• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers

    2022-10-26 09:48:14ZhiWeiJia賈志偉LiLi李麗YiYanGuo郭一巖AnBangWang王安幫HongHan韓紅JinChuanZhang張錦川PuLi李璞ShenQiangZhai翟慎強(qiáng)andFengQiLiu劉峰奇
    Chinese Physics B 2022年10期
    關(guān)鍵詞:王安韓紅李麗

    Zhi-Wei Jia(賈志偉) Li Li(李麗) Yi-Yan Guo(郭一巖) An-Bang Wang(王安幫) Hong Han(韓紅)Jin-Chuan Zhang(張錦川) Pu Li(李璞) Shen-Qiang Zhai(翟慎強(qiáng)) and Feng-Qi Liu(劉峰奇)

    1Key Laboratory of Advanced Transducers and Intelligent Control System,Ministry of Education and Shanxi Province,College of Physics and Optoelectronics,Taiyuan University of Technology,Taiyuan 030024,China

    2Key Laboratory of Semiconductor Materials Science,Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    Keywords: periodic oscillations,chaotic oscillations,mutual-coupled quantum cascade lasers

    1. Introduction

    Quantum cascade lasers(QCLs)are very promising midinfrared semiconductor lasers, which have been proven to be powerful and versatile.[1,2]By elaborately designing the structure of the active zone superlattice, the wavelength of QCLs can be tailored to cover the whole mid-infrared region.[3–5]Because of the lower transmission loss and higher scattering tolerance in the mid-infrared atmospheric windows bands(3 μm–5 μm and 8 μm–14 μm)compared to the well-developed nearinfrared bands, QCLs can find applications in diverse fields,such as free space communications,[6–8]laser ranging,[9]remote sensing,[10,11]and optoelectronic countermeasure.[12]

    In the practical use, the stability of QCLs subject to inevitable external optical perturbation is very important,while the dynamic behaviors of QCLs have not been well understood. External optical perturbation can drive near-infrared semiconductor lasers, which are based on inter-band transition, from stable state to various dynamic states, including periodic oscillation,[13,14]chaotic laser state,[15,16]lowfrequency fluctuations,[17–19]regular pulse packages,[20]etc.Unlike inter-band semiconductor lasers, QCLs are based on the inter-subband electron transition,[1]with ultrafast carrier dynamics[21]and theoretically near-zero linewidth enhancement factor(α-factor).[22]As a result,QCLs seem to be more stable to external optical perturbation.[23]However, dynamic states of QCLs are often observed in applications and researches. In 2016, Grillotet al. reported the experimental observation of low-frequency chaotic laser in a distributed feedback (DFB) QCL with external optical feedback.[24]Recently, Wanget al. observed low-frequency oscillations in QCLs with tilted optical feedback.[25,26]There are also some theoretical models, based on rate equations or Maxwell–Bloch equations,demonstrating periodic oscillations,[27]selfpulsations,[28]low-frequency fluctuations,[24]even wide-band chaotic laser in QCLs.[29]But these works are not enough to understand the dynamic behaviors of QCLs. Experimental observation of high-frequency dynamic oscillations is still lacking,apart from the active modulation and self-pulsations. The wide-band chaotic laser predicted by Ref. [29] cannot be observed even the feedback strength is higher than 60% in our experiment.

    The high-frequency periodic oscillation in inter-band semiconductor lasers is always related to the relaxation oscillation dynamic, and the wide-band chaotic laser state is usually resulted from the interaction of the external periodic dynamic and the relaxation oscillation dynamic. But the relaxation oscillation is absent in QCLs because of the ultrafast carrier dynamics.[30]We can deduce that the high-frequency oscillation in QCLs should be related to a high-frequency dynamic,such as optical modes beating.

    In this work, we numerically investigated the dynamic states in mutual-coupled mid-infrared QCLs based on the Lang–Kobayashi equations. The two QCLs had different optical frequencies to bring in optical modes beating dynamic.The external-cavity length between the two QCLs wasL=1.5 m, corresponding to the injection time delayτinj=L/c.When the injection strengthkinjwas as low as 0.1,three types of period-one states with different periods were found,which were injection time delayτinj, 2τinj, and reciprocal of the detuning frequency. The evolution of dynamic states at different frequency detuning Δfwas also studied askinjincreased.Several dynamic states were observed, including period-one,square-wave,quasi-period,pulse-burst and chaos.The physics mechanism of the dynamical evolution was discussed. It can be concluded that: (i) external-cavity dynamic and optical modes beating are the mainly periodic dynamics; (ii) strong injection can stimulate strong optical nonlinear and high-order harmonics dynamics to break the periodic oscillations;(iii)the complex pulse-burst and chaotic states are resulted from the interaction of the external-cavity periodic dynamic and optical modes beating and the stimulation of optical nonlinear.

