• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor

    2022-10-26 09:54:00LiPingZhang張麗萍YangLiu劉洋ZhouChaoWei魏周超HaiBoJiang姜海波WeiPengLyu呂偉鵬andQinShengBi畢勤勝
    Chinese Physics B 2022年10期
    關鍵詞:張麗萍劉洋海波

    Li-Ping Zhang(張麗萍) Yang Liu(劉洋) Zhou-Chao Wei(魏周超) Hai-Bo Jiang(姜海波)Wei-Peng Lyu(呂偉鵬) and Qin-Sheng Bi(畢勤勝)

    1Faculty of Civil Engineering and Mechanics,Jiangsu University,Zhenjiang 212013,China

    2School of Mathematics and Statistics,Yancheng Teachers University,Yancheng 224002,China

    3Engineering Department,Mathematics and Physical Sciences,University of Exeter,Exeter EX4 4QF,UK

    4School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China

    Keywords: two-dimensional maps,memristive maps,hidden attractors,bifurcation analysis,extremely hidden multi-stability

    1. Introduction

    Since memristor was regarded as a fourth circuit component by Chua in 1971[1]and physically implemented by HP laboratory in 2008,[2]it has been intensively studied in the literature and extensively applied in many fields.[3]Very recently, discrete memristor has begun to receive many researchers’ attention.[4–20]For instance, Penget al.presented a model of discrete memristor via the difference theory and derived a memristive H′enon map in Ref.[4]. Then they gave a higher-dimensional map containing the discrete memristor and studied the dynamical behaviors of the map in Ref.[5]. Meanwhile, Baoet al.constructed a two-dimensional (2D) memristive map based on the method of sampling and showed the chaotic and hyper-chaotic behaviors of the map in Ref. [6].Liet al.provided several examples of 2D memristive maps and investigated complex dynamics by considering their coupling strengths and initial values in Ref.[7].In Ref.[8],Baoet al.gave four representations of the discrete memristor model and studied the complex behaviors of their corresponding 2D memristive maps. Baoet al.proposed a memristive Logistic map and investigated the dynamical behaviors of the proposed map in Ref. [9]. In Ref. [10], Baoet al.presented a class of three-dimensional (3D) memristive maps and studied the application of these maps. Liet al.investigated the effect of magnetic induction on the constructed memristive Rulkov neuron map in Ref. [11]. In Ref. [12], Deng and Li established a class of 2D non-autonomous memristive maps that can display hyper-chaotic, periodic, and bursting oscillations. Deng and Li yielded a memristive sine map and studied non-parametric bifurcation and hyper-chaotic behaviors of the map in Ref. [13]. In Ref. [14], Konget al.put forward a 2D memristive map by introducing a discrete sinusoidal memristor. Liu gave and investigated a memristive map by couping the discrete memristor with nonlinear maps of sine and cosine functions in Ref. [15]. In Ref. [16], Liet al.presented a memristor-type chaotic mapping whose parameters could be considered as partial and total amplitude controllers. Fuet al.constructed a class of discrete quadratic memristors and implemented the memristor by using Simulink in Ref. [17]. In Ref. [18], Maet al.put forward a memristive hyper-chaotic map by introducing the proposed discrete memristor into a class of 2D generalized square maps. Ramakrishnan proposed a new memristive neuron map and investigated the complex dynamics of the networked maps by hybrid electrical and chemical synapses in Ref.[19]. In Ref.[20],Lai and Lai presented a 2D memristive hyper-chaotic map with a line of fixed points by coupling a discrete memristor into an enhanced Logistic map. Laiet al.proposed a memristive neuron map by introducing a discrete memristor into an existing neuron map in Ref.[21]. In Ref.[22],Ronget al.constructed a 3D memristive map by coupling a discrete tangent memristor to the H′enon map. Penget al.gave three 2D memristive sine maps by introducing three discrete memristor models into the sine map in Ref.[23]. In Ref.[24],Baoet al.presented a 2D memristive map by implementing sine transformation for the memristor. The memristive maps proposed in Refs.[4–24]usually have several fixed points or a line of fixed points.

    If the map has no fixed points,the map belongs to the category of maps with hidden attractors according to the classification of self-excited and hidden attractors given by Leonov and Kuznetsov.[25–27]The basin of attraction of the attractor does not contain any small neighborhoods of fixed points of the map, so it is called a hidden attractor. Otherwise, if the basin of attraction of the attractor intersects with small neighborhoods of any fixed points of the map, it is called a selfexcited attractor.[28]Hidden attractors are difficult to be located and may lead to unexpected responses, so the hidden attractors of continuous and discrete-time systems have been extensively investigated in the literature.[29–33]In Ref. [34],Ramadosset al.obtained several memristive maps without any fixed points by introducing a tiny perturbation and showed hidden attractors in these maps. If a dynamical system generates more than one attractor for a set of fixed parameters using different initial conditions, the system has multi-stability. If the number of the coexisting attractors of the dynamical system for a set of fixed parameters and different initial conditions is infinite, this phenomenon is called extreme multi-stability.Multi-stability and extreme multi-stability of dynamical systems have been found in many disciplines,including physics,chemistry, biology, and economics.[35,36]Very recently, extreme multi-stability of nonlinear maps has received much attention.[37–40]In Ref.[37],Zhanget al.presented a class of 2D chaotic maps with extreme multi-stability by introducing a sine term. Baoet al.proposed a 2D hyper-chaotic map with extreme multi-stability in Ref.[38]. In Ref.[39], Konget al.proposed a 2D hyper-chaotic map with conditional symmetry and attractor growth by introducing two sine terms. Liet al.constructed a 2D map with a sine function to show the selfreproducing dynamics of the map,i.e., reproducing infinitely many coexisting attractors of the same structure but in a different position in Ref.[40].

