• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First principles study of hafnium intercalation between graphene and Ir(111)substrate

    2022-10-26 09:47:10HaoPeng彭浩XinJin金鑫YangSong宋洋andShixuanDu杜世萱
    Chinese Physics B 2022年10期
    關(guān)鍵詞:金鑫

    Hao Peng(彭浩) Xin Jin(金鑫) Yang Song(宋洋) and Shixuan Du(杜世萱)

    1Institute of Physics,and University of Chinese Academy of Sciences,Chinese Academy of Sciences,Beijing 100190,China

    2CAS Center for Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100190,China

    3Beijing National Center for Condensed Matter Physics,Beijing 100190,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: first principles calculation,intercalation,graphene,hafnium

    1. Introduction

    Graphene, an atomically thin two-dimensional (2D) material with excellent mechanical properties and unique electronic and optical properties, shows broad applications in a variety of functional devices.[1–3]One of the methods to get high-quality and single-crystalline graphene is the epitaxial growth on transition metal substrates.[4–9]However, the electronic structures of graphene obtained in such a way are usually distorted, hindering the applications of graphene.[10–12]One effective approach for this problem is intercalating heteroatoms into graphene/metal interfaces,which not only weakens the interaction between graphene and metal substrates,[13–19]but also provides the feasibility for the integration of graphene and other 2D materials without transfer process, whereby functional devices with clean interface can be achieved.[20,21]Recently, several studies reported the oxides intercalation between graphene and metal substrates,such as SiO2,[22,23]GeOx,[24]and MgO.[25]The oxides intercalation was achieved through the stepwise intercalation of heteroatoms and oxygen. After that,in situgraphene devices could be fabricated, and the transport properties of epitaxial graphene could be measured and explored.

    Due to the higher dielectric constant, HfO2can exhibit better performance in electronic devices compared to SiO2,GeOx, and MgO,[26]making the HfO2intercalation between graphene and metal substrates highly desired. To realize the HfO2intercalation, it is critical to achieve Hf intercalation in graphene/metal systems, since the successful intercalation of Hf as well as the maintenance of sharp interfaces and intact epitaxial graphene, which can be ensured by the intercalation method, are essential for the subsequent oxidation operation. To date, the Hf intercalation has been experimentally achieved in less than onemonolayer epitaxial graphene on Ir(111) substrates.[27]Although the incomplete graphene can facilitate the Hf intercalation through graphene edges or pre-existing defects, it is not suitable for the oxidation operation since it cannot resist the corrosion of oxygen.[28,29]Thus,investigation of Hf intercalation in epitaxial defect-free graphene is still desired.Previously,taking Si intercalation between graphene/Ru as a model,several mechanisms have been proposed to account for heteroatoms’ intercalation in epitaxial defect-free graphene.[30,31]However, considering that the atomic radius of Hf atom is significantly larger than that of Si atom, it is unknown whether the scenario of Si atoms applies to Hf atoms.

    In this paper,we investigate the Hf intercalation between graphene and Ir(111) substrate using first principle calculations. Based on previously reported mechanism which involves cooperative interaction of heteroatoms and substrates,we sequentially investigate the following processes: the adsorption of Hf atoms on graphene/Ir(111), the formation of carbon vacancies in Hf/graphene/Ir(111),the penetration of Hf adatoms, and the diffusion of intercalated Hf atoms at the interface.We find that during the process,the vacancy formation energies and diffusion barriers are small while the penetration barriers are abnormally large,which is different from the case where all energies or barriers are small in Si intercalation between graphene/Ru(0001).[30]The high penetration barriers indicate that the general condition usually employed in Si or SiO2intercalation experiments are not applicable to the Hf or HfO2intercalation. Therefore, we propose a strategy with a low deposition dose of Hf atoms and a high annealing temperature for Hf or HfO2intercalation,which would eliminate the effect of the high penetration barriers of Hf atoms.

    2. Methods

    First principles calculations based on density functional theory (DFT) were performed using Viennaab initiosimulation package (VASP).[32,33]The projector augmented wave method[34]was used to describe the electron–ion interaction.For the graphene/Ir(111) and Hf/graphene/Ir(111) system, as suggested in the literature[35–37]and in our test calculations(see Figs. 1 and S1), local density approximation functional was employed, which allows us to obtain similar geometric and electronic structures with two layers of substrate as those using PBE-D3 functional (in which Grimme’s empirical correction is used to describe the van der Waals interaction[38])with three layers of substrate. The energy cutoff of the planewave basis sets was 400 eV and aΓpointk-sampling was employed. The periodic slab model of the graphene/Ir(111)system included two layers of 9×9 Ir(111), one layer of 10×10 graphene, and a vacuum layer of at least 20 ?A. All atoms except the bottom substrate layer were fully relaxed until the net force on each relaxed atom was less than 0.01 eV/?A.Various sites were calculated for the adsorption of Hf atoms on graphene/Ir(111) and the creation of carbon vacancies in Hf/graphene/Ir(111). Both fcc and hcp regions were taken into account for the Hf penetration calculations. The pathways for the penetration and interfacial diffusion of Hf atoms were simulated using the climbing-image nudged elastic band(CI-NEB)method.[39,40]

