• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure:Model and simulation

    2022-09-24 08:04:12ZiHengWang王自衡YiJunZhang張益軍ShiManLi李詩曼ShanLi李姍JingJingZhan詹晶晶YunShengQian錢蕓生FengShi石峰HongChangCheng程宏昌GangChengJiao焦崗成andYuGangZeng曾玉剛
    Chinese Physics B 2022年9期
    關鍵詞:石峰晶晶

    Zi-Heng Wang(王自衡) Yi-Jun Zhang(張益軍) Shi-Man Li(李詩曼) Shan Li(李姍)Jing-Jing Zhan(詹晶晶) Yun-Sheng Qian(錢蕓生) Feng Shi(石峰)Hong-Chang Cheng(程宏昌) Gang-Cheng Jiao(焦崗成) and Yu-Gang Zeng(曾玉剛)

    1School of Electronic and Optical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    2National Key Laboratory of Science and Technology on Low-Level-Light,Xi’an 710065,China

    3Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China

    Keywords: temporal response,GaAs-based photocathode,distribution Bragg reflection,graded-bandgap

    1. Introduction

    Since the advent of the GaAs-based vacuum photocathode,it has attracted extensive research interest due to its high quantum efficiency,low thermal noise,spin-dependent effects,and high-speed response.[1-6]After decades of research, the GaAs-based photocathode gradually becomes irreplaceable in specific application areas,such as night vision imaging,spinpolarized electron source, spectrophotometer, photon counting, laser detection, and thermionic energy converters.[7-13]Quantum efficiency is one of the most significant parameters of photocathode. How to improve the quantum efficiency is always a hot issue in numerous photocathode researches.During this period, many approaches regarding structural design have been proposed, such as field-assist structure and distribution Bragg reflection (DBR) structure.[14-19]In previous researches, the photoemission process of the photocathode was treated as a steady-state situation for studying quantum efficiency or an unsteady-state situation for investigating temporal response.[20-23]For the field-assisted photocathode adopting the varied-doping structure,researchers have explored the temporal response characteristic theoretically and experimentally.[24,25]However, the dynamic temporal properties of the laminated GaAs-based photocathode with DBR structure and graded-bandgap emission layer still lack a suitable model to be described and investigated. Besides, the influence of the DBR structure on the temporal response and the intrinsic mechanism also need to be explained.

    According to Spicer’s three-step model of photoemission,[26]the emission progress of excited electron can be divided into generation,transport and escaping. In the progress of photoelectron generation, the photocathode with gradedbandgap emission layer and DBR reflection layer has different photoelectron generation characteristics and electron transport characteristics. The DBR layer located beneath the emission layer can act as a reflector,which has the function of realizing the total reflection at target wavelength. Hence,the propagating process of the incidence light in the emission layer can be divided into two parts: forward incidence and backward reflection caused by the reflection of DBR structure. In addition, the interface recombination and built-in electric field in the laminated graded-bandgap emission layer also influence the internal transport of photoelectron. Accordingly,this laminated photocathode requires an appropriate time-dependent photoemission model.

    In this paper, a time-dependent photoemission model is deduced to study the temporal response of the laminated GaAs-based photocathode with DBR structure and gradedbandgap emission layer. The derivation method is based on the unsteady one-dimensional continuity equations combined with the numerically discrete calculation. The related optical properties involved in the calculation process are simulated by the finite-different time-domain(FDTD)method. With the assist of the deduced model,the effect of the secondary absorption caused by the DBR layer and the graded bandgap structure on the temporal response are indicated clearly. We emphatically discuss the effect of DBR structure on the temporal response from the perspectives of emission layer thickness,electron concentration distribution,and incident light wavelength.The analysis results indicate that how the structural design of GaAs-based photocathode influences the temporal response,which will provide effective theoretical guidance for further improvement.