    If a nonlinear map exhibits coexisting hidden attractors(or infinitely many coexisting hidden attractors), we say the map has hidden multi-stability (or extremely hidden multistability). When the map generates infinitely many coexisting hidden attractors having the same shape but different amplitudes, frequencies, or positions, the map has homogenous extreme hidden multi-stability. While the map has infinitely many coexisting hidden attractors of different types, the map has heterogeneous extreme multi-stability. In Ref. [41], Zhanget al.formulated a class of 2D rational maps showing hidden attractors and hidden multi-stability.Then Zhanget al.studied hidden attractors and hidden multistability of a class of 2D rational memristive maps without fixed points in Ref. [42]. However, to the best of our knowledge, the work on memristive maps with extremely hidden multi-stability is limited, which motivates the present study.The main novelties and contributions of this paper are as follows: (i)A new class of 2D maps with a cosine memristor is presented to show extremely hidden multi-stability. (ii) The nonlinear dynamics of the memristive map is numerically analyzed by using several numerical tools including phase portraits, basins of attraction, bifurcation diagram, and the Lyapunov exponent spectrums(Les). (iii)The two-parameter bifurcation analysis of the memristive map in the regions concerned has been carried out to reveal the bifurcation mechanism of the nonlinear dynamics. (iv)The memristive map can display different types of infinitely many coexisting attractors.

    The rest of this paper is organized as follows. In Section 2, we formulate the mathematical model of this class of 2D maps with a cosine memristor and study the existence of their fixed points. In Section 3,we investigate the rich dynamics of the memristive map by using numerical analysis tools.Finally,we draw conclusions in Section 4.

    2. System model

    The equation of the cosine memristor[7]is given by

    wherevk,ik, andqk(k=0,1,2,...) denote the output, input,and internal state of the cosine memristor at stepk, respectively.M(qk)=c(cos(dqk))represents the memristance of the cosine memristor.

    In this paper,the discrete cosine memristor is coupled to a one-dimensional constant map,and a class of 2D memristive maps is formulated as

    wherexkandyk(k=0,1,2,...)are the states at stepk,the coefficientsa,b,c,d,andeare the parameters. In this paper,we assume that the parameters are all not equal to zero,i.e., the map contains the constant term and the cosine memristor.

    Remark 1 In Ref.[7],if the parametersc,d,andeof the cosine memristor are chosen as(c,d,e)=(1,1,1),“8”-shaped tight hysteresis loop and the characteristic of the fingerprint and memory can be shown in the cosine memristor.

    Remark 2 In Ref. [34], the constantawas considered as a tiny perturbation,i.e.,a=0.001 and only the dynamics of the memristive map with fixed parameters was shown. In this paper,the parameterawill be taken as a varying parameter,and the extremely hidden multi-stability of the memristive map with a cosine memristor will be demonstrated.

    One can get the fixed points (x*,y*) of the memristive map(2)by solving the following equations:

    Sincea/=0, there is no solution in Eq.(4), so the memristive map (2) has no fixed points. Then the mathematical model of the memristive map with no fixed points is formulated,which is scarcely seen in the memristive map. Since the memristive map(2)has no fixed points,the basin of the attractors in the memristive maps does not contain any fixed points.According to Definition 1 given in Ref.[28],the attractors of the memristive map(2)are all hidden.

    By the translational symmetry,i.e.,S(x,y+2mπ) =S(x,y), whereS(x,y) = (a+b(c(cos(dy)))x-x,ex),m=1,2,..., the memristive map(2)may produce infinitely many coexisting hidden attractors having the same shape but in different positions.So the map may display homogenous extreme hidden multi-stability, which is rarely studied in the memristive maps before.

    3. Complex dynamics of the 2D map with a cosine memristor

    In this section, the complex dynamics of the memristive map (2) will be explored by utilizing numerical analysis tools. The Lyapunov exponent spectrums of the attractors of the memristive map (2) will be calculated by using the Wolf methods.[44,45]The iteration length of the memristive map(2)is chosen as 105.

    3.1. Dynamical region

    Figure 1 presents a two-parameter dynamical region of the memristive map(2), which can show the effect of the parametersaandbon the dynamics of the map.The period of the periodic solutions and Lyapunov exponent spectrums(Les)of other solutions were used to determine the dynamical regions.Denote the largest Lyapunov exponent and the smallest Lyapunov exponent by Le1 and Le2,respectively.The memristive map(2)is in hyper-chaotic state if Le1>Le2>0. The map is in chaotic state if Le1>0 and Le2<0. The map is in quasiperiodic state if Le1=0 and Le2<0. The map is in periodic state if Le1<0. We run the compute program in parallel for the parametera. In each parallel,we fix the parametera,and vary the parameterbin the interval [-3,3]. The initial states were selected randomly in the region{(x,y)|x,y ∈[-15,15]}if there is no steady attractor.We use the last state of the steady attractor for the initial state for the next step of the parameterb.In Fig. 1, the regions of different dynamical behaviors are marked with different colors, where the regions of period-2 to period-16 solutions are shown in different colors labeled by the numbers ‘2’ to ‘16’, and the region of periodic solutions whose period is more than 16 is indicated in the gray color labeled by ‘M’. And the regions of quasi-periodic (T),chaotic(C),hyper-chaotic(H),and divergent(D)solutions are denoted by the light blue,black,dark black,and white colors,respectively. From Fig.1,we can observe complex dynamics,including hidden periodic,quasi-periodic,chaotic,and hyperchaotic solutions. Moreover,the cascades of period-doubling bifurcations of the memristive map(2)are seen clearly. Note that the dynamical regions are symmetric about the horizontal linea=0 and the vertical lineb=0.

    Fig.1. The two-parameter dynamical regions of the memristive map(2)calculated for a ∈[-3,3], b ∈[-3,3], and(c,d,e)=(1,1,1). Different colors labeled by the numbers‘2’to‘16’represent period-2 to period-16 solutions.The gray color labeled by‘M’indicates the periodic solutions whose period is more than 16. The light blue, black, dark black, and white colors denote the quasi-periodic(T),chaotic(C),hyper-chaotic(H),and divergent(D)solutions,respectively.

    Fig.2. The two-parameter bifurcation curves of the memristive map(2)calculated for a ∈[-0.7,0.7], b ∈[-0.95,1.75], and (c,d,e)=(1,1,1). The two-parameter bifurcation curves are denoted by different color lines,where PDi represents the period-doubling bifurcation of period-i solution, LPi indicates the saddle-node bifurcation of period-i solution, i=2,4,8. LPPD denotes the codimension-2 bifurcation point, which is the intersection of saddle-node bifurcation and period-doubling bifurcation.

