• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single-beam leaky-wave antenna with wide scanning angle and high scanning rate based on spoof surface plasmon polariton

    2022-10-26 09:46:26HuanJiang蔣歡XiangYuCao曹祥玉TaoLiu劉濤LiaoriJidi吉地遼日andSijiaLi李思佳
    Chinese Physics B 2022年10期
    關(guān)鍵詞:劉濤

    Huan Jiang(蔣歡) Xiang-Yu Cao(曹祥玉) Tao Liu(劉濤)Liaori Jidi(吉地遼日) and Sijia Li(李思佳)

    1Information and Navigation College,Air Force Engineering University,Xi’an 710077,China

    2Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices,Air Force Engineering University,Xi’an 710051,China

    Keywords: spoof surface plasmon polariton(SSPP),leaky wave antenna,wide scanning angle,high scanning rate

    1. Introduction

    Improving sensor detection and determining the accuracy and effectiveness of the target is a perennial challenge in radar applications.[1–5]The scanning-rate(SR)represents the sensitivity of radiation direction with frequency change. We prefer to design a leaky-wave antenna, which takes advantage of a narrower bandwidth to cover a larger scanning range. In recent years,the characteristics of LWAs based on the SSPP TL,with its simple structure, frequency scanning characteristics,and compatibility with planar circuits, have attracted significant attention.

    The surface plasmon polariton (SPP) is a mixed excited state, propagating along the medium-metal interface generated during the interaction of light with a metal, and exhibiting a highly confined surface wave in the medium outside the metal.[6]The spoof surface plasmon polariton (SSPP) is the analogous extension of the SPP concept in the low-frequency band. When electromagnetic (EM) waves interact with the artificial EM medium, a kind of hybrid surface EM mode is generated at the medium interface. Its characteristic subwavelength,enhancement of the local field,and nonlinear dispersion curve offer significant application value in the design of antennas,[7]filters,[8]TLs[9]etc.[10–19]

    The EM wave propagates in the form of a slow wave in the antenna, and the propagation speed of the slow wave is below that of an EM wave in free space. Slow waves cannot radiate into space directly. However,when an EM wave’s propagation speed is higher than that in free space,it radiates in the form of a fast wave. To create this radiation effect in the antenna requires a progression from slow wave to fast wave.However,the conversion of a slow wave confined in the SSPP TL into a fast wave, so as to generate radiation of the frequency scanning beams, represents a technical problem with regard to SSPP-based antennas,which must be resolved. The first method involves periodically modulating the SSPP TL,so that EM waves are released into the fast wave region.[10–12]The maximum scanning angle that can be achieved in this way is 123°.[11]In view of the limitation whereby general SSPP LWAs can only radiate linearly polarized waves,Ref.[12]proposed that the SSPP unit could be rotated 45°,and the surface impedance could be controlled by changing the depth of the groove,creating an antenna adaptable to any type of polarization mode.

    To realize the leaky-wave, the second method introduces periodic perturbations by periodically arranging patches around the TL,which couple the EM waves to the patches to form a fast wave pattern matching the spatial waves for beam scanning in vacuum. In Ref.[13],the antenna was composed of two rows of circular patches placed on both sides of the SSPP TL,covering an angle of 83°from 9.2 GHz to 16 GHz.In Ref.[14],an antenna based on the glide-symmetry Goubau line covers a range of 145°with high-order harmonic radiation within 6.3% bandwidth, and achieves a very high scanning rate. However, this antenna fails to radiate efficiently, with an average radiation efficiency of only 26%. In the design of LWAs with a high scanning rate, there is always a trade-off between scanning rate and efficiency.

    There are other methods of achieving frequency scanning radiation. In Ref. [15], an antenna based on a substrate integrated waveguide(SIW)realizes 35°beam scanning in a narrow band of 3%. However, due to the symmetry of its design structure, this antenna also exhibits the stop-band problem common to traditional LWAs. This inability to realize broadside radiation is a key limitation of continuous wideangle scanning. In Ref. [16], the SSPP-based antenna used periodic holes etched in the CPW to generate waves in the higher-order SSPP mode,capable of covering a wide scanning angle of 129°,while the low scanning rate caused by an operating bandwidth of 11.7–50 GHz is not expected. Therefore,it is necessary to design a compact antenna with a wide scanning angle,a high scanning rate,and high radiation efficiency.

    In this paper, a single beam SSPP-based LWA is proposed, whose compact structure can readily be fabricated for practical applications. The stop-band effect is suppressed,and the scanning range is enlarged.By adjusting the periodic modulation,the frequency band of the antenna tends to be near the cutoff frequency, exhibiting a higher scanning rate. The antenna achieves a high scanning rate of 12.12,and a efficiency of 81.4%. Its scanning angle of 176°represents the largest among antennas of the same type, and its average gain is as much as 10.9 dBi in the working frequency band. This proposed antenna based on SSPP demonstrates outstanding performance.

    2. Antenna structure and design

    The geometrical configuration of the proposed leakywave antenna is shown in Fig.1. The SSPP TL is introduced on the middle layer. A series of circular patches are placed on the top and bottom layer as radiating elements. The layers are filled with F4BM-2, where the dielectric constant isεr=2.65,the loss tangent is tanδ=0.001,and the thickness of the single-layer medium isth=1 mm. The overall size of the antennaL×W=35.6 mm×400 mm.