    3. Results and discussion

    According to the mechanism for heteroatoms’ intercalation in epitaxial defect-free graphene proposed by Liet al.,[30]the whole intercalation process consists of the following four key stages: (i) adsorption of heteroatoms on graphene/metal and creation of carbon vacancies,(ii)penetration of heteroatoms into graphene/metal interface via carbon vacancies, (iii) self-repairing of graphene lattice, (iv) migration of heteroatoms at the interface and growth of an intercalated layer. Based on this mechanism,we first investigate the possible adsorption sites of Hf atoms on graphene/Ir(111).For graphene/Ir(111),the optimized atomic configuration is shown in Figs.1(a)and 1(b). The graphene is slightly corrugated due to the weak interaction between graphene and Ir(111). The interface spacing is 3.19 ?A and the graphene ripple size is 0.57 ?A, in agreement with the calculated results using PBED3(see Figs.S1(a)and S1(b)). Four high-symmetric regions,namely fcc,hcp,atop and bridge,are marked in Fig.1(a). We calculate the electronic structures of graphene/Ir(111)to check the strength of orbital hybridization between Hf atoms and carbon atoms of the four high-symmetric regions, whereby the possible adsorption sites of Hf atoms can be determined. Figure 1(c) shows the projected density of states (PDOS) on pzorbitals of Caand Cbatoms,which denote the two types of carbon atoms contained in graphene lattice. We find that the Caatoms in hcp region have the highest PDOS intensity near the Fermi level,implying that they are most active to interact with the Hf adatoms. The electronic structures of graphene/Ir(111)calculated using PBE-D3 have similar results(see Fig.S1(c)).

    Fig. 1. Configuration and projected density of states of graphene on Ir(111). (a) and (b) Top and side views of the configuration of graphene/Ir(111),respectively.The carbon atoms in the fcc,hcp,bridge and atop regions are marked in grey, black, orange and blue, respectively. Two types of carbon atoms are contained in a unit cell of graphene lattice, as labelled by Ca and Cb in the upper-right inset of(a). The lower-right inset of (a) shows the typical adsorption sites on graphene/Ir(111)with red dots. H,B,and T denote hollow,bridge,and top adsorption sites, respectively. The interface spacing and graphene corrugation in graphene/Ir(111)are illustrated in(b). (c)The projected density of states on pz orbitals of Ca and Cb atoms in different regions of graphene/Ir(111).

    The adsorption sites of Hf atoms on graphene/Ir(111)are further checked by calculating the adsorption energies between Hf atoms and graphene/Ir(111). The definition of adsorption sites is illustrated in the lower-right inset of Fig.1(a).Among them,T1andT2denote the top of Caor Cbatoms,B denotes the bridge of two nearest carbon atoms, and H denotes the hollow of a hexagonal benzene ring. The adsorption energyEadsis defined as follows:

    whereEHf/graphene/Iris the total energy of a Hf adatom on graphene/Ir(111),Egraphene/Iris the total energy of graphene/Ir(111), andEHfis the energy of a single Hf atom.The adsorption energies at different adsorption sites are summarized in Table 1. We find that for each high-symmetric region,the most stable adsorption site for Hf atoms is the hollow site. Such results can be attributed to the electronic structure of Hf atoms,which has a valence shell configuration of 5d26s2with four unpaired electrons. The maximum number of Hf–C bonds can be formed when Hf atoms are absorbed at hollow sites. Hollow sites in the hcp region are most preferred,which is consistent with the PDOS calculations in Fig. 1(c). However, since the adsorption energy in the fcc region is almost the same as that in the hcp region,the adsorption of Hf atoms in both regions will be taken into account in the subsequent calculations.

    Table 1.Adsorption energies of a hafnium atom on different adsorption sites of graphene/Ir(111),in units of eV.For some adsorption sites,the hafnium atom cannot be stably adsorbed and migrate to other sites after structure optimization,which is represented by initial adsorption site →final adsorption site.

