Kohn anomaly caused by Dirac bands, can be clearly captured by low-temperature specific heat revealing significant Einstein terms; 3) A drastic decrease of the thermodynamic Gr¨uneisen ratio is observed below 100 K, where enhanced coupling between lattice and electronic degrees of freedom has been previously confirmed. The decrease ends up with a negative thermal expansion at low temperatures that is indicative of lattice instability. At last, we note that while it is safe to conclude that the Dirac electrons are relevant to the phonon softening and the lattice instability in Cd3As2,to what extent the interplay between lattice dynamics and Dirac electrons plays its role therein remains an interesting issue. Because very low thermal conductivities have been observed in a number of topological semimetals such as ZrTe5(Ref.[27]),further investigation and comparison between different compounds along this line appear to be an interesting project.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974389, 12141002 and 52088101), the National Key R&D Program of China (Grant No. 2017YFA0303100), the Chinese Academy of Sciences through the Scientific Instrument Developing Project (Grant No.ZDKYYQ20210003),and the Strategic Priority Research Program(Grant No.XDB33000000).

    猜你喜歡
    王振張帥
    Efficient method to calculate the eigenvalues of the Zakharov–Shabat system
    Analytical three-periodic solutions of Korteweg–de Vries-type equations
    CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment
    Special issue on selected papers from HVDP 2020
    Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge
    EXISTENCE AND UNIQUENESS OF THE GLOBAL L1 SOLUTION OF THE EULER EQUATIONS FOR CHAPLYGIN GAS?
    青年演員張帥
    歌海(2021年6期)2021-02-01 11:27:18
    THE EXISTENCE OF A BOUNDED INVARIANT REGION FOR COMPRESSIBLE EULER EQUATIONS IN DIFFERENT GAS STATES*
    博物館安防系統(tǒng)改造工程淺析
    Talking about the Design Concept of "People-oriented" in Visual Communication Desig