    Fig.1. Geometry of the proposed LWA.(a)Perspective view. (b)Feeding layer. (c)TL unit. (d)Radiating elements. (e)Multilayer layout.

    In the middle layer, the left-hand end is fed via a coplanar waveguide (CPW) measuringL1=10 mm. The smooth groove gradient structure is connected with TL to match the input impedance,reduce reflections,and increase the efficiency of the antenna radiation.

    The exponential-shaped ground sides are conducive to an efficient matching in broadband asy=f(x) =C1eαx+C2,whereα=0.1,C1=W2/(eαL2-1),C2=-W2/(eαL2-1)+ga+W1/2 and the coordinate origin is set at the beginning of the transition. Reference [17] shows that this tapered structure forms a good bridge with which to connect the CPW,with 50 Ω impedance and SSPP TL in the microwave frequency, converting the guided waves to the slow wave mode bounded in the SSPP TL,and demonstrating high efficiency in the broadband.

    In the SSPP TL section,periodic sub-wavelength grooves are arranged in the metal microstrip lines with a period ofp=2.5 mm, a duty cycle ofdc=a/p=0.6, and a groove depth ofh= 4 mm. The gap,ga= 0.28 mm, and width,W1= 5 mm, of the central strip are designed to achieve a 50 Ω impedance.The antenna adopts a single-port and tapered structure at the end.

    In the radiation section, circular patches are placed near the SSPP TL. The front and rear backplanes are composed of circular patch arrays staggered in front and back. We set the period of single-side patch arrays,D, at 9.38 mm, and the distance between the patch center and the central axis atd1=6 mm. The radiusris set at 4 mm.

    3. Principle and analysis

    3.1. SSPP TL analysis

    We were able to confirm that periodic metallic grooves allow the surface plasmon mode to propagate at microwave frequencies. Figure 2 shows dispersion diagrams of singleand double-layer medium units with varying depths of groove.It is evident that with an increase in the frequency of the dispersion curve,βalso increases, and gradually deviates from the light,whereβrepresents the propagation constant. Closer to the asymptotic frequency, the alteration in the propagation constant is more dramatic. The figure shows that in contrast with the single-layer unit,double-layer units have a lower cutoff frequency, enabling the double-layer SSPP TL to confine EM on the surface more strongly than the single-layer TL.Moreover, the deeper the metal groove, the lower the cutoff frequency of the dispersion curve becomes. The depth,h,and structure of the model represent two important factors affecting the dispersion characteristics of the unit. We selected a dual-layer element withh=4 mm to modulate the cutoff frequency at around 10 GHz.

    Fig.2. Dispersion curves of the unit cell in SSPP TL.

    In order to illustrate the characteristics of the TL,E-field distributions on double-end TLs at different frequency points in thexozplane were simulated, as shown in Figs. 3(a) and 3(b). EM waves were transmitted through the TL at 8 GHz and 9.5 GHz to the other port. When the frequency is set to 10.5 GHz,it is clear that EM waves are strictly confined to the gradient part. TheS-parameter in Fig.3(c)shows that the cutoff frequency of TL is 10 GHz. Beyond the cutoff frequency,energy cannot be transmitted to the other end,clearly demonstrating the low-pass properties of TL.

    Fig.3. Transmission characteristics of the SSPP TL.(a)Structural diagram of transmission line. (b) E-field distributions of the SSPP TL at 8 GHz, 9.5 GHz and 10.5 GHz in the xoz plane. (c) Simulated Sparameters of the SSPPs TL.

    Fig.4.Simulated electric-field distributions of the proposed SSPP LWA at 9 GHz.

    Leaky-wave antenna usually adopts a dual-port structure to ensure that the EM waves transmitted to the end of the antenna can be absorbed,so that the reflected wave cannot affect the direction of radiation. The structure adopts a single-port and a tapered structure at the end,as shown in Fig.1(b). Such a structure causes the SSPP wave mode to shift to the space wave mode, such that a small amount of EM waves reaching the end are radiated to reduce the impact of reflections on the original feeder electric field. In Fig.4,we note that the energy along the TL decreases significantly along thex-direction.

    3.2. Radiation element analysis

    In order to radiate EM waves and form LWAs based on an SSPP TL,we need to disturb propagating surface waves by periodically placing radiating patches near the SSPP TL.If the radiation efficiency is high enough, the matching load can be removed,which not only reduces the antenna size but also decreases the influence of the end on the far field pattern of the patch arrays,and improves the realized gain.

    The radiation element is a circular patch with isotropy,and the resonant frequency of the element is primarily determined by its size.Radiation efficiency can be improved by setting the element resonant frequency within the working bandwidth, so the radiusris set at 4 mm, based on the following expression:

    wherek11represents the eigenvalue of the TM11mode,cis the velocity of the light in vacuum,andfis the center frequency.

    In Fig.1(d),an interleaved array of patches balances the front and rear of the far-field pattern so that the main radiation lobe can scan in thexoyplane of the antenna. Since the distance between front and rear is relatively close,there is no obvious deviation for the periodDof periodic disturbance;placing patches on the upper and lower surface facilitates better coupling with the energy on the TL.