    Then we investigate the formation of a carbon vacancy in Hf/graphene/Ir(111),which is the prerequisite for the penetration of Hf atoms,as schematically shown in Fig.2(a). We calculate the vacancy formation energies of the carbon vacancies,which can provide the possibility of their formation. The formula used to calculate the vacancy formation energy is given as follows:

    whereEHf/graphenevac/Iris the total energy of a Hf adatom on top of defected graphene on Ir(111),ECarbonis the chemical potential of a single carbon atom in free-standing graphene,EHf/graphene/Iris the total energy of Hf/graphene/Ir(111). Considering that Hf atoms were absorbed at the hollow sites in graphene, we locate the vacancy at various carbon sites of the hexagonal ring and calculate the corresponding vacancy formation energies (see Fig. S2 and Table S1). The vacancy formation energies in the fcc and hcp regions are 0.50 eV and 0.30 eV, respectively. These vacancy sites were chosen for the following penetration barrier calculations. It has been reported that for graphene/metal systems, the adsorption of heteroatoms will facilitate the formation of carbon vacancies in graphene.[30]In the case of Si/graphene/Ru, the vacancy formation energy in graphene is as low as 0.23 eV.[30]Our calculated values are comparable to those of Si/graphene/Ru,indicating the possibility of creating carbon vacancies in Hf/graphene/Ir(111).

    In the presence of a carbon vacancy in graphene,the penetration of Hf atoms from the surface to the interface can be achievable. We then investigate the penetration process of Hf atoms and the corresponding energy barriers. Figure 2(a)shows the intercalation path of a Hf atom in graphene/Ir(111).From the middle panel, we find that the Hf atom passes through the vacancy with neighboring carbon atoms on its one side being pressed down and those on the other side being lifted up. We speculate that this penetration behavior is induced by the large atomic size of Hf, since the Hf atom enlarges the vacancy hole before passing through.The corresponding energy barriers of Hf atoms penetration in the fcc and hcp regions of graphene/Ir(111) are shown in Figs. 2(d) and 2(e), respectively. The energy barriers are 2.14 eV and 2.38 eV in the fcc and hcp regions, respectively.Both energy barriers are larger than that of Si intercalation at graphene/Ru(0001) interface[30]because of the large size of Hf atoms. For comparison,we also calculate the Hf atoms intercalation in free-standing graphene, as shown in Figs. 2(b)and 2(c). The penetration process of Hf atoms in free-standing graphene is analogous to that in graphene/Ir(111),but the penetration barrier in free-standing graphene is even higher, that is, 5.15 eV,suggesting that this process is unlikely to happen in reality. As reported previously,[30]the penetration barriers of Si atoms in graphene/Ru and free-standing graphene are 0.66 eV and 0.33 eV,respectively,which are smaller than those of Hf atoms. The larger penetration barriers of Hf atoms suggest that the Hf intercalation process will happen at annealing temperatures higher than those of Si intercalation.Moreover, we estimate that even the annealing temperature is increased to 1300 K, the intercalation rate of Hf atoms in graphene/Ir(111)is still 5 to 6 orders of magnitude lower than that of Si atoms in graphene/Ru(0001)with the annealing temperature at around 700 K–900 K(see Fig.S3). As mentioned in previous work,[31]low intercalation rates would induce a longer average penetration time and surface residues. This suggests that in addition to increasing the annealing temperature, the amount of Hf atoms deposited should be reduced,which will help to avoid Hf atoms remaining on the surface due to low intercalation rates. Therefore, due to the highly large penetration barriers, Hf intercalation should be carried out with low deposition doses of Hf atoms and high annealing temperatures.

    Fig.2. Configurations of Hf intercalation process and the corresponding energy barriers. (a)and(b)Configurations during the Hf intercalation process for graphene/Ir(111)and free-standing graphene,respectively. The process includes creation of a carbon vacancy,penetration of the Hf atom,and self-repairing of graphene. Gr denotes graphene. IS,TS,and FS denote initial state,transition state,and final state of the penetration process, respectively. In the penetration process, the Hf atom locates at the site of the missing C atom. (c)–(e) Energy barriers of Hf atoms penetrating through the freestanding graphene,the fcc region of graphene/Ir(111),and the hcp region of graphene/Ir(111),respectively.

    Fig. 3. Hf atoms diffusion at the interface of graphene/Ir(111). (a)Schematic diffusion paths and (b) diffusion barriers of Hf atoms from the fcc region to the atop and hcp regions.

    Finally, we investigate the Hf atoms diffusion at the interface of graphene/Ir(111). According to the proposed mechanism, when the penetration of Hf atoms is accomplished, the self-repairing of defected graphene will occur simultaneously,[30]as schematically shown in Fig.2(a). Then the Hf atoms will diffuse under the graphene to form an interface layer. We calculate the interfacial diffusion barriers to provide the possibility of the formation of the interface layer.We first evaluate the preferable regions for Hf atoms to stay under graphene by calculating the total energies of different graphene/Hf/Ir(111)structures. Table S2 shows that the structure is most stable when Hf atoms are located in the atop region, followed by the hcp region, then the bridge region, and finally the fcc region. By assuming that Hf atoms penetrate in the fcc region, we then simulate two diffusion paths: one is from fcc to atop, corresponding to the diffusion of Hf atoms from the penetration region to the most stable region underneath graphene;the other is from fcc to hcp,which is the subsequent process after the atop region is filled with Hf atoms.The two diffusion paths and their corresponding diffusion barriers are shown in Figs. 3(a) and 3(b), respectively. We find that the interfacial diffusion barriers of Hf atoms are in the range of 0.31–0.59 eV, which are comparable to that of Si atoms(0.5 eV)in graphene/Si/Ru(0001).[30]The small interfacial diffusion barriers suggest that Hf atoms can easily diffuse at the interface of graphene/Ir(111) and form an intercalated layer.