    青年生活(2019年3期)2019-09-10 16:57:14
    日韩成人在线观看一区二区三区| 亚洲精品久久国产高清桃花| 国产成人av激情在线播放| 在线观看午夜福利视频| 国产私拍福利视频在线观看| 亚洲中文字幕日韩| 欧洲精品卡2卡3卡4卡5卡区| 国产一区在线观看成人免费| 国产精品久久久人人做人人爽| 国产高清激情床上av| 在线观看免费午夜福利视频| а√天堂www在线а√下载| 在线观看66精品国产| 国产美女午夜福利| 国产私拍福利视频在线观看| 好男人电影高清在线观看| 好看av亚洲va欧美ⅴa在| 久久久国产成人精品二区| 美女高潮喷水抽搐中文字幕| 成人特级黄色片久久久久久久| 99久久成人亚洲精品观看| 亚洲精品久久国产高清桃花| 一进一出好大好爽视频| 每晚都被弄得嗷嗷叫到高潮| x7x7x7水蜜桃| 免费在线观看日本一区| 精品一区二区三区视频在线 | 天堂网av新在线| 精品久久久久久久末码| www.999成人在线观看| 国产高清视频在线播放一区| 久久久久久久亚洲中文字幕 | 综合色av麻豆| 12—13女人毛片做爰片一| 搡老熟女国产l中国老女人| 亚洲欧美日韩卡通动漫| 精品久久久久久,| 内地一区二区视频在线| 综合色av麻豆| 久久精品国产自在天天线| 国产精品亚洲一级av第二区| 久久人妻av系列| 女警被强在线播放| 99国产综合亚洲精品| 啦啦啦免费观看视频1| 午夜两性在线视频| 欧美最黄视频在线播放免费| 制服丝袜大香蕉在线| 久久久成人免费电影| 网址你懂的国产日韩在线| 亚洲欧美激情综合另类| 女人高潮潮喷娇喘18禁视频| 天堂av国产一区二区熟女人妻| 又爽又黄无遮挡网站| 91在线精品国自产拍蜜月 | 88av欧美| 嫩草影视91久久| 亚洲欧美日韩东京热| 午夜老司机福利剧场| 日本黄大片高清| 国产 一区 欧美 日韩| 国产精品美女特级片免费视频播放器| 亚洲精品美女久久久久99蜜臀| 2021天堂中文幕一二区在线观| 麻豆成人av在线观看| 天堂网av新在线| 一卡2卡三卡四卡精品乱码亚洲| 国产淫片久久久久久久久 | www日本在线高清视频| 麻豆国产av国片精品| av在线天堂中文字幕| 熟女电影av网| bbb黄色大片| 女人高潮潮喷娇喘18禁视频| 男女那种视频在线观看| 一进一出抽搐动态| 哪里可以看免费的av片| 成人永久免费在线观看视频| 男人和女人高潮做爰伦理| 日韩欧美免费精品| 国产欧美日韩一区二区三| 成人国产一区最新在线观看| 欧美不卡视频在线免费观看| 99热这里只有是精品50| 国产视频内射| 色播亚洲综合网| 久久久久久大精品| 黄色女人牲交| 香蕉久久夜色| 国产单亲对白刺激| 深爱激情五月婷婷| 色哟哟哟哟哟哟| 国产伦精品一区二区三区四那| 99在线视频只有这里精品首页| 欧美性猛交黑人性爽| 亚洲成av人片在线播放无| 啪啪无遮挡十八禁网站| 国产一区二区激情短视频| 村上凉子中文字幕在线| 岛国在线观看网站| 国产欧美日韩精品一区二区| 特大巨黑吊av在线直播| 日韩亚洲欧美综合| 欧美日韩乱码在线| 长腿黑丝高跟| 少妇丰满av| 亚洲av二区三区四区| 中文字幕久久专区| 日本a在线网址| 国产午夜精品久久久久久一区二区三区 | 国产亚洲精品综合一区在线观看| 19禁男女啪啪无遮挡网站| 757午夜福利合集在线观看| 午夜久久久久精精品| 欧美中文日本在线观看视频| 俺也久久电影网| 一二三四社区在线视频社区8| 激情在线观看视频在线高清| 99热精品在线国产| 国产日本99.免费观看| 国产精品日韩av在线免费观看| 不卡一级毛片| 国产激情偷乱视频一区二区| 欧美国产日韩亚洲一区| 一级作爱视频免费观看| 国产精品三级大全| 久久这里只有精品中国| 99精品在免费线老司机午夜| 最新美女视频免费是黄的| 黄色片一级片一级黄色片| 免费观看的影片在线观看| 亚洲国产精品成人综合色| 国产精品爽爽va在线观看网站| 少妇人妻一区二区三区视频| 人妻夜夜爽99麻豆av| 色老头精品视频在线观看| 久久精品国产99精品国产亚洲性色| 久久久久九九精品影院| 欧美一区二区国产精品久久精品| 草草在线视频免费看| 搡老岳熟女国产| 亚洲美女黄片视频| 久久精品亚洲精品国产色婷小说| 给我免费播放毛片高清在线观看| 国产精品精品国产色婷婷| 男女下面进入的视频免费午夜| 精品人妻偷拍中文字幕| 中文资源天堂在线| 国产色爽女视频免费观看| 亚洲avbb在线观看| 在线观看免费午夜福利视频| 