    Methods such as mode balance,[18]impedance matching,[19,20]and loading asymmetric radiators[18,21,22]effectively suppress the open stop-band(OSB)effect.Moreover,as described in Ref.[14],the asymmetrical structure also helps to suppress the stop-band. There is no OSB problem in the antenna structure proposed in this paper. The beam-scanning characteristics of the antenna are realized via the feed phase difference in the SSPP TL. If we wish to realize radiation in the broadside direction, we need the patch to couple energy,and the adjacent phase difference is zero. Since the SSPP TL has different wave numbers at different frequencies,there must be a specific frequency point to realize zero phase difference between two adjacent patches. Once there is no phase difference between the patches,the radiation beam can access the broadside direction.

    The asymmetric structure of the antenna effectively inhibits the generation of the stop-band, thereby removing the discontinuous scanning angle in the broadside,which is common in many other LWAs. The gap,d1, between the patches and the TL only affects the coupling energy from the TL.These radiating patches couple EM waves from the SSPP TL through periodic disturbances, and radiate them into free space.

    3.3. Analysis of beam scanning characteristics

    The propagation constant of EM waves guided by a slowwave structure is larger than that for a free space wave(βx >k0),and does not radiate.The design of the antenna is based on the principle of periodic disturbance,[10]which introduces an infinite number of spatial harmonics into the periodic traveling wave.

    It is assumed that the EM waves propagate in thexdirection. The fundamental mode is a slow wave(β0>k0). However,there is always a certain harmonic(usually the-1stharmonic)producing fast-wave radiation(-k0<βx <k0).

    On this basis, the propagation constant along thex-axis can be expressed as

    whereDis the length of the periodic disturbance, andβ0is the propagation constant in the fundamental mode. In order to achieve efficient frequency scanning, we generally adopt a space harmonic ofn=-1 to realize beam scanning.

    The deflection angle and propagation constant of the antenna satisfy the following relations:

    wherek0is the propagation constant in free space,θis the included angle between beam direction and+zaxis,andβxrepresents the propagation constant of the corresponding space harmonic.

    Figure 5(b) shows the dispersion curves of the periodic element of the antenna along with the distribution of multiple harmonics. In the figure,A1(A2),B1(B2) andC1(C2) represent the backward endfire, broadside radiation and forward endfire of harmonics,respectively:

    whereβ-1(f)represents the dispersion curve of phase change with frequency change in the-1stharmonic mode.

    The dispersion characteristic data obtained via simulation is discrete. When deriving the formula, the fitted continuous curve is more conducive to the operation of the relationship between multiple harmonic dispersion curves. The reference values of key experimental parameters obtained by this operation are conducive to the design of the antenna. The frequency band of the-1stharmonic radiation mode can be controlled by adjusting the size of theDparameter.

    In order to more accurately calculate the disturbance cycleDvalue corresponding to the-1stharmonic radiation mode, MATLAB is used to fit the dispersion curve; the resulting expression is as follows:

    wherea1=1.824×1019,a2=2.474×105,b1=23.61,b2=52.75,c1=2.217,c2=17.76.

    Fig. 5. Simulated results for harmonic dispersion and single-beam radiation conditions. (a)Diagram of fitting results and single-beam radiation conditions. (b)Harmonic dispersion curves of periodic elements.

    The fitting curve in Fig. 5(a) is in good agreement with the simulation curve. Thenstharmonic radiation is expected to concentrate energy in a single lobe,which serves to improve the gain of the main lobe:

    whereβf(A(n+1))represents the propagation constant of the(n+1)stharmonic backward endfire,andβf(C(n+1))represents the propagation constant of the (n+1)stharmonic forward endfire. Here,k0C(n)andk0A(n)represent the corresponding phase constant values ofC(n)andA(n),respectively.

    In Fig.5(a),the radiation condition of the-1stharmonic single beam can be obtained by substituting the fitted expression (D ≤16.8 mm). By substituting the fitting curve expression,the relationship betweenDparameter and operating bandwidth can be calculated,which is also convenient for antenna design. The fitted continuous curve enables a more accurate prediction of the relationship between beam direction and frequency.

    Different frequencies correspond to different propagation constants on the SSPP TL, resulting in different phases between the coupled patch arrays, culminating in the formation of different radiation directions in the far field. The expression obtained via fitting result in a more formulaic calculation,which makes the antenna radiation direction more accurate. By substituting into Eqs.(2),(3),and(7),we obtain frequency points corresponding to the theoretical radiation of the antenna. Theoretically,the frequency of backward,broadside,and forward endfire are 8.3 GHz, 9.1 GHz, and 9.6 GHz, respectively,while the actual results are 8.2 GHz,9.2 GHz,and 9.6 GHz, respectively. The theoretical calculation results are in good agreement with the simulation results,which demonstrate that the dispersion curve expression obtained by the fitting curve can be fitted with the calculation results.As a result,the expression plays a guiding role in adjusting the working bandwidth of the antenna, and predicting the relationship between radiation direction and frequency. The fitting result further validates the feasibility of Eq.(7),and the validity of these equations is convenient in terms of determining the operating band for given structural parameters.