    To show the bifurcation mechanism of dynamical transition of the memristive map(2),the two-parameter bifurcation analysis are carried out fora ∈[-0.7,0.7],b ∈[-0.95,1.75]and(c,d,e)=(1,1,1). Figure 2 presents several two-parameter bifurcation curves of main low-periodic solutions. Different color lines are used to denote the two-parameter bifurcation curves,where the period-doubling bifurcation of period-isolution is represented by PDi,the saddle-node bifurcation of period-isolution is indicated by LPi,i=2,4,8. The intersection of saddle-node bifurcation and period-doubling bifurcation is labeled by LPPD,which is a codimension-2 bifurcation point.

    3.2. The bifurcation analysis of parameter a

    The one-parameter bifurcation diagram can be classified into three categories,i.e., bifurcation diagram using random initial values, bifurcation diagram using a fixed initial value,and bifurcation diagram using the last state of the steady solutions. The bifurcation diagram using random initial values can be called a random bifurcation diagram. Many initial values are selected randomly in an interval for each bifurcation parameter value in the random bifurcation diagram. So the interval where the initial values are randomly taken from has a certain influence on the bifurcation diagram. The random bifurcation diagram may exhibit all possible attractors if the interval is chosen appropriately. To show the phenomena of extreme homogenous hidden multi-stability, we adopted the random bifurcation diagrams of the memristive map(2)by selecting its initial values randomly in an interval.

    3.2.1. The case: b=1.6

    Fig.3. Random bifurcation diagrams of(a)x, (b)y(y ∈[-12,12]), and(c)Lyapunov exponents spectrum (Les) of the memristive map (2) calculated for a ∈[-0.7,0.7]and(b,c,d,e)=(1.6,1,1,1). The black dots represent the states of the attractors. The red and blue dots indicate the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line denotes the zero value of the Lyapunov exponents.

    Figure 3 depicts random bifurcation diagrams and Lyapunov exponent spectrum (Les) diagram of the memristive map(2)with the parameter(b,c,d,e)=(1.6,1,1,1),whereawas used as a bifurcation parameter,and the initial states were randomly chosen in[-15,15].In Figs.3(a)and 3(b),the states of the attractors are denoted by black dots. In Fig. 3(c), the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent (Le2) are indicated by red and blue dots, respectively. Since there are infinitely many coexisting attractors,the range ofyis set asy ∈[-12,12]in Fig.3(b). From Fig.3,we can show the influence of the parameteraon the hidden dynamics of the memristive map (2) and a good agreement between the Lyapunov exponent diagram and the bifurcation diagram.Figure 4 presents the phase portraits of the coexisting solutions for the memristive map(2). Since there are infinitely many coexisting attractors, we only gave the phase portraits in the region{(x,y)|x ∈[-2.5,2.5],y ∈[-12,12]}. Whena=0, two different cases of hidden period-2 solutions coexist. Since the memristive map (2) is invariant for the transformation (x,y,a,b,c,d,e)→(-x,y,-a,b,c,d,e), the bifurcation diagram shows symmetrical about the diagonal line. So we only consider the case thata >0. From Fig. 3, when 0<a <0.015, the memristive map (2) shows two different cases of hidden period-2 solution (Fig. 4(a)). Asaincreases to 0.015, one case of hidden period-2 solutions disappears. Ata=0.192, the memristive map (2) encounters a period-doubling bifurcation,and the hidden period-4 solutions(Fig. 4(b)) bifurcate to hidden period-8 solutions (Fig. 4(c)).Whena=0.265,another period-doubling bifurcation occurs,converting these hidden period-8 solutions into hidden period-16 solutions. Then these hidden period-16 solutions become multiple-piece chaos(Figs.4(d)and 4(e))via a perioddoubling bifurcation cascade. Hereafter, we can observe a small window of hidden periodic solutions(Fig.4(f)),and the memristive map(2)goes into chaotic states(Fig.4(g))again.After that,we can observe another small window of hidden periodic solutions(Fig.4(h)). Then the memristive map(2)enters into chaotic states(Fig.4(i)). Whena=0.667,the memristive map(2)displays a two-piece chaotic attractor.Based on our numerical computation,the Lyapunov exponent spectrum(Les)of the chaotic attractor are 0.2040,-0.1387. Since the sum of the Lyapunov exponent spectrum of the chaotic attractor is larger than zero, its Lyapunov (Kaplan–Yorke) dimension (Dky)[46]is 2, which demonstrates the chaotic property of the memristive map (2). The correlation dimension of the chaotic attractor of the memristive map(2)is 1.6566 by using the method proposed in Ref. [46]. Finally, whena=0.669,the hidden two-piece chaotic attractors terminate to emerge.

    Fig.4. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-2.5,2.5],y ∈[-12,12]},(b,c,d,e)=(1.6,1,1,1)and(a)a=0.001(two different cases of hidden period-4 solutions),(b)a=0.015(hidden period-4 solutions),(c)a=0.25(hidden period-8 solutions),(d)a=0.29(hidden multiple-piece chaotic solutions),(e)a=0.304(hidden four-piece chaotic solutions),(f)a=0.331(hidden period-12 solutions),(g)a=0.369(hidden two-piece chaotic solutions),(h)a=0.427(hidden period-10 solutions),(i)a=0.667(hidden two-piece chaotic solutions),respectively.

    3.2.2. The case: b=1.7

    Figure 5 exhibits random bifurcation and Lyapunov exponent spectrum(Les)diagrams of the memristive map(2)with the parameter(b,c,d,e)=(1.7,1,1,1),whereawas taken as a branch parameter, and the initial states were randomly selected in[-15,15]. In Figs.5(a)and 5(b),the states of the attractors are represented by black dots. In Fig.5(c),the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent(Le2)are shown by red and blue dots,respectively. Since there are infinitely many coexisting attractors,the range ofyis limited asy ∈[-12,12] in Fig. 5(b). From Fig. 5, we can observe the effect of the parameteraon the hidden multistability of the memristive map (2) and the good accordance between the Lyapunov exponent (Les) diagram and the bifurcation diagram. Figure 6 shows the phase portraits of the coexisting solutions of the memristive map (2) in the range{(x,y)|x ∈[-3,2.5],y ∈[-12,12]}.