    Previous experimental results have shown that a 2×2 superlattice of Hf atoms can be formed at the interface of graphene/Ir(111).[27]Furthermore,the Raman spectra have indicated that the graphene is decoupled from the Ir(111) substrate after Hf intercalation.[27]Therefore,we believe that the intercalated Hf layer weakens the interaction between epitaxial graphene and Ir substrate.

    4. Conclusions and perspectives

    In summary,we have studied the Hf intercalation between graphene and Ir(111). Due to the large atomic size of Hf,the energy barriers of Hf penetration are large, which will lead to restricted conditions for Hf intercalation experiments.When Hf intercalation is performed based on intact epitaxial graphene,we suggest that it should be carried out with low deposition doses of Hf atoms and high annealing temperatures,which will prevent Hf atoms from aggregating into larger clusters and provide sufficient energy supply for Hf atoms to overcome the large penetration barriers. Otherwise,Hf atoms may be pinned to the surface or get stuck in the created vacancies, which cannot guarantee the clean interface of the fabricated heterostructure and the high quality of graphene. These theoretical results can provide important guidance for the future integration of epitaxial graphene and the high-κHfO2dielectrics.

    Acknowledgements

    A portion of the research was performed in CAS Key Laboratory of Vacuum Physics. Computational resources were provided by the National Supercomputing Center in Tianjin.

    Project supported by the National Natural Science Foundation of China (Grant No. 61888102), the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000),and the Fundamental Research Funds for the Central Universities,China.