    3.4. Analysis of high-frequency scanning rate implementation

    In Fig. 6, the first shifted dispersion curve has a lower frequency and a larger slope change,while working in a wider bandwidth.The second shift has a higher frequency point with a smaller slope change,and backward to forward scanning can theoretically be realized.

    Fig.6. Scanning rate comparison of two different momentum compensations for leaky-wave radiation.

    Since the scanning rate of leaky-wave antennae is defined as the beam-scanning range divided by the frequency bandwidth(BW),a higher scanning rate can be realized by adjusting the phase shift close to the asymptotic frequency,resulting in a smaller-slope dispersion curve. By adjusting theDvalue,the operating frequency tends to be asymptotic,so that the antenna has the property of realizing wide-scanning-angle in a narrower bandwidth. In this way, the scanning rate (SR) can be improved.

    Fig. 8. Measured results of radiation patterns and simulated total efficiency.(a)Simulated and measured normalized E-plane radiation patterns at different frequencies. (b)Simulated total efficiency of the proposed LWA.

    4. Experimental validation

    The proposed LWA was fabricated using standard printed circuit board (PCB) technology, and verified experimentally in an anechoic chamber. In Fig. 7, the vector network analyzer is used to measure the reflection coefficient,and the radiation mode is measured by the automatic turntable;the results show that the antenna can achieve reflection coefficients below-10 dB in the range of 8.3–9.8 GHz.The experimental results agree well with the simulated results. The frequency offset at the resonant frequency points may be caused by fabrication errors and different relative permittivity of the substrate,but the general trend remains consistent. Figure 7(b)also plots the relationship between realized gain and frequency, showing that the simulated peak gain of 11.6 dBi can be achieved at 9 GHz.

    Fig.7. Photograph of the fabricated antenna and performance parameters of the proposed antenna. (a)Photograph of the fabricated antenna under test. (b)Measured and simulated|S11|and gain.

    Fig.9. Phase distribution of the proposed SSPP LWA and 3D far-field radiation at corresponding frequency points.

    Furthermore,the measured radiation beam can scan from-13°to 162°within the frequency band of 8.2–9.8 GHz,while the simulated radiation beam can scan from-11°to 164°within the frequency band of 8.3–9.6 GHz, as shown in Fig. 8(a). In the experiment, frequency points corresponding to the five directions of backward endfire, backward, broadside, forward and forward maximum radiation angle are extracted and compared. The experimental and simulation results in the same direction can also be accepted for the processing and experimental operation methods, and the overall curves are in good agreement. The frequency scanning characteristics of the antenna radiation beam can be clearly seen from the figure.

    As shown in Fig.8(b),the simulated average efficiency of the antenna is as high as 81.4%within the working bandwidth,and the total radiation efficiency drops significantly in relation to the back and endfire directions.

    Figure 9 shows the phase distribution of the proposed SSPP LWA, and 3D far-field radiation at corresponding frequency points. The antenna uses single-beam radiation in the operating frequency band, and exhibits outstanding radiating performance in both forward and backward directions.

    Our antenna can achieve a large angle at a very high SR,with high radiation efficiency and high gain characteristics,demonstrating superior performance to other types of LWAs in almost all areas,as shown in Table 1.

    Table 1. Comparison of various antennas of the same type.

    5. Conclusion

    In this paper, we have proposed a single-beam leakywave antenna with wide-scanning-angle and high-scanningrate based on an SSPP TL. A series of patches is periodically placed near the SSPP TL to couple the EM energy and radiate to free space. The experimental results are in agreement with the simulation and the proposed antenna can realize a high scanning rate of 12.12 while achieving a wide scanning angle from-12°to 164°. The fitted dispersion curve is conducive to calculate the condition of single beam radiation.The formula obtained by fitting discrete points provides effective guidance in terms of antenna design. Our leaky-wave antenna exhibits superior performance to all those demonstrated in similar works. With its high radiation efficiency,wide scanning angle range,and high scanning rate,the proposed shows great potential for application in radar and wireless communication systems.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62171460 and 61801508), the Natural Science Basic Research Program of Shaanxi Province,China (Grant Nos. 2020JM-350, 20200108, 20210110, and 2020022), the Postdoctoral Innovative Talents Support Program of China(Grant Nos.BX20180375,2019M653960,and 2021T140111).