    From Fig.5,when 0<a <0.034,different cases of hidden solutions coexist. Whena=0.034, the hidden chaotic solutions vanish, and there are only hidden period-16 solutions. Asaincreases to 0.079, there is a period-halving bifurcation, leading the hidden period-16 solutions to hidden period-8 solutions (Fig. 6(a)). Ata= 0.115, the appearance of a period-doubling bifurcation turns the hidden period-8 solutions into hidden period-16 solutions. Then hidden multiple-piece chaotic solutions (Fig. 6(b)) take place after a period-doubling bifurcation cascade. Hereafter, the memristive map (2) exhibits several small windows of hidden periodic solutions (Fig. 6(c)). Then the memristive map (2)goes into chaotic states (Fig. 6(d)) again. After that, we can observe another small window of hidden periodic solutions(Fig. 6(e)), and the memristive map (2) evolves into chaotic states (Fig. 6(f)) again via a period-doubling bifurcation cascade. Finally, whena=0.519, the hidden two-piece chaotic solutions cease to exist.

    Fig.5. Random bifurcation diagrams of(a)x,(b)y(y ∈[-12,12]),and(c)Lyapunov exponent spectrum(Les)diagram of the memristive map(2)calculated for a ∈[-0.55,0.55]and(b,c,d,e)=(1.7,1,1,1). The black dots denote the states of the attractors. The red and blue dots represent the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line refers to the zero value of the Lyapunov exponents.

    Fig.6. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-3,2.5],y ∈[-12,12]},(b,c,d,e)=(1.7,1,1,1)and(a)a=0.079(hidden period-8 solutions),(b)a=0.156(hidden four-piece chaotic solutions),(c)a=0.191(hidden period-12 solutions),(d)a=0.21(hidden two-piece chaotic solutions),(e)a=0.241(hidden period-6 solutions),(f)a=0.518(hidden two-piece chaotic solutions),respectively.

    3.3. Bifurcation analysis of parameter b

    3.3.1. The case: a=0.1

    Figure 7 gives random bifurcation and Lyapunov exponent spectrum diagrams of the memristive map (2) with the parameter(a,c,d,e)=(0.1,1,1,1), wherebwas chosen as a control parameter and the initial states were randomly selected in[-15,15]. In Figs.7(a)and 7(b),the states of the attractors are indicated by black dots. In Fig.7(c),the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2)are represented by red and blue dots, respectively. Since there are infinitely many coexisting attractors,the range ofyis chosen asy ∈[-15,15] in Fig. 7(b). From Fig. 7, we can manifest the impact of the parameterbon the hidden dynamics of the memristive map (2) and a perfect accord between the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent(Le2). Figure 8 illustrates the phase portraits of the coexisting solutions of the memristive map (2) in the range{(x,y)|x ∈[-3,3],y ∈[-12,12]}.

    From Fig. 7, whenb= 1.133, the memristive map (2)shows hidden period-2 solutions (Fig. 8(a)). Asaincreases to 1.491, a period-doubling bifurcation occurs, yielding hidden period-4 solutions (Fig. 8(b)). Whenb= 1.681, another period-doubling bifurcation appears, resulting in hidden period-8 solutions (Fig. 8(c)). Atb=1.702, these hidden period-8 solutions turn into hidden period-16 solutions and then evolve into multiple-piece chaos(Figs.8(d)and 8(e))after a period-doubling bifurcation cascade. After that, one can observe a small window of hidden period-6 solutions(Fig. 8(f)) and hidden period-12 solutions. Then the memristive map(2)settles into hidden chaotic solutions(Fig.8(g)).Finally,whenb=1.82,the hidden two-piece chaotic solutions(Fig. 8(h)) are jointed together into hidden one-piece chaotic solutions(Fig.8(i)),which disappear atb=1.942.

    Fig.7. Random bifurcation diagrams of(a)x,(b)y(y ∈[-15,15]),and(c)Lyapunov exponent spectrum(Les)diagram of the memristive map(2)calculated for b ∈[-2,2]and(a,c,d,e)=(0.1,1,1,1). The black dots indicate the states of the attractors. The red and blue dots denote the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line stands for the zero value of the Lyapunov exponents.

    Fig.8. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-3,3],y ∈[-12,12]}, (a,c,d,e)=(0.1,1,1,1)and(a)b=1.14(hidden period-2 solutions),(b)b=1.5(hidden period-4 solutions),(c)b=1.7(hidden period-8 solutions),(d)b=1.709(hidden five-piece chaotic solutions),(e)b=1.722(hidden two-piece chaotic solutions),(f)b=1.756(hidden period-6 solutions),(g)b=1.766(hidden six-piece chaotic solutions),(h)b=1.8(hidden two-piece chaotic solutions),(i)b=1.835(hidden one-piece chaotic solutions),respectively.

    To show the hidden homogenous multi-stability of the memristive map (2), we calculated the basin of attraction of the map whena=0.1,b=1.14,c=1,d=1, ande=1,as demonstrated in Fig.9,respectively. Four hidden period-2 solutions were represented by red, blue, magenta, and black dots,respectively. The basins of these period-2 solutions were colored in orange,yellow,cyan,and green,respectively. From Fig. 9, the basins of attraction of the period-2 attractors are similar.

    Fig. 9. Basin of attraction of the memristive map (2) with (a,b,c,d,e)=(0.1,1.14,1,1,1). The unbounded basin of attraction which is the set of initial points going into the region({(x,y)||x|+|y|>100})is shown in white.The hidden period-2 solutions are denoted by red,blue,magenta,and black dots, respectively. The basins of these period-2 solutions are shown in orange,yellow,cyan,and green,respectively.

    3.3.2. The case: a=0.01

    Figure 10 displays random bifurcation diagrams and Lyapunov exponent spectrum diagram of the memristive map(2)with the parameter (a,c,d,e) = (0.01,1,1,1), wherebwas treated as a varying parameter and the initial states were randomly taken in[-15,15]. In Figs.10(a)and 10(b), the states of the attractors are denoted by black dots. In Fig. 10(c), the largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent (Le2) are indicated by red and blue dots, respectively. Since there are infinitely many coexisting attractors,the range ofyis selected asy ∈[-15,15]in Fig.10(b). From Fig. 10, we can depict the impact of the parameterbon the hidden multi-stability of the memristive map (2) and a good coherence between the Lyapunov exponent diagram and the bifurcation diagram.