    猜你喜歡
    金鑫
    好朋友的話,吵架也沒關(guān)系
    Electronic structures of vacancies in Co3Sn2S2*
    電廠熱工控制系統(tǒng)中抗干擾技術(shù)運用分析
    金鑫:保證乘客安全、貨物安全,是中國鐵路的自信
    中華兒女(2020年22期)2020-02-09 03:02:34
    闖入你的特立獨行
    “視光師金小鑫”其人
    ——專訪淮南壽陽眼鏡總經(jīng)理金鑫
    雙魚鑰匙扣
    High-precision method of detecting motion straightness based on plane mirror interference
    Fuzzycontrol method to minimize the needle deflection duringneedle insertion therapy
    Roundness error evaluation by minimum zone circle via microscope inspection
    看免费av毛片| 欧美日本中文国产一区发布| 亚洲av在线观看美女高潮| 少妇人妻精品综合一区二区| 狂野欧美激情性bbbbbb| 曰老女人黄片| 卡戴珊不雅视频在线播放| 观看美女的网站| 国产片内射在线| 久久久国产一区二区| 我的女老师完整版在线观看| 精品国产一区二区久久| 中文字幕人妻熟女乱码| 精品一区二区三区四区五区乱码 | 精品一区二区三卡| 日韩精品免费视频一区二区三区 | 日本免费在线观看一区| 欧美人与善性xxx| 精品少妇黑人巨大在线播放| 十八禁网站网址无遮挡| 色5月婷婷丁香| 亚洲精品美女久久久久99蜜臀 | 在线观看免费视频网站a站| 一区二区日韩欧美中文字幕 | 国产欧美日韩一区二区三区在线| 久久精品国产a三级三级三级| 熟妇人妻不卡中文字幕| 午夜影院在线不卡| 精品一品国产午夜福利视频| 日韩精品免费视频一区二区三区 | 人人妻人人爽人人添夜夜欢视频| 久久久欧美国产精品| 巨乳人妻的诱惑在线观看| 成年动漫av网址| 亚洲精品一二三| 宅男免费午夜| 午夜视频国产福利| 国产精品不卡视频一区二区| 亚洲欧美色中文字幕在线| 老熟女久久久| 免费人成在线观看视频色| 男人添女人高潮全过程视频| av黄色大香蕉| 久久精品国产鲁丝片午夜精品| 国产老妇伦熟女老妇高清| 色婷婷av一区二区三区视频| 成人国语在线视频| 夫妻午夜视频| 一本色道久久久久久精品综合| 一边亲一边摸免费视频| 9色porny在线观看| 黄色怎么调成土黄色| 欧美人与性动交α欧美软件 | 国产熟女欧美一区二区| 日韩,欧美,国产一区二区三区| 国产成人精品无人区| 日本wwww免费看| 777米奇影视久久| 亚洲精品日韩在线中文字幕| 免费av不卡在线播放| 欧美97在线视频| 国产成人午夜福利电影在线观看| 最近的中文字幕免费完整| 天天躁夜夜躁狠狠躁躁| 国产精品免费大片| 啦啦啦中文免费视频观看日本| 成人18禁高潮啪啪吃奶动态图| 国产精品一区二区在线不卡| 一二三四中文在线观看免费高清| 看免费av毛片| 高清欧美精品videossex| 999精品在线视频| 丁香六月天网| 97在线人人人人妻| 久久韩国三级中文字幕| 日本色播在线视频| 看非洲黑人一级黄片| 国产极品粉嫩免费观看在线| 草草在线视频免费看| 中国三级夫妇交换| 激情五月婷婷亚洲| 人人澡人人妻人| 99久久精品国产国产毛片| av国产久精品久网站免费入址| 精品久久久精品久久久| 亚洲精品日本国产第一区| 在线观看www视频免费| 高清在线视频一区二区三区| 免费看不卡的av| 欧美最新免费一区二区三区| 精品福利永久在线观看| 国产黄频视频在线观看| 久久精品久久久久久噜噜老黄| 精品午夜福利在线看| 欧美+日韩+精品| 午夜福利在线观看免费完整高清在| 日产精品乱码卡一卡2卡三| 久久精品久久久久久噜噜老黄| 国产亚洲欧美精品永久| 制服人妻中文乱码| 咕卡用的链子| 久久久精品区二区三区| 亚洲国产看品久久| 女人久久www免费人成看片| 男女边摸边吃奶| 亚洲美女视频黄频| 亚洲精品国产色婷婷电影| 美女福利国产在线| 久久99热6这里只有精品| 精品亚洲成a人片在线观看| 亚洲国产精品999| 国产av精品麻豆| 亚洲精品自拍成人| 精品国产一区二区久久| 有码 亚洲区| 王馨瑶露胸无遮挡在线观看| 青春草国产在线视频| 一个人免费看片子| 在线精品无人区一区二区三| 你懂的网址亚洲精品在线观看| 久久99蜜桃精品久久| 我的女老师完整版在线观看| 