    2. Theoretical model

    Figure 1 shows the schematic of the two-stage band structure of a typical mid-infrared QCLs active zone and the structure diagram of the mutual-coupled QCLs. As shown in Fig.1(a),each stage of the QCLs active zone is composed of an extraction/injection region and an active region. Electrons from the last stage are injected into the energy level 3 of the active region by the extraction/injection region. Then electrons in the energy level 3 transit to the energy level 2 with the timeτ32, meanwhile, photons are stimulated. Subsequently, electrons in the energy level 2 are scattered to the energy level 1 by longitudinal-optical phonons with the timeτ21. Afterwards electrons in the energy level 1 are extracted and injected into the next stage with the timeτout. Becauseτ21andτoutare shorter thanτ32, population inversion occurs between the energy level 3 and the energy level 2. Though electrons in the energy level 3 also transit to the energy level 1 with the timeτ31, population inversion does not occur between the energy level 3 and the energy level 1 because of the very shortτ21.Based on the band structure,the rate equations describing the number of carriers are as follows:

    Fig.1. (a)Schematic of two-stage band structure of QCLs active zone. (b)Structure diagram of mutual-coupled QCLs.

    whereφrepresents the phase of the optical field,mis the stage number in the active zone,βis the spontaneous emission factor,τspis the spontaneous emission time,kinjis the injection strength, which is defined by the ratio of the injected laser power and the intrinsic laser power,τLis the round-trip time inside the laser cavity,αis the linewidth enhancement factor of QCLs, which is smaller than that in traditional inter-band semiconductor lasers. The coupling phaseθ1,2is

    Table 1. The used parameters for the simulation.

    The rate Eqs.(1)–(5)are numerically solved by using the fourth-order Runge–Kutta method with time lag 0.1 ps. The obtainedS(t) is regarded as the time series of laser intensity.The electric field of laser can be described by

    whereωis the angular frequency of QCL.The Fourier transforms ofS(t)andE(t)are used to describe the power spectra and optical spectra.

    3. Results and discussion

    3.1. Absence of the relaxation oscillation

    Firstly,we solved the rate equations of free-running QCL and studied the response of the QCL by applying the step current, where the current was increased from low-level currentIthto a high-level current. Figure 2(a) shows the QCL responses with the high-level currents of 1.01Ithand 2Ith. As shown, the photon number monotonically increases from the low-level value to the high-level value. There is no relaxation oscillation occurring, which is similar to the existed viewpoint.[30]The response times, which are defined as the time of photon number increasing from 10% to 90%, are respectively 12.18 ps and 11.31 ps when the high-level currents are 1.01Ithand 2Ith. Figure 2(b) plots the response time as a function of the high-level current. As the high-level current increases, the response time decreases. This indicates that a high current can enhance fast dynamics in QCLs. Therefore,we chose the high pump current of 2Ith, with theαequal to 1.7,in the following work.

    Fig.2. (a)QCL response with the high-level current of 1.01Ith and 2Ith. (b)The response time as a function of the high-level current.

    3.2. Three types of period-one states

    Secondly, we solved the rate equations of the mutualcoupled QCLs with fixed injection strengthkinj=0.1 and varying the detuning frequency Δf. The nonlinear dynamic states of the two QCLs are similar, therefore, we only show the results of QCL1in this paper.

    Three types of period-one (P1) states with different periods are found. The time series, power spectra and optical spectra are plotted in Fig. 3. At Δf=0 GHz, as shown in Fig.3(a),sinusoid-like time series with the period of the injection time delayτinjis observed,with a fundamental frequency peak of 0.2 GHz and very low harmonic peaks in the power spectrum. In the optical spectrum,there are a cluster of peaks with the interval of 0.2 GHz. This is different from the P1 state of the inter-band semiconductor lasers,where the fundamental frequency is mainly determined by the relaxation oscillation. At Δf=1 GHz, as shown in Fig. 3(b), the period is equal to twice the injection time delay (2τinj), with a fundamental frequency peak of 0.1 GHz in the power spectrum.In the optical spectrum,the interval of peaks is also 0.1 GHz.At Δf=20 GHz, as shown in Fig. 3(c), the period is about 51.4 ps, the fundamental frequency peak in the power spectrum isfΔ~19.438 GHz,and the interval of peaks in the optical spectrum is alsofΔ.

    In our model, Δf=0 GHz means that QCL1and QCL2are exactly identical. Therefore,the mutual-coupled structure is equivalent to self-injection with a time delay. The P1 state with the period ofτinjcan be identified as the dynamic oscillation from the external-cavity periodic dynamics,which is also observed in the vertical-cavity surface-emitting laser.[32]Actually, there will never be two identical QCLs. The situation at Δf=0 GHz will not be described in following. When Δf/=0 GHz and is small, complete injection locking is easily realized in the mutual-coupled QCLs. Complete injection locking means that the intrinsic resonant mode is suppressed.In this case,the laser mode is decided by the injected field,and one QCL is an optical modulation and feedback component for the other QCL.The P1 state with the period of 2τinjis corresponding to the gradual mode hopping,which is resulted from the external-cavity optical injection. In Fig. 3(b), two peaks with the interval of Δf=1 GHz can also be observed in the optical spectrum,while the peak of 1 GHz cannot be observed in the power spectrum. This indicates that the two modes do not exist simultaneously,which also proves the mode hopping.Due to the existence of a series of external-cavity modes, the time series is sinusoidal-like. When Δfincreases to 20 GHz,injection locking is not complete, i.e., the intrinsic resonant mode will not be suppressed by the optical injection. In this case,the intrinsic resonant mode and the laser mode from optical injection coexist in QCLs. As shown in Fig.3(c3),more than two peaks can be observed, which demonstrates that the relative phase between the two modes is locked by mutual injection. Therefore, the P1 state with the period offΔis induced by optical modes beating. The oscillation frequencyfΔis slightly smaller than Δf,which is the same as that in QCL with unidirectional optical injection.[27]Because the pulling effect in QCLs dominates over the red-shift effect,the injected mode pulls the resonant mode away from its free-running frequency towards the injected one.