最后的刺客免费高清国语| 久久久久久大精品| 精华霜和精华液先用哪个| 精品久久久久久,| 少妇丰满av| 人人妻,人人澡人人爽秒播| 在线观看av片永久免费下载| 日本成人三级电影网站| 又紧又爽又黄一区二区| 婷婷亚洲欧美| 欧美高清成人免费视频www| 久久久久久久久中文| 亚洲av中文字字幕乱码综合| 国产aⅴ精品一区二区三区波| 无人区码免费观看不卡| 成年人黄色毛片网站| 亚洲av第一区精品v没综合| 热99在线观看视频| 亚洲 欧美 日韩 在线 免费| 国产黄片美女视频| 狂野欧美激情性xxxx| 中文字幕熟女人妻在线| 国产精品日韩av在线免费观看| 精品福利观看| 少妇的逼水好多| www国产在线视频色| 中文字幕人妻丝袜一区二区| 免费av毛片视频| 国产精品一及| 久久中文看片网| 男人舔女人下体高潮全视频| 少妇丰满av| 波多野结衣高清无吗| 亚洲av二区三区四区| 亚洲国产精品合色在线| 国产探花极品一区二区| 香蕉久久夜色| 国产精品99久久久久久久久| 日韩国内少妇激情av| 免费无遮挡裸体视频| 国产精品1区2区在线观看.| 国产毛片a区久久久久| 欧美乱码精品一区二区三区| 日日夜夜操网爽| 性色avwww在线观看| 午夜福利视频1000在线观看| 俺也久久电影网| 一本久久中文字幕| 欧美日韩福利视频一区二区| 国产精品嫩草影院av在线观看 | 琪琪午夜伦伦电影理论片6080| 成人三级黄色视频| 欧美在线黄色| 好男人电影高清在线观看| 婷婷精品国产亚洲av| svipshipincom国产片| 亚洲av第一区精品v没综合| 国产精品免费一区二区三区在线| 丰满人妻一区二区三区视频av | 日本五十路高清| 久久久色成人| 成年女人永久免费观看视频| 中文资源天堂在线| 久99久视频精品免费| 亚洲七黄色美女视频| 床上黄色一级片| 国内少妇人妻偷人精品xxx网站| 免费av不卡在线播放| 欧美中文日本在线观看视频| 禁无遮挡网站| 日本 欧美在线| 久久亚洲真实| 天美传媒精品一区二区| 偷拍熟女少妇极品色| 午夜福利在线观看免费完整高清在 | 国产私拍福利视频在线观看| 国产午夜精品久久久久久一区二区三区 | 丰满的人妻完整版| 国产免费一级a男人的天堂| 又黄又爽又免费观看的视频| 成人18禁在线播放| 老鸭窝网址在线观看| 香蕉丝袜av| 中文字幕人妻丝袜一区二区| www.999成人在线观看| 亚洲狠狠婷婷综合久久图片| 综合色av麻豆| 国产精品三级大全| 欧美性感艳星| av视频在线观看入口| 天天躁日日操中文字幕| 午夜福利视频1000在线观看| 成人午夜高清在线视频| a在线观看视频网站| 十八禁网站免费在线| 日本与韩国留学比较| 99视频精品全部免费 在线| 日韩国内少妇激情av| 免费大片18禁| 淫秽高清视频在线观看| 国模一区二区三区四区视频| 成年女人毛片免费观看观看9| 夜夜躁狠狠躁天天躁| 日本免费一区二区三区高清不卡| 亚洲欧美日韩卡通动漫| 黑人欧美特级aaaaaa片| 午夜福利欧美成人| 好男人在线观看高清免费视频| 免费一级毛片在线播放高清视频| 免费av毛片视频| bbb黄色大片| 成人国产综合亚洲| 精品乱码久久久久久99久播| 亚洲第一欧美日韩一区二区三区| 悠悠久久av| 搡老妇女老女人老熟妇| 一级毛片女人18水好多| 搡女人真爽免费视频火全软件 | 国产野战对白在线观看| 亚洲人与动物交配视频| 51午夜福利影视在线观看| 亚洲黑人精品在线| 我要搜黄色片| 欧美日韩中文字幕国产精品一区二区三区| 2021天堂中文幕一二区在线观| 久久久国产成人精品二区| 国产精品日韩av在线免费观看| 中文字幕人妻丝袜一区二区| 日本精品一区二区三区蜜桃| 精品久久久久久久毛片微露脸| 日本a在线网址| 国产精品三级大全| 久久精品影院6| 99国产综合亚洲精品| 成人午夜高清在线视频| 深爱激情五月婷婷| 叶爱在线成人免费视频播放| 91av网一区二区| 91字幕亚洲| 手机成人av网站| 亚洲一区二区三区不卡视频| 亚洲最大成人中文| 18禁黄网站禁片午夜丰满| 中国美女看黄片| 一级黄色大片毛片| 99国产综合亚洲精品| 熟女人妻精品中文字幕| 亚洲av五月六月丁香网| 一级作爱视频免费观看| 噜噜噜噜噜久久久久久91| 欧美日韩国产亚洲二区| 日韩大尺度精品在线看网址| 一本久久中文字幕| 免费av不卡在线播放| 综合色av麻豆| 欧美日本亚洲视频在线播放| 麻豆一二三区av精品| 成人18禁在线播放| 国产真实乱freesex| 亚洲国产精品sss在线观看| 不卡一级毛片| 