亚洲国产精品一区三区| 精品一区二区三区视频在线| 在线亚洲精品国产二区图片欧美| 欧美激情 高清一区二区三区| 你懂的网址亚洲精品在线观看| 哪个播放器可以免费观看大片| 有码 亚洲区| 久久精品国产综合久久久 | 成年av动漫网址| 亚洲精品一二三| 插逼视频在线观看| 亚洲第一区二区三区不卡| 日本免费在线观看一区| 美女脱内裤让男人舔精品视频| 免费人妻精品一区二区三区视频| 自拍欧美九色日韩亚洲蝌蚪91| 最近中文字幕高清免费大全6| 最近手机中文字幕大全| 性色av一级| 在线观看一区二区三区激情| 亚洲精品一二三| 午夜福利网站1000一区二区三区| 成人国产麻豆网| 91久久精品国产一区二区三区| 亚洲婷婷狠狠爱综合网| 麻豆乱淫一区二区| 丝袜在线中文字幕| 午夜影院在线不卡| 久久女婷五月综合色啪小说| 哪个播放器可以免费观看大片| 大片电影免费在线观看免费| 中文字幕av电影在线播放| 一边摸一边做爽爽视频免费| 美女中出高潮动态图| 国产欧美亚洲国产| 成人毛片a级毛片在线播放| 精品一区二区免费观看| 精品第一国产精品| a 毛片基地| 国产亚洲av片在线观看秒播厂| 看免费成人av毛片| 欧美亚洲 丝袜 人妻 在线| 黑人高潮一二区| 日日爽夜夜爽网站| 成人二区视频| 亚洲人成网站在线观看播放| 亚洲人成77777在线视频| 成人黄色视频免费在线看| av一本久久久久| 亚洲综合精品二区| videos熟女内射| 伦理电影大哥的女人| 大香蕉久久成人网| 国产亚洲午夜精品一区二区久久| 久久国内精品自在自线图片| 超碰97精品在线观看| 赤兔流量卡办理| a级毛片在线看网站| 18禁裸乳无遮挡动漫免费视频| 高清不卡的av网站| 性色av一级| 欧美变态另类bdsm刘玥| 亚洲第一区二区三区不卡| av免费在线看不卡| 一二三四中文在线观看免费高清| 国产成人aa在线观看| 乱人伦中国视频| 亚洲欧洲国产日韩| 久久ye,这里只有精品| 国产精品久久久久久精品电影小说| 久久精品国产亚洲av天美| 国产探花极品一区二区| 亚洲av中文av极速乱| 午夜久久久在线观看| av国产久精品久网站免费入址| 欧美成人精品欧美一级黄| 日韩精品免费视频一区二区三区 | 婷婷色综合大香蕉| 美女xxoo啪啪120秒动态图| 国产精品99久久99久久久不卡 | 多毛熟女@视频| 午夜老司机福利剧场| 欧美 日韩 精品 国产| 亚洲人成网站在线观看播放| 午夜福利在线观看免费完整高清在| 最新中文字幕久久久久| 黄片播放在线免费| 亚洲精品第二区| 男女无遮挡免费网站观看| 日韩熟女老妇一区二区性免费视频| 久久99精品国语久久久| 国产欧美另类精品又又久久亚洲欧美| 欧美日韩视频高清一区二区三区二| 狂野欧美激情性bbbbbb| 成年女人在线观看亚洲视频| 99国产综合亚洲精品| 香蕉国产在线看| 日韩大片免费观看网站| 美国免费a级毛片| 新久久久久国产一级毛片| 黑丝袜美女国产一区| 美女国产视频在线观看| 伦理电影免费视频| 热99国产精品久久久久久7| 国产精品麻豆人妻色哟哟久久| 人体艺术视频欧美日本| 日韩不卡一区二区三区视频在线| 午夜免费鲁丝| 一级黄片播放器| 少妇精品久久久久久久| 久久女婷五月综合色啪小说| 香蕉国产在线看| 国产精品女同一区二区软件| 在线免费观看不下载黄p国产| 另类亚洲欧美激情| av网站免费在线观看视频| 日韩三级伦理在线观看| av不卡在线播放| 国产日韩欧美在线精品| 久久人妻熟女aⅴ| 亚洲精品色激情综合| 春色校园在线视频观看| 亚洲少妇的诱惑av| 五月开心婷婷网| 国产欧美日韩综合在线一区二区| 校园人妻丝袜中文字幕| 亚洲精品第二区| 熟女av电影| 只有这里有精品99| 免费观看性生交大片5| 美女视频免费永久观看网站| 亚洲精品美女久久久久99蜜臀 | 成人国语在线视频| 卡戴珊不雅视频在线播放| 纯流量卡能插随身wifi吗| 免费大片黄手机在线观看| 69精品国产乱码久久久| 最近中文字幕高清免费大全6| 免费看av在线观看网站| 99re6热这里在线精品视频| 国产精品无大码| 精品少妇久久久久久888优播| 国产精品久久久久久精品古装| 18禁国产床啪视频网站| 男女啪啪激烈高潮av片| 国产视频首页在线观看| 少妇 在线观看| 亚洲精华国产精华液的使用体验| 这个男人来自地球电影免费观看 | 国产成人精品福利久久| 免费播放大片免费观看视频在线观看| 久久97久久精品| 亚洲精品中文字幕在线视频| 亚洲精品美女久久av网站| 制服诱惑二区| 国产成人a∨麻豆精品| 久久精品国产鲁丝片午夜精品| 久久国产精品大桥未久av| 国产精品人妻久久久影院| 亚洲国产色片| 亚洲欧美成人精品一区二区| 成人手机av| 