    Fig. 3. Three types of period-one states at detuning frequency (a) Δf =0 GHz, (b) Δ f =1 GHz, (c) Δ f =20 GHz, with fixed injection strength kinj =0.1. Column 1 shows time series, column 2 shows power spectra and column 3 shows optical spectra. The insets in(a3)and(b3)show the enlarged view around the peaks. The finj is the optical frequency of the laser mode resulted from optical injection.

    3.3. Influence of injection strength at different detuning frequencies

    Furtherly, we studied the evolution of dynamic states by increasing injection strengthkinjat the Δfof 2 GHz, 7 GHz,14 GHz,20 GHz,and 29 GHz,which corresponded to the five typical evolution routes.

    Figure 4 depicts the time series, power spectra and optical spectra at Δf=2 GHz with differentkinj. Atkinj=0.1,as shown in Fig.4(a), the P1 state is similar to that in Fig.3(b).The time series shows a distorted sinusoidal waveform and hence high-order harmonic peaks arise in the power spectra.The distorted waveform is corresponding to the decreased injection locking when Δfincreases. Atkinj=0.45,as shown in Fig.4(b),the time series is a square wave(SW)with the period of 2τinjand duty cycle of about 40%. In the optical spectrum,the external-cavity modes are weakened,the intrinsic resonant mode and the injected laser mode become obvious. It can be explained by that the stronger injection enhances the stability of laser modes, to some extent, suppressing the externalcavity modes.As a result,the time series transfers into SW.Atkinj=0.58,QCLs exhibit quasi-periodic(QP)oscillation,with the consistent period with that of Figs.4(a)and 4(b). And the wavelength blueshift can be observed in the optical spectrum,with more external-cavity modes. This indicates that strong nonlinear optical action occurs and breaks the injection locking,leading to the QP oscillation.

    Fig.4. Time series,power spectra and optical spectra at Δf =2 GHz for injection strength kinj of(a)0.1,(b)0.45,and(c)0.58.

    Fig.5. Time series,power spectra and optical spectra at Δf =7 GHz for injection strength kinj of(a)0.01,(b)0.13,(c)0.25,and(d)0.35.

    Fig.6. Time series,power spectra and optical spectra at Δf =14 GHz for injection strength kinj of(a)0.01,(b)0.3,(c)0.35,and(d)0.4. The inset in(b2)shows the enlarged view around the peaks.

    Figure 5 shows the time series,power spectra and optical spectra at Δf=7 GHz with differentkinj. Atkinj=0.01, as shown in Fig. 5(a), the P1 state resulted from optical modes beating is observed. The time series has a sinusoidal waveform. There exists a sharp peak atfΔof 6.74 GHz and a small peak at external-cavity frequencyfECof 0.1 GHz in the power spectrum. The optical spectrum is similar to that in Fig.3(c3).Atkinj=0.13, the QCLs exhibit pulse burst (PB) state with stable amplitude and a burst period of 2τinj,and the pulses do not have evident periodicity. The power spectrum seems to indicate chaotic state with external-cavity periodic peaks. So the PB state can be thought as an intermittent chaotic state. In the optical spectrum, a wide envelope peak with a sharp central peak can be observed. The envelope peak and sharp peak correspond to the stable parts and the PB parts, respectively.Askinjincreases,the number of pulses in one burst decreases.Atkinj=0.25,QCLs exhibit SW state with the period of 2τinjand duty cycle of 30%. Atkinj=0.35,QCLs exhibit QP state.The SW and QP states are similar to those at Δf=2 GHz.

    Figure 6 shows the time series,power spectra and optical spectra at Δf=14 GHz with differentkinj. Atkinj=0.01,as shown in Fig. 6(a), the P1 state resulted from optical modes beating with the sinusoidal time series is observed. There are only sharp peaks at integer multiplefΔin the power spectrum.The external-cavity periodic dynamic is completely suppressed. The optical spectrum is similar to that in Fig.3(c3).Atkinj=0.3,both the optical modes beating periodic dynamic and the external-cavity periodic dynamic become evident in the time series and power spectrum. Here we choose a critical periodicity suppression ratio of 20 dB.If the optical modes beating peak is 20 dB higher than the external-cavity periodic peak in the power spectrum,the dynamic state can be thought as P1 state. Otherwise, it is QP state, which is different from the QP state in Figs. 4(c) and 5(d). In the optical spectrum,thefΔis 12.01 GHz. Atkinj=0.35,the QCLs exhibit a weak chaotic state, with evident envelope peaks in the power and optical spectra. ThefΔis 6.82 GHz. Atkinj=0.4, the QCLs exhibit a strong chaotic state,with a wide-band and flat power spectrum and a very wide envelope optical spectrum. In the optical spectrum,only one envelope peak can be observed.

    Figure 7 shows the time series, power spectra and optical spectra at Δf= 20 GHz with differentkinj. Atkinj=0.01, the QCLs exhibit the similar P1 state to that shown in Fig.6(a). The external-cavity periodic dynamic is completely suppressed. Atkinj=0.39, the QCLs exhibit the similar QP state to that shown in Fig.6(b). In the optical spectrum,thefΔis 16.79 GHz. Atkinj=0.55,the QCLs exhibit a chaotic state with a wide-band and flat power spectrum and a very wide envelope optical spectrum.But the chaotic state is different from that in Fig. 6(d). There is a very wide envelope peak around 20 GHz in the power spectrum. In the optical spectrum,there are two envelope peaks with the interval of 20.98 GHz.