    Whenb=1.024, there exists hidden period-4 solutions,which become hidden period-8 solutions through the perioddoubling bifurcation. Whenb=1.028, hidden period-2 solutions arise. So a tiny range of hidden multi-stability is observed. The hidden period-2 solutions continue to exist.However,the hidden period-8 solutions turn to hidden period-16 solutions and finally to chaos via the cascades of perioddoubling bifurcations. The chaotic solutions run away atb=1.01. The hidden period-2 solutions (Fig. 11(a)) bifurcate to hidden period-4 solutions(Fig.11(b))after the perioddoubling bifurcation atb=1.529. Whenb=1.583, another hidden period-4 solutions appear. Then a new range of hidden multi-stability is shown. The two branches of hidden period-4 solutions convert into hidden period-8 solutions, period-16 solutions, and finally into hidden chaotic solutions. So the coexistence of hidden period-8 solution, period-16 solution,and chaotic solutions is observed. In the coexisting region,different types of solutions coexist. Whenb=1.728, there are only hidden two-piece chaotic solutions (Fig. 11(c)). After that, a window of hidden period-6 solutions (Fig. 11(d))and hidden six-piece chaotic solutions (Fig. 11(e)) is found.Whenb=1.812,there are only hidden two-piece chaotic solutions. Whenb=1.847,the two-piece chaotic solutions merge into one-piece chaotic solutions (Fig. 11(f)) which disappear atb=1.928.

    Fig. 10. Random bifurcation diagrams of (a) x, (b) y (y ∈[-15,15]), and(b)Lyapunov exponents(Les)diagram of the memristive map(2)calculated for b ∈[-2,-2]and(a,c,d,e)=(0.01,1,1,1). The black dots indicate the states of the attractors. The red and blue dots represent the largest Lyapunov exponent(Le1)and the smallest Lyapunov exponent(Le2),respectively. The horizontal dashed line corresponds to the zero value of the Lyapunov exponents.

    Fig.11. Phase portraits of coexisting solutions of the memristive map(2)with{(x,y)|x ∈[-3,3],y ∈[-12,12]},(a,c,d,e)=(0.01,1,1,1)and(a)b=1.11(hidden period-2 solutions), (b) b=1.58 (hidden period-4 solutions), (c) b=1.728 (hidden two-piece chaotic solutions), (d) b=1.784 (hidden period-6 solutions),(e)b=1.81(hidden six-piece chaotic solutions),(f)b=1.865(hidden one-piece chaotic solutions),respectively.

    4. Conclusions

    A new class of 2D maps with a cosine memristor was presented and investigated in this paper. We discussed the existence of fixed points of these memristive maps first. Then we employed several numerical analysis tools to demonstrate their complex dynamics, including hidden periodic, chaotic,and hyper-chaotic solutions. The two-parameter bifurcation analysis of the proposed memristive map has been carried out to reveal the bifurcation mechanism of the complex dynamics.The proposed memristive maps can generate infinitely coexisting hidden attractors with the same shape but at different positions. So the map can exhibit the phenomena of extreme homogenous hidden multi-stability. They can potentially be applied to some real applications in secure communication,such as data and image encryptions. Future works will concentrate on investigating the high-dimensional memristive maps with extreme hidden heterogeneous multi-stability.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China(Grant Nos.11972173 and 12172340).