全区人妻精品视频| 精品午夜福利视频在线观看一区| 久久久久久大精品| 成人高潮视频无遮挡免费网站| 在线国产一区二区在线| 18禁美女被吸乳视频| 日韩免费av在线播放| 亚洲专区国产一区二区| 国产成人aa在线观看| 亚洲欧美激情综合另类| 最新中文字幕久久久久| 日韩欧美 国产精品| 亚洲第一欧美日韩一区二区三区| 蜜桃亚洲精品一区二区三区| 午夜福利成人在线免费观看| 国产在视频线在精品| 99久久精品一区二区三区| 草草在线视频免费看| 久久久久免费精品人妻一区二区| 色尼玛亚洲综合影院| 成人欧美大片| 日韩欧美 国产精品| 亚洲精品粉嫩美女一区| 最近视频中文字幕2019在线8| 亚洲av第一区精品v没综合| 午夜老司机福利剧场| 又爽又黄无遮挡网站| 午夜精品一区二区三区免费看| 少妇的逼水好多| www日本在线高清视频| 大型黄色视频在线免费观看| 老汉色∧v一级毛片| 精品一区二区三区视频在线观看免费| 18禁黄网站禁片免费观看直播| 19禁男女啪啪无遮挡网站| 日本精品一区二区三区蜜桃| 哪里可以看免费的av片| 免费搜索国产男女视频| 18禁黄网站禁片午夜丰满| 色尼玛亚洲综合影院| 一级毛片高清免费大全| 国语自产精品视频在线第100页| 嫩草影视91久久| 午夜免费观看网址| 久久久精品欧美日韩精品| 两个人视频免费观看高清| 最近在线观看免费完整版| 国产精品亚洲av一区麻豆| 亚洲人成网站高清观看| 9191精品国产免费久久| 精品久久久久久久人妻蜜臀av| 757午夜福利合集在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久婷婷人人爽人人干人人爱| 九九热线精品视视频播放| 亚洲精品久久国产高清桃花| 久久九九热精品免费| 久久九九热精品免费| 午夜福利成人在线免费观看| 少妇的逼水好多| 全区人妻精品视频| 色在线成人网| 99在线人妻在线中文字幕| 久久精品91无色码中文字幕| 欧美色欧美亚洲另类二区| 午夜精品一区二区三区免费看| 网址你懂的国产日韩在线| 99视频精品全部免费 在线| 日本黄色视频三级网站网址| 婷婷精品国产亚洲av在线| 精华霜和精华液先用哪个| 国产欧美日韩一区二区三| 欧美激情在线99| 黄色片一级片一级黄色片| 久久久国产成人免费| 亚洲一区高清亚洲精品| 国产精品一区二区免费欧美| 中文资源天堂在线| 日本黄色视频三级网站网址| 国产伦精品一区二区三区视频9 | 白带黄色成豆腐渣| 免费人成在线观看视频色| 国产精品1区2区在线观看.| 精品一区二区三区人妻视频| 午夜福利欧美成人| 日韩欧美免费精品| 亚洲人成电影免费在线| 欧美色欧美亚洲另类二区| 免费人成在线观看视频色| 久久香蕉精品热| 国产野战对白在线观看| 久久久久久久久久黄片| 天天添夜夜摸| 亚洲国产色片| 在线播放国产精品三级| 激情在线观看视频在线高清| 好男人电影高清在线观看| 最新中文字幕久久久久| 在线观看美女被高潮喷水网站 | 国产成人aa在线观看| 久久久久精品国产欧美久久久| 少妇高潮的动态图| 亚洲精品在线观看二区| 亚洲18禁久久av| 久久性视频一级片| 99热这里只有精品一区| 国产午夜精品论理片| av天堂在线播放| 久久精品国产自在天天线| 欧美zozozo另类| 熟女少妇亚洲综合色aaa.| 精品久久久久久成人av| 久久久久精品国产欧美久久久| 免费av不卡在线播放| 亚洲精品美女久久久久99蜜臀| 国产日本99.免费观看| 韩国av一区二区三区四区| 国产高清激情床上av| 别揉我奶头~嗯~啊~动态视频| 亚洲国产欧美网| 男人舔女人下体高潮全视频| 亚洲欧美日韩高清专用| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美三级三区| 99久久精品国产亚洲精品| 成年版毛片免费区| 色综合站精品国产| 法律面前人人平等表现在哪些方面| 亚洲国产高清在线一区二区三| 99国产综合亚洲精品| 欧美大码av| 无遮挡黄片免费观看| 欧美色视频一区免费| 亚洲av五月六月丁香网| 久久香蕉国产精品| 熟女少妇亚洲综合色aaa.