    We think that the two chaotic states in the mutual-coupled QCLs have different physical origins. When Δfis small, the pulling effect under strong injection can make the intrinsic resonant mode and injected mode very close, leading to strong interaction of the external-cavity periodic dynamic and optical modes beating. As a result, chaotic oscillation occurs. In the optical spectrum, there is only one wide envelope peak.When Δfis large, the pulling effect will be disabled askinjincreases,because of the strong optical nonlinear. Though the interaction of the external-cavity periodic dynamic and optical modes beating is weakened, the strong optical nonlinear can also break the periodic oscillation, leading to the chaotic oscillation. In the optical spectrum, there are two envelope peaks with the interval of Δf.

    Fig.7. Time series,power spectra and optical spectrum at Δf =20 GHz for injection strength kinj of(a)0.01,(b)0.39,and(c)0.55. The inset in(b2)shows the enlarged view around the peaks.

    Fig.8. Time series,power spectra and optical spectrum at Δf =29 GHz for injection strength kinj of(a)0.1,(b)0.57 and(c)0.59.

    Figure 8 shows the time series,power spectra and optical spectra at Δf=29 GHz with differentkinj. Atkinj=0.1, the QCLs exhibit the P1 state resulted from optical modes beating,with very sharp peaks at integer multiplefΔin the power spectrum. A small peak atfECcan also be observed. Askinjincreases, the peaks at integer multiplefΔare gradually broadened and the peaks at integer multiplefECare gradually heightened. Atkinj=0.57,the peak atfΔ=24.08 GHz is still 24 dB higher than that atfEC=0.1 GHz. The dynamic state is P1 state. Atkinj=0.59,QCLs exhibit QP state with the period of 1/fΔ. In the time range of one period,higher-frequency oscillation can be observed. In the power spectra,apart from the peaks at integer multiples offΔ, there are also some peaks at the frequencies higher than 40 GHz. In the optical spectrum,narrow peaks can be observed.

    3.4. Mapping of dynamic states

    In order to furtherly understand the dynamic behaviors in QCLs, the mapping of dynamic states in the parameter space of Δfandkinjis presented in Fig. 9(a). In the figure, different dynamic states are shown by different colors. The blue zones represent the P1 state. Two P1 zones can be observed:the lower left one is the P1 resulted from the external-cavity periodic dynamic, the lower right one is the P1 resulted from optical modes beating. The light-blue zone represents the SW state. The SW state zone is only observed in the range of detuning frequency lower than 10 GHz, where complete injection locking can be achieved. The green zone represents the QP state. The QP state zone actually consists of three parts: external-cavity QP state zone (examples in Figs. 4(c)and 5(d)), optical modes beating QP state zone (example in Fig. 8(c)), and the bioscillation QP state zone (examples in Figs. 6(b) and 7(b)). The light-green zones represent the PB state. The PB state zones are multiple discrete small zones,which are distributed in the QP state zone,where strong interaction of the external-cavity periodic dynamic and the optical modes beating periodic dynamic occurs. The white zone represents the chaotic(C)state.

    Figure 9(b)shows the chaos bandwidth in the parameter space, which is given by the red dash line box in Fig. 9(a).Two types of chaotic states are given the names of chaos and chaos(Δf),which are distinguished by whether there is a wide envelope peak at Δf. The black dash line is the boundary between chaos and chaos(Δf). In the chaos zone,the bandwidth is always around 14 GHz. In the chaos(Δf) zone, the bandwidth increases gradually with the increase of Δf, showing the way to generate mid-infrared wide-band chaotic laser in mutual-coupled QCLs.

    Fig.9. (a)Mapping of dynamical states in the parameter space of detuning frequency Δ f and injection strength kinj. P1: period-one;SW:square wave;QP:quasi period; PB:pulse burst; C:chaos. The orange dashed line from left to right represents the detuning frequencies of 2 GHz,7 GHz, 14 GHz, 20 GHz,and 29 GHz respectively. (b)Bandwidth of chaotic state in parameter space of Δf and kinj,given by the red dash line box in(a).

    4. Conclusion

    We numerically investigated the dynamic states in mutual-coupled mid-infrared QCLs and discussed the physical mechanism of dynamic states evolution. Three types of P1 states with different periods were found, which wereτinj,2τinj, and reciprocal of the detuning frequency. There was no relaxation oscillation observed. By changing the injection strength and detuning frequency,several other dynamic states were demonstrated, including SW, QP, PB, and chaotic laser.The external-cavity periodic dynamics and optical modes beating are the mainly periodic dynamics. High-order harmonics dynamics and strong optical nonlinear can be stimulated by strong injection. When Δfis small or very large,the interaction of the two periodic dynamics is very weak. Strong injection can drive the P1 state to SW and QP states. When Δfis in the proper range,strong interaction of the two periodic dynamics occurs,leading to PB state and chaotic state. The PB state can be thought as an intermittent chaotic state. Strong injection can make the chaotic state more stable. This work helps to understand the physics mechanism of dynamic behaviors in QCLs and open a new way to mid-infrared wide-band chaotic laser.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2019YFB1803500),the National Natural Science Foundation of China (Grant No. 61805168), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 201801D221183 and 20210302123185), International Cooperation of Key Research and Development Program of Shanxi Province (Grant No.201903D421012),Research Project Supported by Shanxi Scholarship Council of China(Grant No.2021-032),Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2019L0133), and Fund for Shanxi“1331 Project”Key Innovative Research Team.