    猜你喜歡
    劉濤
    第2講 物質(zhì)構(gòu)成的奧秘
    助人為樂的劉濤
    助人為樂的劉濤
    Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
    劉濤《音調(diào)未定的儒家——2004年以來關(guān)于孔子的論爭·序》
    名作欣賞(2017年25期)2017-11-06 01:40:12
    劉濤:成為更好的自己
    金色年華(2017年7期)2017-06-21 09:27:52
    特殊的攝影集感恩父母
    新天地(2016年11期)2016-12-23 15:07:16
    家里的飯菜不重樣
    椰城(2015年12期)2015-11-18 15:11:04
    馬鈴薯主糧化
    特殊的遺產(chǎn)
    故事林(2015年1期)2015-05-14 17:30:34
    99精品久久久久人妻精品| 一二三四社区在线视频社区8| 亚洲人成电影观看| 老司机靠b影院| 欧美中文综合在线视频| a在线观看视频网站| 国产精品秋霞免费鲁丝片| 国产单亲对白刺激| 色综合欧美亚洲国产小说| 久久精品国产99精品国产亚洲性色 | 免费观看人在逋| 久久精品91无色码中文字幕| 国产极品粉嫩免费观看在线| 老司机午夜福利在线观看视频| 久久久精品国产亚洲av高清涩受| 精品国产国语对白av| 亚洲国产精品一区二区三区在线| 老司机影院毛片| 亚洲av美国av| 久热这里只有精品99| 国产精品香港三级国产av潘金莲| 精品国产一区二区三区久久久樱花| 久久亚洲精品不卡| 亚洲九九香蕉| 亚洲精品国产精品久久久不卡| 国产精品偷伦视频观看了| 大片电影免费在线观看免费| 午夜91福利影院| 国产av一区二区精品久久| 美女扒开内裤让男人捅视频| www日本在线高清视频| √禁漫天堂资源中文www| 欧美另类亚洲清纯唯美| 国产区一区二久久| 人人妻人人澡人人看| 无人区码免费观看不卡| 制服诱惑二区| 欧美色视频一区免费| 亚洲精华国产精华精| 久久精品国产亚洲av高清一级| 极品少妇高潮喷水抽搐| 久热爱精品视频在线9| 9色porny在线观看| 老司机午夜福利在线观看视频| 欧美成人午夜精品| 亚洲avbb在线观看| 高清毛片免费观看视频网站 | 热99国产精品久久久久久7| 黄色毛片三级朝国网站| 国产亚洲欧美精品永久| 美女扒开内裤让男人捅视频| 国产精品亚洲av一区麻豆| 老司机午夜十八禁免费视频| 夜夜夜夜夜久久久久| svipshipincom国产片| 国产高清激情床上av| 香蕉久久夜色| 久久久久久久久免费视频了| 精品少妇久久久久久888优播| av天堂久久9| 亚洲成国产人片在线观看| 免费不卡黄色视频| 少妇的丰满在线观看| 夜夜夜夜夜久久久久| 亚洲久久久国产精品| 一级a爱片免费观看的视频| 久久国产精品影院| 久热爱精品视频在线9| 黄色 视频免费看| 国产欧美日韩一区二区三区在线| 12—13女人毛片做爰片一| 丰满饥渴人妻一区二区三| 麻豆乱淫一区二区| 午夜激情av网站| 一区二区三区激情视频| 女同久久另类99精品国产91| 999精品在线视频| 热re99久久精品国产66热6| 成人影院久久| 69精品国产乱码久久久| cao死你这个sao货| 久久久水蜜桃国产精品网| 美女高潮到喷水免费观看| 99re6热这里在线精品视频| 国产一区二区三区综合在线观看| 国产精品av久久久久免费| 国产成人精品久久二区二区91| 日韩欧美免费精品| 欧美激情 高清一区二区三区| 老汉色av国产亚洲站长工具| 少妇被粗大的猛进出69影院| 两个人免费观看高清视频| 999精品在线视频| 欧美精品亚洲一区二区| 岛国在线观看网站| 欧美日韩精品网址| 国产激情欧美一区二区| 欧美 亚洲 国产 日韩一| 午夜福利影视在线免费观看| 色综合婷婷激情| 亚洲综合色网址| 乱人伦中国视频| 国产欧美日韩一区二区三区在线| 少妇粗大呻吟视频| 一级a爱视频在线免费观看| 一本大道久久a久久精品| 搡老熟女国产l中国老女人| 一二三四在线观看免费中文在| 国产精品久久久久久精品古装| 一a级毛片在线观看| 国产精品九九99| 天天操日日干夜夜撸| cao死你这个sao货| 如日韩欧美国产精品一区二区三区| www.