    猜你喜歡
    張麗萍劉洋海波
    搏浪
    科教新報(2023年25期)2023-07-10 05:59:40
    汽車ABS控制仿真分析
    A class of two-dimensional rational maps with self-excited and hidden attractors
    又見劉洋
    海峽姐妹(2020年6期)2020-07-25 01:26:10
    Three dimensional nonlinear shock waves in inhomogeneous plasmas with different size dust grains and external magnetized field
    山清水秀
    科教新報(2020年2期)2020-02-14 05:57:58
    劉洋作品
    藝術家(2019年9期)2019-12-17 08:28:19
    說海波
    劉洋 藏石欣賞
    寶藏(2018年8期)2018-08-31 07:28:00
    張麗萍 勿忘初心 立己達人
    99国产极品粉嫩在线观看| 狠狠狠狠99中文字幕| 欧美最新免费一区二区三区| 一本久久中文字幕| eeuss影院久久| 麻豆一二三区av精品| 男人和女人高潮做爰伦理| 久久人人爽人人爽人人片va| av在线蜜桃| 99热这里只有精品一区| 超碰av人人做人人爽久久| 日韩欧美精品v在线| 国产激情偷乱视频一区二区| 乱系列少妇在线播放| 深夜精品福利| av.在线天堂| 亚洲精品乱码久久久v下载方式| 欧美成人a在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 美女cb高潮喷水在线观看| 一a级毛片在线观看| 免费看光身美女| 国产精品永久免费网站| 午夜福利视频1000在线观看| 精品久久久久久久久av| 日本免费一区二区三区高清不卡| 亚洲av成人精品一区久久| 免费观看人在逋| 尾随美女入室| 十八禁网站免费在线| 一卡2卡三卡四卡精品乱码亚洲| 精品一区二区三区人妻视频| 18禁在线播放成人免费| 亚洲人成网站在线播| 亚洲av中文av极速乱| 熟女人妻精品中文字幕| 久久热精品热| 日本一二三区视频观看| 三级男女做爰猛烈吃奶摸视频| 日韩成人av中文字幕在线观看 | 亚洲无线观看免费| 国产精品精品国产色婷婷| 成人一区二区视频在线观看| 99国产精品一区二区蜜桃av| 村上凉子中文字幕在线| 日韩欧美 国产精品| 91狼人影院| 内地一区二区视频在线| 男插女下体视频免费在线播放| 少妇的逼好多水| 亚洲欧美日韩无卡精品| 波野结衣二区三区在线| 久久久精品大字幕| 久99久视频精品免费| 精品久久国产蜜桃| 亚洲国产精品sss在线观看| 网址你懂的国产日韩在线| 级片在线观看| 春色校园在线视频观看| 狂野欧美激情性xxxx在线观看| 97人妻精品一区二区三区麻豆| 国产精品福利在线免费观看| 可以在线观看毛片的网站| 乱系列少妇在线播放| 狠狠狠狠99中文字幕| 亚州av有码| 日日撸夜夜添| 在线观看av片永久免费下载| 在线播放无遮挡| 蜜桃亚洲精品一区二区三区| 国产亚洲精品久久久com| 国产一区二区三区在线臀色熟女| 久久久午夜欧美精品| 在线观看免费视频日本深夜| 99精品在免费线老司机午夜| 午夜精品在线福利| 中国国产av一级| 一a级毛片在线观看| 亚洲一区二区三区色噜噜| 成人高潮视频无遮挡免费网站| 亚洲久久久久久中文字幕| 国内精品宾馆在线| 国产精品免费一区二区三区在线| 久久久a久久爽久久v久久| а√天堂www在线а√下载| 国产伦精品一区二区三区视频9| av福利片在线观看| 一级av片app| 免费av不卡在线播放| 一个人观看的视频www高清免费观看| 精品福利观看| 给我免费播放毛片高清在线观看| 国产高潮美女av| 又爽又黄无遮挡网站| 成人国产麻豆网| av专区在线播放| 天美传媒精品一区二区| 高清午夜精品一区二区三区 | 大型黄色视频在线免费观看| 日本成人三级电影网站| 午夜视频国产福利| 淫妇啪啪啪对白视频| 十八禁国产超污无遮挡网站| 亚洲天堂国产精品一区在线| 性欧美人与动物交配| 午夜爱爱视频在线播放| 俺也久久电影网| 久久韩国三级中文字幕| 日本a在线网址| 嫩草影院精品99| 欧美性感艳星| 亚洲最大成人av| 日韩三级伦理在线观看| 色吧在线观看| 九九久久精品国产亚洲av麻豆| 热99在线观看视频| 亚洲欧美日韩无卡精品| 日韩一本色道免费dvd| 国产一级毛片七仙女欲春2| 99久久九九国产精品国产免费| 亚洲精华国产精华液的使用体验 | 能在线免费观看的黄片| 亚洲精品国产av成人精品 | 免费观看精品视频网站| 亚洲丝袜综合中文字幕| 精品久久久久久久久久免费视频| 国产久久久一区二区三区| 日韩 亚洲 欧美在线| 69av精品久久久久久| 99在线人妻在线中文字幕| 草草在线视频免费看| 久久这里只有精品中国| 一级a爱片免费观看的视频| 国产三级在线视频| av在线观看视频网站免费| 我的老师免费观看完整版| 身体一侧抽搐| 国产精品一区二区三区四区免费观看 | 99riav亚洲国产免费| 亚洲欧美日韩卡通动漫| 91久久精品电影网| 精品久久久噜噜| 中文字幕免费在线视频6| 成年免费大片在线观看| 99热这里只有是精品在线观看| 国产成人aa在线观看| 亚洲国产色片| 久久九九热精品免费| 日日摸夜夜添夜夜爱| 69人妻影院| 搞女人的毛片| 99热全是精品| 麻豆精品久久久久久蜜桃| 欧美色欧美亚洲另类二区| 午夜激情欧美在线| 成人av在线播放网站| 国产亚洲精品久久久com| 日韩亚洲欧美综合| 最近手机中文字幕大全| 成人无遮挡网站| 免费人成视频x8x8入口观看| 超碰av人人做人人爽久久| av在线播放精品| 久久天躁狠狠躁夜夜2o2o| 成人午夜高清在线视频| 亚洲七黄色美女视频| 18禁在线无遮挡免费观看视频 | 亚洲图色成人| 99热这里只有精品一区| 亚洲欧美精品综合久久99| 又爽又黄无遮挡网站| 欧美成人精品欧美一级黄| 一卡2卡三卡四卡精品乱码亚洲| 国产91av在线免费观看| 午夜福利成人在线免费观看| 欧美成人免费av一区二区三区| 