    猜你喜歡
    王安韓紅李麗
    李麗教授簡(jiǎn)介
    Thermal Hall effect and the Wiedemann-Franz law in Chern insulator
    心中的中國(guó)夢(mèng)
    百花(2022年11期)2023-01-30 16:57:55
    元日
    冰凍太陽(yáng)光
    韓紅愛(ài)心慈善基金會(huì)
    曲耶?戲耶?——王安祈《紅樓夢(mèng)》京劇論
    緣何抒情,怎樣寫(xiě)意?——王安祈戲曲研究中傳統(tǒng)與現(xiàn)代的相互表述
    中華戲曲(2018年1期)2018-08-27 10:04:08
    韓紅三錄《絨花》
    做人與處世(2018年8期)2018-06-05 08:27:48
    朋友韓紅
    做人與處世(2016年3期)2016-03-14 07:54:04
    国产精品三级大全| 在线免费观看不下载黄p国产 | 国产亚洲精品久久久久久毛片| 亚洲一区二区三区不卡视频| 国产亚洲精品av在线| 日韩欧美在线乱码| 欧美潮喷喷水| 午夜日韩欧美国产| 欧美+日韩+精品| 丁香六月欧美| 美女被艹到高潮喷水动态| 欧美绝顶高潮抽搐喷水| 婷婷亚洲欧美| 麻豆成人av在线观看| 国产 一区 欧美 日韩| 别揉我奶头~嗯~啊~动态视频| 超碰av人人做人人爽久久| 国产一区二区在线观看日韩| 日韩免费av在线播放| 日本黄大片高清| 18+在线观看网站| 少妇高潮的动态图| 老熟妇乱子伦视频在线观看| 又黄又爽又免费观看的视频| 夜夜看夜夜爽夜夜摸| 亚洲成人久久性| 人人妻人人澡欧美一区二区| 日本与韩国留学比较| 国产野战对白在线观看| 免费看a级黄色片| www日本黄色视频网| 色综合亚洲欧美另类图片| 亚洲精品色激情综合| 欧美午夜高清在线| 亚洲国产欧美人成| 我要搜黄色片| 亚洲国产精品成人综合色| 日韩av在线大香蕉| 男人和女人高潮做爰伦理| 成年女人毛片免费观看观看9| 日韩大尺度精品在线看网址| 91狼人影院| 身体一侧抽搐| av国产免费在线观看| 欧美+亚洲+日韩+国产| 村上凉子中文字幕在线| 日韩免费av在线播放| 日本黄色视频三级网站网址| 99国产极品粉嫩在线观看| 国产高清激情床上av| 亚洲精品粉嫩美女一区| 少妇裸体淫交视频免费看高清| 免费人成视频x8x8入口观看| 欧美成人一区二区免费高清观看| 午夜免费激情av| 精品熟女少妇八av免费久了| 亚洲人成伊人成综合网2020| 麻豆av噜噜一区二区三区| 精品午夜福利视频在线观看一区| 欧美日韩亚洲国产一区二区在线观看| 高清在线国产一区| 丁香六月欧美| 搞女人的毛片| 一个人看的www免费观看视频| 国产极品精品免费视频能看的| 好男人电影高清在线观看| 波多野结衣高清无吗| 日本与韩国留学比较| 日韩欧美国产一区二区入口| 午夜福利欧美成人| 精品乱码久久久久久99久播| 国产精品一区二区三区四区久久| 深夜精品福利| 美女xxoo啪啪120秒动态图 | 亚洲欧美清纯卡通| 18美女黄网站色大片免费观看| 97超级碰碰碰精品色视频在线观看| 免费人成在线观看视频色| 小说图片视频综合网站| 国产高清激情床上av| 女人十人毛片免费观看3o分钟| 在线免费观看不下载黄p国产 | 亚洲精品一卡2卡三卡4卡5卡| 婷婷色综合大香蕉| 一级毛片久久久久久久久女| 亚洲人成伊人成综合网2020| 日本一本二区三区精品| 午夜日韩欧美国产| h日本视频在线播放| 成人国产一区最新在线观看| 久久人人爽人人爽人人片va | 18+在线观看网站| 欧美+亚洲+日韩+国产| 亚洲自偷自拍三级| 亚洲精品影视一区二区三区av| 久久久久性生活片| 淫妇啪啪啪对白视频| 91狼人影院| 国产精品久久久久久久电影| 丁香欧美五月| 亚洲黑人精品在线| av在线老鸭窝| 好男人电影高清在线观看| 国产精品爽爽va在线观看网站| 97超级碰碰碰精品色视频在线观看| 国产精品99久久久久久久久| 亚洲激情在线av| 美女cb高潮喷水在线观看| 精品一区二区三区av网在线观看| 婷婷精品国产亚洲av在线| 亚洲av一区综合| 极品教师在线视频| 亚洲国产高清在线一区二区三| 免费高清视频大片| 亚洲成a人片在线一区二区| 99国产精品一区二区三区| 一a级毛片在线观看| 欧美成人一区二区免费高清观看| 天堂av国产一区二区熟女人妻| av天堂在线播放| 在线观看美女被高潮喷水网站 | av天堂在线播放| 午夜亚洲福利在线播放| 乱码一卡2卡4卡精品| 国产免费一级a男人的天堂| 综合色av麻豆| 日韩欧美在线二视频| 熟女电影av网| 