自偷自拍.com| 亚洲五月色婷婷综合| 午夜视频精品福利| 日韩成人在线观看一区二区三区| 99re6热这里在线精品视频| 在线免费观看的www视频| 久久午夜综合久久蜜桃| 欧美另类亚洲清纯唯美| 色尼玛亚洲综合影院| 高潮久久久久久久久久久不卡| 一本大道久久a久久精品| 999精品在线视频| 亚洲片人在线观看| 久久中文字幕人妻熟女| 99热国产这里只有精品6| 精品无人区乱码1区二区| 欧美精品啪啪一区二区三区| 老熟妇仑乱视频hdxx| 欧美激情 高清一区二区三区| 最近最新免费中文字幕在线| 亚洲精品乱久久久久久| 丁香六月欧美| 欧美 日韩 精品 国产| 十八禁网站免费在线| 亚洲国产精品一区二区三区在线| 精品欧美一区二区三区在线| 高清欧美精品videossex| 国产欧美日韩一区二区三区在线| 午夜福利欧美成人| 老司机影院毛片| 成人手机av| 制服人妻中文乱码| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产看品久久| 男女免费视频国产| 老司机午夜福利在线观看视频| av电影中文网址| 日韩免费av在线播放| 天堂动漫精品| 欧美日韩福利视频一区二区| 我的亚洲天堂| 国产精品亚洲一级av第二区| 国产男靠女视频免费网站| 精品久久久久久久毛片微露脸| 亚洲免费av在线视频| 少妇猛男粗大的猛烈进出视频| av天堂在线播放| 性色av乱码一区二区三区2| 操美女的视频在线观看| 在线观看免费高清a一片| 好男人电影高清在线观看| 国产一区二区激情短视频| 欧美日韩福利视频一区二区| 大码成人一级视频| 亚洲av成人一区二区三| www.自偷自拍.com| 日本黄色日本黄色录像| 亚洲精品自拍成人| 老司机福利观看| 脱女人内裤的视频| 女同久久另类99精品国产91| 美女高潮喷水抽搐中文字幕| 一区二区三区精品91| 夫妻午夜视频| 欧美精品亚洲一区二区| 久久国产精品男人的天堂亚洲| 性色av乱码一区二区三区2| 日本撒尿小便嘘嘘汇集6| 国产片内射在线| 久久精品国产综合久久久| 久久久久久久国产电影| av中文乱码字幕在线| 亚洲精品国产精品久久久不卡| 欧美乱妇无乱码| 国产精品免费大片| 久久国产亚洲av麻豆专区| 成人永久免费在线观看视频| 9191精品国产免费久久| 久久香蕉精品热| 免费在线观看完整版高清| 精品乱码久久久久久99久播| 叶爱在线成人免费视频播放| 成年人黄色毛片网站| 多毛熟女@视频| 美女扒开内裤让男人捅视频| 一级毛片女人18水好多| 欧美日韩中文字幕国产精品一区二区三区 | 黄色a级毛片大全视频| 亚洲 欧美一区二区三区| 下体分泌物呈黄色| 黄色 视频免费看| 欧美激情久久久久久爽电影 | 视频区欧美日本亚洲| avwww免费| 丰满的人妻完整版| 午夜福利免费观看在线| 夜夜爽天天搞| 老司机午夜十八禁免费视频| 亚洲在线自拍视频| 97人妻天天添夜夜摸| 欧美日韩av久久| 一二三四在线观看免费中文在| 国产一区二区三区综合在线观看| av福利片在线| 精品高清国产在线一区| 免费黄频网站在线观看国产| 男女之事视频高清在线观看| 无人区码免费观看不卡| 亚洲av成人一区二区三| av中文乱码字幕在线| 国内毛片毛片毛片毛片毛片| 在线av久久热| 国产在视频线精品| 亚洲国产精品sss在线观看 | 看黄色毛片网站| 一级a爱视频在线免费观看| 十八禁网站免费在线| 亚洲免费av在线视频| 欧美精品亚洲一区二区| 十八禁网站免费在线| 亚洲欧美激情综合另类| 亚洲午夜精品一区,二区,三区| 国产精品国产av在线观看| 又大又爽又粗| 色综合欧美亚洲国产小说| av不卡在线播放| 国产又色又爽无遮挡免费看| 69av精品久久久久久| 多毛熟女@视频| 成人特级黄色片久久久久久久| 另类亚洲欧美激情| 性少妇av在线| 好男人电影高清在线观看| 丝袜人妻中文字幕| 久久青草综合色| 男人舔女人的私密视频| 国产欧美日韩精品亚洲av| 亚洲黑人精品在线| 成熟少妇高潮喷水视频| 在线观看免费视频日本深夜| 99国产精品免费福利视频| 久久久国产成人免费| 精品卡一卡二卡四卡免费| 精品一区二区三卡| 国产精品亚洲av一区麻豆| 飞空精品影院首页| 日韩大码丰满熟妇| 高清欧美精品videossex| 国产午夜精品久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣av一区二区av| 欧美日韩一级在线毛片| 国产精品国产高清国产av | 麻豆国产av国片精品| 国产成人免费无遮挡视频| 人人妻,人人澡人人爽秒播| 久久人妻熟女aⅴ| 国产亚洲欧美精品永久| 麻豆成人av在线观看| 亚洲精品粉嫩美女一区| 色婷婷av一区二区三区视频| 欧美国产精品va在线观看不卡| 国产亚洲欧美在线一区二区| 人人妻人人添人人爽欧美一区卜| 欧美午夜高清在线| 成人18禁在线播放| 国产亚洲精品第一综合不卡| x7x7x7水蜜桃| 伊人久久大香线蕉亚洲五| 久久精品亚洲av国产电影网| 亚洲熟女毛片儿| 亚洲aⅴ乱码一区二区在线播放 | 午夜影院日韩av| 中文字幕人妻熟女乱码| 亚洲国产欧美日韩在线播放| 国产精品成人在线| 