亚洲国产精品成人久久小说 | 国产精品一二三区在线看| 亚洲美女视频黄频| 99九九线精品视频在线观看视频| eeuss影院久久| 无遮挡黄片免费观看| 亚洲精品成人久久久久久| 国内揄拍国产精品人妻在线| 午夜a级毛片| 国产 一区精品| 日本色播在线视频| 村上凉子中文字幕在线| 美女免费视频网站| 久久国产乱子免费精品| 欧美bdsm另类| 美女大奶头视频| 国产不卡一卡二| 色吧在线观看| 我的女老师完整版在线观看| 男女边吃奶边做爰视频| 亚洲无线在线观看| 日本免费a在线| 午夜老司机福利剧场| 一本一本综合久久| 99热全是精品| 国产v大片淫在线免费观看| 99热全是精品| 中出人妻视频一区二区| 午夜福利成人在线免费观看| 一本精品99久久精品77| 亚洲人成网站在线观看播放| 日韩成人伦理影院| 不卡一级毛片| 久久人人爽人人爽人人片va| 欧美一区二区亚洲| 亚洲高清免费不卡视频| 国产欧美日韩一区二区精品| 国产黄色视频一区二区在线观看 | 免费一级毛片在线播放高清视频| 青春草视频在线免费观看| 国产午夜精品论理片| 麻豆一二三区av精品| 看黄色毛片网站| 91在线观看av| h日本视频在线播放| av天堂中文字幕网| 在线观看66精品国产| 亚洲第一区二区三区不卡| 欧美一区二区精品小视频在线| 国产高潮美女av| 12—13女人毛片做爰片一| 99久久精品一区二区三区| 欧美最黄视频在线播放免费| 国产成人a区在线观看| 赤兔流量卡办理| 亚洲欧美日韩东京热| 国内精品一区二区在线观看| 色综合色国产| 日本黄色视频三级网站网址| 国产男靠女视频免费网站| 国产男靠女视频免费网站| 日韩欧美精品v在线| 国产蜜桃级精品一区二区三区| 国产精品三级大全| 免费看美女性在线毛片视频| 毛片一级片免费看久久久久| 99riav亚洲国产免费| 成年免费大片在线观看| 久久久久久久久久久丰满| 成人一区二区视频在线观看| 又黄又爽又免费观看的视频| 寂寞人妻少妇视频99o| 自拍偷自拍亚洲精品老妇| 美女黄网站色视频| 国产精品女同一区二区软件| 午夜福利在线观看吧| 一进一出抽搐动态| 久久草成人影院| 天堂影院成人在线观看| 成人精品一区二区免费| 国产毛片a区久久久久| 1000部很黄的大片| 色在线成人网| 久久精品影院6| 亚洲五月天丁香| 中文字幕精品亚洲无线码一区| 高清毛片免费看| 午夜日韩欧美国产| 一级黄色大片毛片| 婷婷色综合大香蕉| 国产一区亚洲一区在线观看| 在线观看美女被高潮喷水网站| 俺也久久电影网| 最近的中文字幕免费完整| 如何舔出高潮| 午夜免费男女啪啪视频观看 | 3wmmmm亚洲av在线观看| 在线免费观看的www视频| 久久人人爽人人爽人人片va| 男女之事视频高清在线观看| 亚洲欧美清纯卡通| 一级av片app| 欧美成人免费av一区二区三区| 久久99热6这里只有精品| 成人亚洲精品av一区二区| 国产av麻豆久久久久久久| 欧美成人免费av一区二区三区| 亚洲第一电影网av| 麻豆av噜噜一区二区三区| 老司机午夜福利在线观看视频| 老女人水多毛片| 国产免费男女视频| 91午夜精品亚洲一区二区三区| 亚洲欧美成人综合另类久久久 | 国产精品久久电影中文字幕| 免费人成在线观看视频色| 人人妻人人澡人人爽人人夜夜 | 国产在线男女| 一个人看的www免费观看视频| av在线蜜桃| 久久精品夜夜夜夜夜久久蜜豆| 麻豆国产97在线/欧美| 一区二区三区免费毛片| 最新在线观看一区二区三区| av黄色大香蕉| 伦理电影大哥的女人| 亚洲av中文av极速乱| 草草在线视频免费看| 露出奶头的视频| 1024手机看黄色片| 国产精品久久电影中文字幕| 国产在线男女| 在线观看66精品国产| 村上凉子中文字幕在线| 免费高清视频大片| 91在线精品国自产拍蜜月| 内地一区二区视频在线| 国产探花极品一区二区| 亚洲中文字幕日韩| 少妇人妻一区二区三区视频| 麻豆国产97在线/欧美| 免费观看的影片在线观看| 性欧美人与动物交配| av专区在线播放| 99视频精品全部免费 在线| 国产精品福利在线免费观看| 人妻制服诱惑在线中文字幕| 特大巨黑吊av在线直播| 波多野结衣巨乳人妻| 亚洲一区二区三区色噜噜| 国产伦精品一区二区三区视频9| 99九九线精品视频在线观看视频| 给我免费播放毛片高清在线观看| 在线a可以看的网站| 亚洲成人av在线免费| 一个人看的www免费观看视频| 又粗又爽又猛毛片免费看| 五月伊人婷婷丁香| 97在线视频观看| 男人的好看免费观看在线视频| 国产91av在线免费观看| 国产精品99久久久久久久久| 久久热精品热| 国产男人的电影天堂91| 禁无遮挡网站| 欧美另类亚洲清纯唯美| 搡老熟女国产l中国老女人| 欧美激情久久久久久爽电影| 三级男女做爰猛烈吃奶摸视频| 精品人妻视频免费看| 久久精品综合一区二区三区| 男插女下体视频免费在线播放| 99热这里只有精品一区| 两性午夜刺激爽爽歪歪视频在线观看| 又粗又爽又猛毛片免费看| 成年女人永久免费观看视频| 高清毛片免费观看视频网站| 高清毛片免费看| 人妻制服诱惑在线中文字幕| 亚洲美女黄片视频| 中文字幕熟女人妻在线| 在线免费观看不下载黄p国产| 日韩在线高清观看一区二区三区| 国产高潮美女av| 亚洲国产欧美人成| 精品人妻熟女av久视频| 精品久久久噜噜| 亚洲专区国产一区二区| 性插视频无遮挡在线免费观看| 久久久国产成人免费| 淫妇啪啪啪对白视频| 高清午夜精品一区二区三区 | 日韩,欧美,国产一区二区三区 | 久久九九热精品免费| 国产av一区在线观看免费| 天天一区二区日本电影三级| 日韩人妻高清精品专区| 九色成人免费人妻av| 乱系列少妇在线播放| 美女被艹到高潮喷水动态| 不卡一级毛片| 日韩三级伦理在线观看| 亚洲国产色片| 麻豆一二三区av精品| 亚洲成人久久性| 国产成人福利小说| 精品人妻熟女av久视频| 人妻丰满熟妇av一区二区三区| 日本成人三级电影网站| 久久精品久久久久久噜噜老黄 | 最近的中文字幕免费完整| 99久久精品一区二区三区| 国产又黄又爽又无遮挡在线| 久99久视频精品免费| 久久精品91蜜桃| 99热网站在线观看| 精品午夜福利在线看| 丝袜美腿在线中文| 欧美成人精品欧美一级黄| 婷婷精品国产亚洲av| 精品久久久久久久久亚洲| 