亚洲无线在线观看| 欧美国产日韩亚洲一区| 中文字幕av成人在线电影| 俄罗斯特黄特色一大片| 老司机午夜福利在线观看视频| 亚洲人成网站高清观看| 久久欧美精品欧美久久欧美| 亚洲七黄色美女视频| 欧美另类亚洲清纯唯美| 亚洲va日本ⅴa欧美va伊人久久| 国内精品美女久久久久久| 国产一区二区激情短视频| 最近最新免费中文字幕在线| 国产大屁股一区二区在线视频| 国产免费一级a男人的天堂| 国产精品爽爽va在线观看网站| 国产精品伦人一区二区| 又紧又爽又黄一区二区| 亚洲最大成人av| 国产单亲对白刺激| 日本黄大片高清| 90打野战视频偷拍视频| 亚洲av不卡在线观看| 变态另类成人亚洲欧美熟女| 90打野战视频偷拍视频| 久久99热6这里只有精品| 人妻丰满熟妇av一区二区三区| 18+在线观看网站| 亚洲欧美日韩东京热| 在线观看av片永久免费下载| 亚洲av成人av| 免费观看人在逋| 国产一区二区三区在线臀色熟女| 国产一区二区在线观看日韩| www.www免费av| 热99re8久久精品国产| 麻豆成人午夜福利视频| 嫁个100分男人电影在线观看| 日日干狠狠操夜夜爽| 国产精品自产拍在线观看55亚洲| 成年女人永久免费观看视频| 噜噜噜噜噜久久久久久91| 久久久久久久精品吃奶| 免费搜索国产男女视频| 最近中文字幕高清免费大全6 | 午夜影院日韩av| 精品久久久久久,| ponron亚洲| 18禁黄网站禁片免费观看直播| 日韩欧美精品v在线| 国产主播在线观看一区二区| 91麻豆精品激情在线观看国产| 久久6这里有精品| 国产欧美日韩一区二区精品| 亚洲欧美激情综合另类| 窝窝影院91人妻| 国产在线男女| 波多野结衣巨乳人妻| 免费av不卡在线播放| 亚洲,欧美,日韩| av中文乱码字幕在线| 男女床上黄色一级片免费看| 男女做爰动态图高潮gif福利片| 99在线人妻在线中文字幕| 欧美性猛交黑人性爽| 两个人视频免费观看高清| 日韩欧美免费精品| 色哟哟·www| 精品久久久久久久久av| 亚洲精华国产精华精| 老司机福利观看| 人妻久久中文字幕网| 99热精品在线国产| 99热精品在线国产| 日日夜夜操网爽| 国产精品亚洲美女久久久| 人人妻人人看人人澡| 日韩欧美在线乱码| 国产免费男女视频| 亚洲成人免费电影在线观看| 神马国产精品三级电影在线观看| 色在线成人网| 国产精品,欧美在线| 偷拍熟女少妇极品色| 亚洲成av人片免费观看| xxxwww97欧美| 人妻丰满熟妇av一区二区三区| 午夜日韩欧美国产| 一级黄色大片毛片| 好男人电影高清在线观看| 高清日韩中文字幕在线| 久久性视频一级片| 男女视频在线观看网站免费| 亚洲性夜色夜夜综合| 亚洲18禁久久av| 久久精品夜夜夜夜夜久久蜜豆| 久久精品人妻少妇| 我的女老师完整版在线观看| 无遮挡黄片免费观看| 国内少妇人妻偷人精品xxx网站| 五月伊人婷婷丁香| 人人妻,人人澡人人爽秒播| 久久人人爽人人爽人人片va | 9191精品国产免费久久| 成人三级黄色视频| 91久久精品国产一区二区成人| 国产精品久久久久久久久免 | 99在线人妻在线中文字幕| x7x7x7水蜜桃| 亚洲国产精品合色在线| 国产高清激情床上av| 啪啪无遮挡十八禁网站| 国产高清三级在线| 欧美+亚洲+日韩+国产| 国产精品爽爽va在线观看网站| 亚洲成人久久爱视频| 好看av亚洲va欧美ⅴa在| 国产主播在线观看一区二区| 免费搜索国产男女视频| 偷拍熟女少妇极品色| 国产精品久久久久久久久免 | 亚洲内射少妇av| 欧美xxxx性猛交bbbb| 老司机深夜福利视频在线观看| 3wmmmm亚洲av在线观看| av在线天堂中文字幕| 精品日产1卡2卡| 老司机深夜福利视频在线观看| www日本黄色视频网| 中文字幕熟女人妻在线| 午夜激情福利司机影院| 高潮久久久久久久久久久不卡| 日韩精品青青久久久久久| 久久中文看片网| 69人妻影院| 日本黄色片子视频| 又黄又爽又刺激的免费视频.| 欧美+日韩+精品| 欧美日本视频| 欧美日韩国产亚洲二区| 在线十欧美十亚洲十日本专区| 国产一级毛片七仙女欲春2| 国产乱人视频| 亚洲午夜理论影院| 18+在线观看网站| 日韩欧美精品v在线| 深爱激情五月婷婷| 99热这里只有是精品在线观看 | 全区人妻精品视频| 香蕉av资源在线| 1024手机看黄色片| 9191精品国产免费久久| 少妇被粗大猛烈的视频| 男人的好看免费观看在线视频| 欧美潮喷喷水| 国产亚洲精品av在线| 国产男靠女视频免费网站| 3wmmmm亚洲av在线观看| 丰满的人妻完整版| 国产一区二区亚洲精品在线观看| 国产精品久久久久久精品电影| 国产伦精品一区二区三区视频9| 国产免费av片在线观看野外av| 