亚洲五月色婷婷综合| 日本a在线网址| 久久 成人 亚洲| 美女高潮喷水抽搐中文字幕| 久久国产精品人妻蜜桃| 宅男免费午夜| 制服人妻中文乱码| 久久精品国产清高在天天线| 国产国语露脸激情在线看| 色综合婷婷激情| 波多野结衣一区麻豆| 欧美黄色淫秽网站| 一级毛片女人18水好多| 丰满饥渴人妻一区二区三| 久久中文看片网| 99热国产这里只有精品6| 欧美乱色亚洲激情| 午夜福利乱码中文字幕| 亚洲色图 男人天堂 中文字幕| av国产精品久久久久影院| 午夜福利一区二区在线看| 99久久综合精品五月天人人| 免费黄频网站在线观看国产| 十分钟在线观看高清视频www| 久久久精品区二区三区| 亚洲五月婷婷丁香| 一区二区三区激情视频| 久久性视频一级片| 久久国产精品影院| 又大又爽又粗| 午夜两性在线视频| 欧美在线一区亚洲| 看黄色毛片网站| 国产欧美日韩精品亚洲av| 久久影院123| 黄色女人牲交| 高清在线国产一区| 国产高清激情床上av| 狂野欧美激情性xxxx| 免费看a级黄色片| 国产欧美日韩综合在线一区二区| 男人舔女人的私密视频| 美女 人体艺术 gogo| 亚洲国产欧美日韩在线播放| 别揉我奶头~嗯~啊~动态视频| 日韩中文字幕欧美一区二区| 久久性视频一级片| 999精品在线视频| 91国产中文字幕| 亚洲色图av天堂| 99国产精品一区二区蜜桃av | 一个人免费在线观看的高清视频| 国产激情欧美一区二区| 日韩熟女老妇一区二区性免费视频| 国产激情欧美一区二区| 成人免费观看视频高清| 王馨瑶露胸无遮挡在线观看| 日韩视频一区二区在线观看| 一本综合久久免费| 免费女性裸体啪啪无遮挡网站| 香蕉久久夜色| 日本a在线网址| 高清欧美精品videossex| 亚洲人成77777在线视频| 免费av中文字幕在线| 高清黄色对白视频在线免费看| 成熟少妇高潮喷水视频| 久久久久国产精品人妻aⅴ院 | 精品久久久久久电影网| 亚洲午夜理论影院| 一级a爱片免费观看的视频| 麻豆国产av国片精品| 9热在线视频观看99| 国产一区二区激情短视频| 欧美另类亚洲清纯唯美| 久久久久久人人人人人| 最近最新中文字幕大全免费视频| 国产99久久九九免费精品| 午夜影院日韩av| 在线观看午夜福利视频| av福利片在线| 久久久精品国产亚洲av高清涩受| av免费在线观看网站| 一个人免费在线观看的高清视频| 欧美大码av| 亚洲成人免费av在线播放| 在线观看免费午夜福利视频| 一边摸一边抽搐一进一出视频| 一区福利在线观看| 欧美人与性动交α欧美精品济南到| 超碰成人久久| 国产精品久久久人人做人人爽| 两性夫妻黄色片| 天天躁日日躁夜夜躁夜夜| 亚洲成av片中文字幕在线观看| 91麻豆av在线| 自线自在国产av| 交换朋友夫妻互换小说| 亚洲精品久久午夜乱码| 成年动漫av网址| 后天国语完整版免费观看| 91九色精品人成在线观看| 黄片小视频在线播放| 女人精品久久久久毛片| 国产亚洲av高清不卡| 日韩熟女老妇一区二区性免费视频| www.熟女人妻精品国产| 涩涩av久久男人的天堂| 国产av又大| 欧美不卡视频在线免费观看 | 精品免费久久久久久久清纯 | 波多野结衣一区麻豆| 丰满饥渴人妻一区二区三| 51午夜福利影视在线观看| 50天的宝宝边吃奶边哭怎么回事| 中文字幕精品免费在线观看视频| 国产亚洲欧美在线一区二区| 精品高清国产在线一区| 99精国产麻豆久久婷婷| 桃红色精品国产亚洲av| 久久久精品免费免费高清| 在线观看日韩欧美| 精品福利观看| 国产成人精品在线电影| 在线永久观看黄色视频| 久久精品国产亚洲av高清一级| 搡老乐熟女国产| 天天躁夜夜躁狠狠躁躁| 精品福利永久在线观看| 在线国产一区二区在线| 欧美午夜高清在线| 欧美成人免费av一区二区三区 | www.自偷自拍.com| 在线观看日韩欧美| 91成人精品电影| 国产精品亚洲av一区麻豆| 成人国产一区最新在线观看| www.999成人在线观看| a级片在线免费高清观看视频| 午夜精品久久久久久毛片777| 久热爱精品视频在线9| 日本a在线网址| 色综合婷婷激情| 亚洲av美国av| 大片电影免费在线观看免费| 婷婷精品国产亚洲av在线 | 久久精品成人免费网站| 啦啦啦视频在线资源免费观看| 99国产精品免费福利视频| 人人澡人人妻人| 99精品欧美一区二区三区四区| 国产精品免费大片| 在线视频色国产色| 国产色视频综合| 黄色成人免费大全| 免费女性裸体啪啪无遮挡网站| 热re99久久国产66热| 在线天堂中文资源库| 精品一区二区三区av网在线观看| 91av网站免费观看| 最近最新中文字幕大全电影3 | 欧美激情 高清一区二区三区| 亚洲综合色网址| 男女午夜视频在线观看| 很黄的视频免费| 日韩欧美国产一区二区入口| 