美女福利国产在线| 亚洲图色成人| 夫妻性生交免费视频一级片| 九色成人免费人妻av| 在线免费观看不下载黄p国产| a级片在线免费高清观看视频| 91aial.com中文字幕在线观看| 午夜免费鲁丝| 亚洲欧美一区二区三区国产| 在线精品无人区一区二区三| 69精品国产乱码久久久| 卡戴珊不雅视频在线播放| 巨乳人妻的诱惑在线观看| 国产精品国产三级专区第一集| 久久精品久久精品一区二区三区| 老熟女久久久| 日本黄大片高清| 欧美精品av麻豆av| 久久99热6这里只有精品| 亚洲经典国产精华液单| 久久久久视频综合| 国产精品99久久99久久久不卡 | 好男人视频免费观看在线| 乱码一卡2卡4卡精品| 边亲边吃奶的免费视频| 亚洲欧洲精品一区二区精品久久久 | 美女福利国产在线| 另类精品久久| 涩涩av久久男人的天堂| 男女免费视频国产| 国产视频首页在线观看| 久久精品久久久久久久性| 看十八女毛片水多多多| 成人国产av品久久久| av卡一久久| 一个人免费看片子| 成人毛片60女人毛片免费| 精品一区在线观看国产| 久久99热6这里只有精品| 在线天堂中文资源库| 七月丁香在线播放| 人妻少妇偷人精品九色| 在线精品无人区一区二区三| 免费播放大片免费观看视频在线观看| 夜夜骑夜夜射夜夜干| 一区二区日韩欧美中文字幕 | 日本猛色少妇xxxxx猛交久久| 免费看av在线观看网站| 国产熟女欧美一区二区| 亚洲av福利一区| 日韩一区二区三区影片| 国产在线视频一区二区| 国产精品国产三级国产av玫瑰| 9热在线视频观看99| 在线精品无人区一区二区三| 亚洲欧美成人综合另类久久久| 中文乱码字字幕精品一区二区三区| 成人午夜精彩视频在线观看| 欧美亚洲 丝袜 人妻 在线| 观看美女的网站| 国产深夜福利视频在线观看| 午夜福利在线观看免费完整高清在| 久久午夜综合久久蜜桃| 飞空精品影院首页| 满18在线观看网站| 久久青草综合色| 久久久久久久亚洲中文字幕| 日本av免费视频播放| av电影中文网址| 精品一品国产午夜福利视频| 成人黄色视频免费在线看| 欧美 亚洲 国产 日韩一| 国产探花极品一区二区| 一边亲一边摸免费视频| 欧美成人午夜免费资源| 人成视频在线观看免费观看| 观看美女的网站| 免费人成在线观看视频色| 婷婷色综合大香蕉| xxxhd国产人妻xxx| 91成人精品电影| 一级,二级,三级黄色视频| 免费观看无遮挡的男女| 男女无遮挡免费网站观看| 街头女战士在线观看网站| 午夜福利影视在线免费观看| 日本欧美视频一区| 香蕉国产在线看| 性色avwww在线观看| 久久久欧美国产精品| 日韩不卡一区二区三区视频在线| 女性被躁到高潮视频| 不卡视频在线观看欧美| 777米奇影视久久| 九九爱精品视频在线观看| 久久99一区二区三区| 日韩成人av中文字幕在线观看| av在线老鸭窝| 亚洲精品视频女| 国产免费一区二区三区四区乱码| 午夜免费观看性视频| 精品一区二区三区四区五区乱码 | 国产熟女午夜一区二区三区| 亚洲综合精品二区| 尾随美女入室| 99久久中文字幕三级久久日本| 男男h啪啪无遮挡| 如何舔出高潮| 欧美精品一区二区大全| 国产一区亚洲一区在线观看| 亚洲高清免费不卡视频| 少妇的逼水好多| 国产精品秋霞免费鲁丝片| 久久精品夜色国产| 色网站视频免费| 久久午夜综合久久蜜桃| 久久久国产欧美日韩av| 1024视频免费在线观看| 丰满少妇做爰视频| 国产精品国产av在线观看| 亚洲天堂av无毛| 美女国产高潮福利片在线看| 国产白丝娇喘喷水9色精品| 97在线视频观看| 精品亚洲成国产av| 哪个播放器可以免费观看大片| 五月天丁香电影| 日本黄色日本黄色录像| 有码 亚洲区| 97在线人人人人妻| 91国产中文字幕| a级毛片黄视频| videosex国产| 在线观看国产h片| 亚洲精品国产av蜜桃| 日韩av不卡免费在线播放| 丝袜美足系列| 午夜视频国产福利| 五月玫瑰六月丁香| 九九爱精品视频在线观看| 日韩人妻精品一区2区三区| 啦啦啦视频在线资源免费观看| 赤兔流量卡办理| 国产精品人妻久久久影院| 欧美日韩亚洲高清精品| 成人毛片60女人毛片免费| 久久青草综合色| 人妻 亚洲 视频| 一级毛片 在线播放| 香蕉精品网在线| 亚洲av国产av综合av卡| 99九九在线精品视频| 亚洲成av片中文字幕在线观看 | 成人毛片60女人毛片免费| av国产久精品久网站免费入址| 欧美+日韩+精品| 久久人人爽人人爽人人片va| 九九爱精品视频在线观看| 黄片无遮挡物在线观看| 欧美国产精品va在线观看不卡| 五月开心婷婷网| 免费大片18禁| 考比视频在线观看| 中国三级夫妇交换| 一边摸一边做爽爽视频免费| 