一进一出好大好爽视频| 久久精品国产自在天天线| 九九久久精品国产亚洲av麻豆| 国内揄拍国产精品人妻在线| 97超视频在线观看视频| 精品久久久久久久久av| 两个人视频免费观看高清| 中亚洲国语对白在线视频| 免费人成视频x8x8入口观看| 免费观看的影片在线观看| 国产单亲对白刺激| 免费人成在线观看视频色| 午夜福利在线在线| 日日干狠狠操夜夜爽| 在线播放国产精品三级| 免费在线观看影片大全网站| 一个人免费在线观看的高清视频| 一级作爱视频免费观看| 成人美女网站在线观看视频| 亚洲色图av天堂| 一个人看视频在线观看www免费| 亚洲精品亚洲一区二区| 亚洲自拍偷在线| 国产精品一及| 欧美性猛交黑人性爽| 夜夜爽天天搞| 18禁黄网站禁片午夜丰满| 亚洲avbb在线观看| 丁香六月欧美| 欧美精品啪啪一区二区三区| 麻豆久久精品国产亚洲av| 国产精品一区二区三区四区久久| 欧美色视频一区免费| 日本黄色片子视频| 国产又黄又爽又无遮挡在线| 国产精品久久久久久亚洲av鲁大| 国产免费av片在线观看野外av| 90打野战视频偷拍视频| 岛国在线免费视频观看| 欧美成人a在线观看| 国产色爽女视频免费观看| 亚洲精品一区av在线观看| 国模一区二区三区四区视频| 午夜免费男女啪啪视频观看 | 国产亚洲精品久久久com| 成年女人毛片免费观看观看9| 久久久久久久亚洲中文字幕 | 91麻豆精品激情在线观看国产| 国产黄a三级三级三级人| 亚洲国产精品成人综合色| 欧美色视频一区免费| 国内精品久久久久久久电影| 亚洲美女搞黄在线观看 | 午夜老司机福利剧场| 亚洲最大成人手机在线| 国内精品久久久久精免费| 深夜a级毛片| 亚洲最大成人手机在线| 亚洲最大成人中文| www.999成人在线观看| 国产精品伦人一区二区| 成人毛片a级毛片在线播放| 欧美一区二区亚洲| 一边摸一边抽搐一进一小说| 色视频www国产| 一个人看视频在线观看www免费| 免费在线观看影片大全网站| 亚洲熟妇中文字幕五十中出| 日本a在线网址| 国产真实乱freesex| 亚洲av成人精品一区久久| 日韩精品中文字幕看吧| 嫩草影视91久久| 天堂√8在线中文| 男女之事视频高清在线观看| 午夜福利在线观看吧| 亚洲av中文字字幕乱码综合| 成人国产一区最新在线观看| 成年女人永久免费观看视频| 亚洲美女视频黄频| 久久久国产成人免费| 少妇高潮的动态图| 欧美一区二区国产精品久久精品| 性欧美人与动物交配| 中文字幕高清在线视频| 少妇丰满av| 好男人在线观看高清免费视频| 久久久久久久亚洲中文字幕 | av视频在线观看入口| 国产aⅴ精品一区二区三区波| 在线十欧美十亚洲十日本专区| 午夜福利在线在线| 国产一区二区在线av高清观看| 欧美在线一区亚洲| 中文字幕精品亚洲无线码一区| 真实男女啪啪啪动态图| 久久精品国产亚洲av涩爱 | 久久久久性生活片| 丰满人妻熟妇乱又伦精品不卡| 亚洲一区二区三区不卡视频| 国产精品综合久久久久久久免费| 我的女老师完整版在线观看| 男女之事视频高清在线观看| 嫁个100分男人电影在线观看| 久久99热6这里只有精品| 久久久久精品国产欧美久久久| av天堂中文字幕网| 国产三级在线视频| 久久久久久久精品吃奶| 国产av麻豆久久久久久久| 日韩成人在线观看一区二区三区| 精品一区二区三区视频在线| 欧美最新免费一区二区三区 | 很黄的视频免费| 欧美最新免费一区二区三区 | 精品无人区乱码1区二区| 亚洲人成网站在线播放欧美日韩| 中文字幕熟女人妻在线| 亚洲人成网站在线播| .国产精品久久| 国产国拍精品亚洲av在线观看| 一级片'在线观看视频| 少妇 在线观看| 高清在线视频一区二区三区| 岛国毛片在线播放| 色哟哟·www| 九九爱精品视频在线观看| 91aial.com中文字幕在线观看| 亚洲最大成人手机在线| 久久女婷五月综合色啪小说 | 精品少妇久久久久久888优播| 成人综合一区亚洲| 日韩欧美精品v在线| 成年人午夜在线观看视频| 人妻制服诱惑在线中文字幕| 亚洲国产高清在线一区二区三| 亚洲性久久影院| 少妇人妻一区二区三区视频| 亚洲欧美日韩卡通动漫| 中文在线观看免费www的网站| 欧美97在线视频| 成人毛片a级毛片在线播放| 国产黄频视频在线观看| 久久久久久久久大av| 国产一区二区亚洲精品在线观看| 亚洲国产精品国产精品| 少妇人妻 视频| 亚洲精品中文字幕在线视频 | 嫩草影院精品99| 一级爰片在线观看| 免费av毛片视频| 亚洲精品国产av蜜桃| 免费看a级黄色片| 最近最新中文字幕免费大全7| 丝袜美腿在线中文| 欧美+日韩+精品| 欧美性感艳星| 在线播放无遮挡| av一本久久久久| 国产欧美日韩精品一区二区| 