三级毛片av免费| 亚洲国产欧美日韩在线播放| 在线观看日韩欧美| 中文字幕制服av| 国产av精品麻豆| 男男h啪啪无遮挡| 日韩三级视频一区二区三区| 黑人欧美特级aaaaaa片| 国产精品国产av在线观看| 欧美精品av麻豆av| 热99久久久久精品小说推荐| 午夜久久久在线观看| 80岁老熟妇乱子伦牲交| 免费av中文字幕在线| 久热这里只有精品99| 欧美日韩亚洲国产一区二区在线观看 | 色在线成人网| 性少妇av在线| 日韩成人在线观看一区二区三区| 女人被狂操c到高潮| 丁香欧美五月| 自拍欧美九色日韩亚洲蝌蚪91| 免费少妇av软件| 久久久久视频综合| 成人国产一区最新在线观看| 国产欧美日韩一区二区精品| 免费在线观看影片大全网站| 成人黄色视频免费在线看| 国产亚洲一区二区精品| 成年人黄色毛片网站| 亚洲精品中文字幕在线视频| 久久香蕉激情| 日本黄色视频三级网站网址 | 日本黄色视频三级网站网址 | 激情视频va一区二区三区| 十八禁人妻一区二区| 999久久久精品免费观看国产| 欧美日韩成人在线一区二区| 黄网站色视频无遮挡免费观看| 如日韩欧美国产精品一区二区三区| 妹子高潮喷水视频| 欧美日韩福利视频一区二区| 午夜免费成人在线视频| 国产极品粉嫩免费观看在线| 纯流量卡能插随身wifi吗| 在线观看日韩欧美| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成伊人成综合网2020| 村上凉子中文字幕在线| 久久久国产成人精品二区 | 人妻 亚洲 视频| 欧美国产精品一级二级三级| 在线永久观看黄色视频| av天堂久久9| 国产欧美日韩一区二区三| 亚洲欧洲精品一区二区精品久久久| 欧美激情 高清一区二区三区| 人妻丰满熟妇av一区二区三区 | 99热国产这里只有精品6| 不卡一级毛片| 嫁个100分男人电影在线观看| 国产精品一区二区精品视频观看| 精品免费久久久久久久清纯 | 午夜亚洲福利在线播放| 不卡av一区二区三区| а√天堂www在线а√下载 | 国产成人精品无人区| www日本在线高清视频| 交换朋友夫妻互换小说| 欧美日韩av久久| a级毛片在线看网站| 91字幕亚洲| 午夜成年电影在线免费观看| 欧美激情极品国产一区二区三区| 下体分泌物呈黄色| 国产国语露脸激情在线看| 久久亚洲精品不卡| 黄色毛片三级朝国网站| 交换朋友夫妻互换小说| 好男人电影高清在线观看| 国产精品欧美亚洲77777| 亚洲av日韩精品久久久久久密| 欧美精品亚洲一区二区| x7x7x7水蜜桃| 久久中文看片网| 日韩免费高清中文字幕av| 国产精品成人在线| 国产精品久久久av美女十八| 免费在线观看日本一区| 亚洲欧美一区二区三区黑人| 妹子高潮喷水视频| 国产精品亚洲av一区麻豆| 80岁老熟妇乱子伦牲交| 黄片播放在线免费| 欧美激情极品国产一区二区三区| 亚洲av成人一区二区三| 亚洲七黄色美女视频| 亚洲欧美精品综合一区二区三区| 欧美精品一区二区免费开放| 自线自在国产av| 男女高潮啪啪啪动态图| 99国产综合亚洲精品| 丰满饥渴人妻一区二区三| 中文字幕色久视频| 黄色视频不卡| 少妇 在线观看| 亚洲人成伊人成综合网2020| 亚洲成人国产一区在线观看| 亚洲自偷自拍图片 自拍| a级毛片在线看网站| 国产无遮挡羞羞视频在线观看| 99香蕉大伊视频| 国产欧美日韩一区二区三区在线| aaaaa片日本免费| 人妻丰满熟妇av一区二区三区 | a级片在线免费高清观看视频| 人人澡人人妻人| 欧美老熟妇乱子伦牲交| 男女下面插进去视频免费观看| 国产精品亚洲一级av第二区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品影院久久| 久久久久视频综合| 在线观看免费视频网站a站| 欧美精品av麻豆av| 黄色视频不卡| 久久精品国产综合久久久| 久久中文字幕一级| 亚洲av片天天在线观看| 欧美日韩乱码在线| 曰老女人黄片| 嫁个100分男人电影在线观看| 亚洲熟女毛片儿| 青草久久国产| 国产欧美日韩一区二区三区在线| bbb黄色大片| 91字幕亚洲| 国产国语露脸激情在线看| 村上凉子中文字幕在线| 国产精品 欧美亚洲| 欧美黄色片欧美黄色片| 看免费av毛片| 国内毛片毛片毛片毛片毛片| 亚洲va日本ⅴa欧美va伊人久久| 电影成人av| 国产一区二区三区视频了| aaaaa片日本免费| 国产av一区二区精品久久| 亚洲精品av麻豆狂野| 国产一区二区三区在线臀色熟女 | 亚洲美女黄片视频| 男女高潮啪啪啪动态图| 亚洲,欧美精品.| 久久 成人 亚洲| 性色av乱码一区二区三区2| 欧美日韩av久久| 免费观看a级毛片全部| 村上凉子中文字幕在线| 丰满人妻熟妇乱又伦精品不卡|