亚洲婷婷狠狠爱综合网| 99久国产av精品| 国产精品亚洲一级av第二区| 国产欧美日韩精品亚洲av| 97超级碰碰碰精品色视频在线观看| 亚洲,欧美,日韩| 成人国产麻豆网| 亚洲国产精品成人久久小说 | 久久午夜福利片| 久久人妻av系列| 精品久久久久久久久亚洲| 欧美xxxx黑人xx丫x性爽| 成人综合一区亚洲| 天天躁夜夜躁狠狠久久av| 欧美一区二区亚洲| 亚洲图色成人| 国产女主播在线喷水免费视频网站 | 色尼玛亚洲综合影院| 久久精品91蜜桃| 亚洲精品国产成人久久av| 又爽又黄无遮挡网站| 黄色日韩在线| 国产亚洲91精品色在线| 在线看三级毛片| 网址你懂的国产日韩在线| 亚洲自偷自拍三级| 美女 人体艺术 gogo| 亚洲国产精品合色在线| 精品乱码久久久久久99久播| 国产美女午夜福利| 国产成人一区二区在线| 日韩欧美一区二区三区在线观看| 欧美色视频一区免费| 久久久久免费精品人妻一区二区| 99久久精品热视频| 最近的中文字幕免费完整| 少妇高潮的动态图| 久久人人爽人人爽人人片va| 久久精品夜色国产| 三级经典国产精品| 色哟哟·www| 久久精品国产99精品国产亚洲性色| 天天一区二区日本电影三级| 国产精品人妻久久久影院| 国产精品一二三区在线看| 精品不卡国产一区二区三区| 91久久精品国产一区二区三区| 亚洲精品456在线播放app| 夜夜看夜夜爽夜夜摸| 噜噜噜噜噜久久久久久91| 国产乱人偷精品视频| 亚洲激情五月婷婷啪啪| 欧美激情在线99| 亚洲丝袜综合中文字幕| eeuss影院久久| 久久久国产成人免费| 亚洲最大成人中文| 欧美不卡视频在线免费观看| 此物有八面人人有两片| 亚洲aⅴ乱码一区二区在线播放| 国产高清三级在线| av在线观看视频网站免费| 亚洲aⅴ乱码一区二区在线播放| 日本一本二区三区精品| 人人妻人人澡欧美一区二区| 一个人免费在线观看电影| 又爽又黄a免费视频| 男人舔奶头视频| 男女视频在线观看网站免费| 青春草视频在线免费观看| 亚洲av中文av极速乱| 天天躁日日操中文字幕| 国产探花在线观看一区二区| 日韩欧美精品v在线| 久久久久国内视频| 国产欧美日韩精品一区二区| 搡老岳熟女国产| 国产淫片久久久久久久久| 天天一区二区日本电影三级| 黑人高潮一二区| 成人鲁丝片一二三区免费| av.在线天堂| 精品免费久久久久久久清纯| 国产精品一区二区免费欧美| 日本色播在线视频| 可以在线观看的亚洲视频| 99久久九九国产精品国产免费| 亚洲内射少妇av| 亚洲美女搞黄在线观看 | 成人无遮挡网站| 久久亚洲国产成人精品v| 久久亚洲精品不卡| 99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 一夜夜www| 天堂av国产一区二区熟女人妻| 99热网站在线观看| 色视频www国产| 一区二区三区高清视频在线| 免费搜索国产男女视频| 看黄色毛片网站| 日韩制服骚丝袜av| 在线免费观看不下载黄p国产| 婷婷精品国产亚洲av| 色综合站精品国产| 色尼玛亚洲综合影院| 久久人人精品亚洲av| 国产淫片久久久久久久久| 亚洲最大成人中文| 97在线视频观看| 国产又黄又爽又无遮挡在线| 婷婷精品国产亚洲av在线| 麻豆成人午夜福利视频| av.在线天堂| 亚洲最大成人av| 精品久久久久久久久久免费视频| 欧美一区二区精品小视频在线| 欧美在线一区亚洲| 国产在线男女| 99久久精品热视频| 乱系列少妇在线播放| 人妻制服诱惑在线中文字幕| 国产国拍精品亚洲av在线观看| 精品日产1卡2卡| 22中文网久久字幕| 六月丁香七月| 可以在线观看毛片的网站| 97人妻精品一区二区三区麻豆| 在现免费观看毛片| 国产精品99久久久久久久久| 精品午夜福利在线看| 久久精品国产99精品国产亚洲性色| 欧美三级亚洲精品| av视频在线观看入口| 欧美潮喷喷水| 亚洲精品日韩av片在线观看| 别揉我奶头~嗯~啊~动态视频| 两性午夜刺激爽爽歪歪视频在线观看| 日本精品一区二区三区蜜桃| 99热这里只有精品一区| 国产一级毛片七仙女欲春2| 一区二区三区四区激情视频 | 日韩三级伦理在线观看| 欧美丝袜亚洲另类| 精品熟女少妇av免费看| 日日摸夜夜添夜夜爱| 免费av观看视频| 久久人人爽人人爽人人片va| 在线播放国产精品三级| 18禁黄网站禁片免费观看直播| 亚洲成a人片在线一区二区| 亚洲一区二区三区色噜噜| 一区二区三区免费毛片| 又黄又爽又免费观看的视频| 俄罗斯特黄特色一大片| 亚洲人成网站在线观看播放| 精品午夜福利在线看| 午夜久久久久精精品| 精品国产三级普通话版| 特大巨黑吊av在线直播| 久久人人精品亚洲av| 麻豆乱淫一区二区| 亚洲激情五月婷婷啪啪| 99在线视频只有这里精品首页| 国产精品亚洲一级av第二区| 女人十人毛片免费观看3o分钟| 久久精品国产亚洲av涩爱 | 长腿黑丝高跟| 亚洲三级黄色毛片| 美女黄网站色视频| 国产精品久久久久久久久免| 亚洲欧美日韩无卡精品| 亚洲精品国产av成人精品 | 嫩草影院新地址| 伦精品一区二区三区| 日韩强制内射视频| 午夜免费男女啪啪视频观看 | 十八禁国产超污无遮挡网站| 婷婷六月久久综合丁香| 成熟少妇高潮喷水视频| 精品人妻视频免费看| 欧美3d第一页| 亚洲精品一区av在线观看| 国产中年淑女户外野战色| ponron亚洲| 久久久国产成人免费| 麻豆久久精品国产亚洲av| 亚洲av免费高清在线观看| 亚洲电影在线观看av| 免费观看的影片在线观看| 九九在线视频观看精品| 午夜免费激情av| 寂寞人妻少妇视频99o| 好男人在线观看高清免费视频| 久久精品91蜜桃| 久久九九热精品免费| 夜夜看夜夜爽夜夜摸| 高清毛片免费观看视频网站| 国产熟女欧美一区二区| 久久久久九九精品影院| 日本黄色视频三级网站网址| 免费观看的影片在线观看| 欧美日韩一区二区视频在线观看视频在线 | 乱人视频在线观看| 老女人水多毛片| av国产免费在线观看| 国产单亲对白刺激| 少妇人妻一区二区三区视频| 日本一二三区视频观看| 国产精品99久久久久久久久| 69人妻影院| h日本视频在线播放| 嫩草影院入口| 欧美区成人在线视频| 最后的刺客免费高清国语| 变态另类成人亚洲欧美熟女| 午夜福利在线观看吧| 欧美日韩综合久久久久久|