亚洲av免费在线观看| 亚洲天堂国产精品一区在线| 黄片wwwwww| 国产精品国产三级国产专区5o| 制服丝袜香蕉在线| 一本一本综合久久| 午夜福利高清视频| 国产中年淑女户外野战色| 三级国产精品欧美在线观看| 禁无遮挡网站| 欧美xxⅹ黑人| 插阴视频在线观看视频| 成人亚洲欧美一区二区av| 99热国产这里只有精品6| 熟女人妻精品中文字幕| 亚洲av日韩在线播放| 亚洲欧美清纯卡通| 国产精品一区二区三区四区免费观看| 久久久久久久午夜电影| 大又大粗又爽又黄少妇毛片口| 亚洲伊人久久精品综合| 免费黄色在线免费观看| 久久久久久久久久人人人人人人| 搡老乐熟女国产| 亚洲三级黄色毛片| 精品国产乱码久久久久久小说| 水蜜桃什么品种好| 老司机影院毛片| 亚洲欧美日韩卡通动漫| 亚洲av中文字字幕乱码综合| 欧美精品国产亚洲| 国产高清三级在线| 亚洲欧美成人综合另类久久久| 国产v大片淫在线免费观看| 国产乱人视频| 男人爽女人下面视频在线观看| 成年女人看的毛片在线观看| 春色校园在线视频观看| 精品国产一区二区三区久久久樱花 | 一个人看的www免费观看视频| 久久国内精品自在自线图片| 天天躁夜夜躁狠狠久久av| 极品教师在线视频| 777米奇影视久久| av在线亚洲专区| 18禁在线无遮挡免费观看视频| 日韩欧美 国产精品| 免费看日本二区| 丰满人妻一区二区三区视频av| 18+在线观看网站| 国产成人a∨麻豆精品| 精品熟女少妇av免费看| 少妇人妻精品综合一区二区| 26uuu在线亚洲综合色| 国产免费又黄又爽又色| 黄色怎么调成土黄色| 一级毛片黄色毛片免费观看视频| 国产中年淑女户外野战色| 亚洲欧洲国产日韩| 久久这里有精品视频免费| 亚洲,一卡二卡三卡| 三级国产精品欧美在线观看| 亚洲成人一二三区av| 一本色道久久久久久精品综合| 亚洲欧美成人精品一区二区| 18禁在线无遮挡免费观看视频| 午夜福利高清视频| 蜜桃久久精品国产亚洲av| 国产成人福利小说| 国产精品.久久久| 久久久久精品性色| 日韩精品有码人妻一区| av专区在线播放| 91久久精品国产一区二区成人| 边亲边吃奶的免费视频| 精品99又大又爽又粗少妇毛片| 一边亲一边摸免费视频| 亚洲欧美日韩东京热| 好男人在线观看高清免费视频| 成人黄色视频免费在线看| 国产成人精品一,二区| 视频中文字幕在线观看| 身体一侧抽搐| 18禁动态无遮挡网站| 国产国拍精品亚洲av在线观看| 亚洲最大成人中文| 下体分泌物呈黄色| 日韩不卡一区二区三区视频在线| 午夜免费观看性视频| 男男h啪啪无遮挡| 亚洲精品亚洲一区二区| 高清在线视频一区二区三区| 搡老乐熟女国产| 国产熟女欧美一区二区| 一级黄片播放器| 国产精品无大码| 狠狠精品人妻久久久久久综合| 在线精品无人区一区二区三 | 欧美日本视频| 一级二级三级毛片免费看| 在线观看一区二区三区激情| 国产精品人妻久久久影院| 亚洲人成网站高清观看| 美女国产视频在线观看| 中文字幕久久专区| 久久久精品欧美日韩精品| 国产一区二区三区综合在线观看 | 边亲边吃奶的免费视频| 精品人妻熟女av久视频| 日韩人妻高清精品专区| 久久99热6这里只有精品| 日韩中字成人| 熟妇人妻不卡中文字幕| 久久久久久久久大av| 大又大粗又爽又黄少妇毛片口| 欧美少妇被猛烈插入视频| 91狼人影院| 少妇猛男粗大的猛烈进出视频 | 成人无遮挡网站| 永久网站在线| 在线免费观看不下载黄p国产| 欧美日韩在线观看h| 久久久久久久国产电影| 99久久中文字幕三级久久日本| 日韩视频在线欧美| 国产一区二区亚洲精品在线观看| 欧美高清成人免费视频www| av卡一久久| 亚洲av国产av综合av卡| 真实男女啪啪啪动态图| 久久97久久精品| 亚洲激情五月婷婷啪啪| 观看免费一级毛片| av在线播放精品| 亚洲精品亚洲一区二区| 丝袜喷水一区| 日日摸夜夜添夜夜爱| 亚洲精品日韩在线中文字幕| 亚洲天堂国产精品一区在线| 日本爱情动作片www.在线观看| 精品人妻偷拍中文字幕| 老师上课跳d突然被开到最大视频| 一级毛片久久久久久久久女| 国产免费一级a男人的天堂| 亚洲图色成人| 一级二级三级毛片免费看| 麻豆久久精品国产亚洲av| 亚洲美女搞黄在线观看| 18禁在线播放成人免费| 国产高潮美女av| 高清毛片免费看| 欧美日韩视频高清一区二区三区二| 边亲边吃奶的免费视频| av黄色大香蕉| 久久99热这里只频精品6学生| 亚洲激情五月婷婷啪啪| 亚洲人成网站高清观看| 在线观看免费高清a一片| 一区二区三区精品91| 成年女人在线观看亚洲视频 | 婷婷色麻豆天堂久久| 国产成人a区在线观看| 国产成人a∨麻豆精品| 街头女战士在线观看网站|