国产av码专区亚洲av| 9色porny在线观看| 国产精品国产av在线观看| 大香蕉久久成人网| 国产片特级美女逼逼视频| 久久精品人人爽人人爽视色| 制服人妻中文乱码| 亚洲第一av免费看| 亚洲av男天堂| 中文字幕免费在线视频6| 精品人妻一区二区三区麻豆| 国产探花极品一区二区| 搡女人真爽免费视频火全软件| 国产乱来视频区| av网站免费在线观看视频| 亚洲国产最新在线播放| 日本黄色日本黄色录像| 中国国产av一级| h视频一区二区三区| 成人国语在线视频| 三上悠亚av全集在线观看| 日韩av不卡免费在线播放| 国产在视频线精品| 久久女婷五月综合色啪小说| 国产免费视频播放在线视频| 欧美激情国产日韩精品一区| 久久午夜综合久久蜜桃| 秋霞伦理黄片| 又大又黄又爽视频免费| 成人二区视频| 免费高清在线观看视频在线观看| 国产老妇伦熟女老妇高清| 国产在线免费精品| 亚洲av福利一区| 丰满饥渴人妻一区二区三| 国产一区二区激情短视频 | 国产一区有黄有色的免费视频| 巨乳人妻的诱惑在线观看| 亚洲,欧美精品.| 久久亚洲国产成人精品v| 日韩制服骚丝袜av| 欧美人与性动交α欧美软件 | 汤姆久久久久久久影院中文字幕| 黄色怎么调成土黄色| 涩涩av久久男人的天堂| 男女边摸边吃奶| 一二三四中文在线观看免费高清| 少妇精品久久久久久久| 男女啪啪激烈高潮av片| 一二三四中文在线观看免费高清| 免费黄频网站在线观看国产| 亚洲精品乱码久久久久久按摩| 少妇猛男粗大的猛烈进出视频| 午夜影院在线不卡| 亚洲美女黄色视频免费看| 中文字幕av电影在线播放| 亚洲欧美成人精品一区二区| 中国国产av一级| 久久av网站| 国产综合精华液| 久久精品国产亚洲av涩爱| 国产精品女同一区二区软件| 国产精品不卡视频一区二区| 男女高潮啪啪啪动态图| 国产不卡av网站在线观看| 久久久精品94久久精品| 亚洲人成网站在线观看播放| av一本久久久久| 少妇被粗大的猛进出69影院 | 国产精品国产三级国产专区5o| 这个男人来自地球电影免费观看 | 精品一区二区免费观看| 成年av动漫网址| 亚洲国产精品专区欧美| 九九爱精品视频在线观看| 亚洲国产av新网站| 亚洲国产成人一精品久久久| 两性夫妻黄色片 | 成年人免费黄色播放视频| 国精品久久久久久国模美| 少妇高潮的动态图| 亚洲成人手机| 国产熟女欧美一区二区| 国产亚洲精品久久久com| 天堂中文最新版在线下载| 久久国内精品自在自线图片| 日本黄大片高清| 国产 精品1| 2022亚洲国产成人精品| 九色亚洲精品在线播放| 成人毛片60女人毛片免费| 下体分泌物呈黄色| 91午夜精品亚洲一区二区三区| 亚洲国产色片| 久久久亚洲精品成人影院| 国产精品一二三区在线看| 一区二区三区精品91| 美女视频免费永久观看网站| 99香蕉大伊视频| 中文字幕制服av| 亚洲伊人久久精品综合| videos熟女内射| 亚洲av福利一区| 亚洲精品久久成人aⅴ小说| 少妇的丰满在线观看| 久久狼人影院| av一本久久久久| 欧美激情国产日韩精品一区| 久久97久久精品| 亚洲人成77777在线视频| 午夜老司机福利剧场| 精品国产露脸久久av麻豆| 国产亚洲精品久久久com| 国产免费一级a男人的天堂| 女性被躁到高潮视频| 日韩av不卡免费在线播放| 麻豆乱淫一区二区| 亚洲熟女精品中文字幕| 免费黄网站久久成人精品| 日日撸夜夜添| 国产一区有黄有色的免费视频| 午夜久久久在线观看| 考比视频在线观看| av天堂久久9| 欧美人与善性xxx| 国产精品久久久久久av不卡| 在线天堂最新版资源| www日本在线高清视频| 22中文网久久字幕| 另类精品久久| 搡女人真爽免费视频火全软件| 亚洲av在线观看美女高潮| 国产精品无大码| 国产精品蜜桃在线观看| 搡女人真爽免费视频火全软件| 高清在线视频一区二区三区| 中文精品一卡2卡3卡4更新| 久久毛片免费看一区二区三区| 视频中文字幕在线观看| www.av在线官网国产| 午夜福利影视在线免费观看| 交换朋友夫妻互换小说| 久久人人爽人人片av| 2022亚洲国产成人精品| 另类精品久久| 人人妻人人澡人人看| 少妇精品久久久久久久| 精品一区在线观看国产| 看免费成人av毛片| 久久精品国产综合久久久 | 久久国内精品自在自线图片| 1024视频免费在线观看| 飞空精品影院首页| 99久久中文字幕三级久久日本| 亚洲丝袜综合中文字幕| 欧美性感艳星| 成人亚洲精品一区在线观看| 国内精品宾馆在线| 国产极品天堂在线| 成年av动漫网址| 在线观看三级黄色| 中国美白少妇内射xxxbb| 美女内射精品一级片tv| 亚洲一码二码三码区别大吗| 秋霞伦理黄片| 天美传媒精品一区二区|