| 十八禁人妻一区二区| 亚洲五月天丁香| 啦啦啦韩国在线观看视频| 国产欧美日韩一区二区三| 成年免费大片在线观看| 婷婷精品国产亚洲av| 欧美一区二区国产精品久久精品| 欧美日韩亚洲国产一区二区在线观看| 国内精品美女久久久久久| 午夜亚洲福利在线播放| 国产高清videossex| 我的老师免费观看完整版| 性色av乱码一区二区三区2| 国产激情欧美一区二区| 午夜a级毛片| 国产麻豆成人av免费视频| 变态另类成人亚洲欧美熟女| 国产亚洲欧美在线一区二区| 欧美日韩亚洲国产一区二区在线观看| 国产精品综合久久久久久久免费| 69av精品久久久久久| 成人一区二区视频在线观看| 日本 av在线| 午夜激情欧美在线| 在线观看免费视频日本深夜| 日韩欧美免费精品| 国产激情欧美一区二区| 国产精品久久久久久精品电影| 国产日本99.免费观看| 一区二区三区激情视频| 国产精品精品国产色婷婷| 亚洲在线观看片| 国产免费av片在线观看野外av| 最新在线观看一区二区三区| 人妻夜夜爽99麻豆av| 亚洲精品影视一区二区三区av| 中文字幕av在线有码专区| 国产高清视频在线观看网站| 国产久久久一区二区三区| 亚洲成人精品中文字幕电影| 国产亚洲av嫩草精品影院| 激情在线观看视频在线高清| 有码 亚洲区| 黄色丝袜av网址大全| 少妇人妻一区二区三区视频| 51国产日韩欧美| av福利片在线观看| 久久久久久大精品| 国产综合懂色| 久久精品国产自在天天线| 最近在线观看免费完整版| 欧美日韩综合久久久久久 | 亚洲欧美日韩卡通动漫| 好看av亚洲va欧美ⅴa在| 亚洲av日韩精品久久久久久密| 一本精品99久久精品77| 色噜噜av男人的天堂激情| 亚洲人与动物交配视频| 日韩中文字幕欧美一区二区| 天天躁日日操中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 久久99热这里只有精品18| 91麻豆av在线| 亚洲美女黄片视频| 一级作爱视频免费观看| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩卡通动漫| 国产亚洲精品av在线| 变态另类丝袜制服| 国产又黄又爽又无遮挡在线| 日本 av在线| 久久久国产成人精品二区| 亚洲专区中文字幕在线| 高清毛片免费观看视频网站| 波野结衣二区三区在线 | 桃色一区二区三区在线观看| 精品国产亚洲在线| 一个人观看的视频www高清免费观看| 国产午夜精品论理片| 久久久久久久午夜电影| 淫妇啪啪啪对白视频| 久久中文看片网| 精品99又大又爽又粗少妇毛片 | 男插女下体视频免费在线播放| 欧美一级a爱片免费观看看| 国产高清视频在线播放一区| tocl精华| 婷婷精品国产亚洲av| 99久久无色码亚洲精品果冻| 人人妻人人看人人澡| 九九久久精品国产亚洲av麻豆| 91麻豆av在线| 人人妻,人人澡人人爽秒播| 国产成人影院久久av| 中文资源天堂在线| 国产精品爽爽va在线观看网站| 免费在线观看日本一区| 五月玫瑰六月丁香| 两个人看的免费小视频| 男人舔女人下体高潮全视频| 久久久国产成人精品二区| 色在线成人网| 色视频www国产| 男人舔奶头视频| 国产中年淑女户外野战色| 91字幕亚洲| 可以在线观看的亚洲视频| 1000部很黄的大片| 久久久色成人| 国产免费一级a男人的天堂| 亚洲av免费高清在线观看| 欧美三级亚洲精品| 欧美激情在线99| 国产黄片美女视频| 夜夜爽天天搞| 国产毛片a区久久久久| 性色av乱码一区二区三区2| 99久久99久久久精品蜜桃| a级毛片a级免费在线| 9191精品国产免费久久| a级毛片a级免费在线| 中文字幕高清在线视频| 国产精品爽爽va在线观看网站| 欧美高清成人免费视频www| 国产一区二区三区在线臀色熟女| 国产伦精品一区二区三区四那| 国产av不卡久久| 亚洲人成网站高清观看| 欧美黄色片欧美黄色片| 日本在线视频免费播放| 国产高清激情床上av| 国产精品 欧美亚洲| 丰满的人妻完整版| 国产av一区在线观看免费| 美女黄网站色视频| 精品一区二区三区av网在线观看| 99精品欧美一区二区三区四区| 日韩欧美国产在线观看| 99热只有精品国产| 天堂网av新在线| 麻豆国产97在线/欧美| 麻豆一二三区av精品| or卡值多少钱| 又黄又粗又硬又大视频| 免费观看人在逋| 成人高潮视频无遮挡免费网站| 51午夜福利影视在线观看| 激情在线观看视频在线高清| 99国产精品一区二区蜜桃av| 小说图片视频综合网站| 美女cb高潮喷水在线观看| 不卡一级毛片| 精品欧美国产一区二区三| 亚洲中文字幕日韩| 久久久国产成人免费| av天堂中文字幕网| 国模一区二区三区四区视频| 在线观看免费视频日本深夜| 一区二区三区免费毛片| av天堂中文字幕网| 男女视频在线观看网站免费| 国产色婷婷99| 香蕉av资源在线| 高清在线国产一区| 日本五十路高清| 桃红色精品国产亚洲av| 日本成人三级电影网站|