    2. Structure and theoretical model

    The laminated GaAs-based photocathode consists of a DBR layer,a varying-composition,and varying-doping emission layer. As shown in Fig.1(a),from top to bottom,the photocathode includes a GaAs-based emission layer, a DBR reflection layer,and a substrate.The emission layer is composed of the varying-composition and varying-doping InxGa1-xAs.Under the emission layer, the DBR layer is formed by alternately stacking two types of thin materials with different refractive indexes. Through reasonable design, the DBR layer has the function of realizing the total reflection at a specific wavelength.In this case,the original transmission light toward the substrate would be reflected back to the emitting layer,and thus generating the secondary absorption,which improves the absorptivity of the emission layer, especially the absorptivity at the target wavelength.

    The energy band structure of the GaAs-based photocathode is shown in Fig.1(b). Because of the varying-composition and varying-doping structure, the conduction-bandECand valence-bandEVof the emission layer are respectively bent and inclined by the Fermi level leveling effect. Hence, the built-in electric fieldEinis generated in the bandgap bending region, and the direction is from the surface toward the bulk. With the assist of the built-in electric field and diffusing effect, the photoelectron transports toward the surface of the emission layer and finally enters into the vacuum. The DBR layer,which is composed of the alternating growing GaAs sublayer and AlAs sublayer, is grown on the high-quality GaAs substrate. The material of DBR structure guarantees the lattice matching at each interface. In addition,the AlAs sublayer also has the function of preventing the reverse recombination of photoelectron,because of the broad bandgap. In structural design,the emission layer is divided intonsublayers,and the In composition of each sublayer gradually increases in the direction of electron transport. The doping concentration of the emission layer exponentially decreases in the direction of electron transport.

    Fig. 1. (a) Structure diagram and (b) energy band structure of laminated GaAs-based photocathode,with EC being the minimum of conduction band,EV the maximum of valence band,EF the Fermi level,E0 the vacuum level,and Ein the built-in electric field.

    According to the theory of thin film optics,the thickness of the alternating materials needs satisfy the following expressions to realize the total reflection at target wavelength:

    whereλtargetis the target wavelength,nLandnHare the refractive indices of the materials in the DBR layer respectively,andnH>nL,dLanddHare the thicknesses of these two materials in each alternation period. When the In composition changes linearly,the intensity of the built-in electric field generated by the varying-composition and exponential-doping can be calculated by the following formulas:[14,27,28]

    whereN(Tn) andN(0) are the doping concentrations at the ends of the emission layer,k0is the Boltzmann constant,Tkthe absolute temperature,q0the electron charge,EgnandEg1are the bandgaps of the innermost sublayer and the outmost sublayer in the emission layer,andTnis the total thickness of the emission.

    The unsteady one-dimensional continuity equation of the laminated GaAs-based photocathode can be expressed as

    wherene(z,t) is the instantaneous electron concentration in the emission layer,Dniis the electron diffusion coefficient,μiis electron mobility,τiis the lifetime of electron,and the subscriptivalue runs from 1 ton,corresponding to the sublayers with different In compositions in the emission layer.When the incident light transmits through the emission layer at the first time,the light absorption process is called first absorption,and the generation rate of photoelectronsg1(z,t)can be expressed as given below. Whent=0,

    whereRhvis the reflectivity of incident surface,I0is the intensity of incident light,αhvis the absorption coefficient,diis the thickness of each sublayer,andTiis the position of a sublayer along thezaxis. Because the DBR layer is located behind the emission layer, the transmission part of the incident light will be reflected back into the emission layer and causes the secondary absorption in the emission layer. At this point,the photoelectron generation rate of the secondary absorption can be expressed below. Whent=0,

    whereTemissionis the transmissivity of the emission layer,RDBRis the reflectivity of the DBR layer, andR'hvis the reflectivity of the emission layer in the backward direction. To solve the differential continuity equation, Eq. (7), the boundary conditions of the interfaces between the sublayers are also necessary,and the equations are given as follows:wheni=2,3,...,n,

    wheretsis the average decay time of the electron concentration at the emitting surface,which is an approximately comprehensive parameter describing the whole photoelectron transport progress,[24]andSviis the surface recombination rate of each interface. To investigate the time response characteristic of the photocathode,it is assumed that the light source is an ideal pulse source att=0. Hence,the continuity equation,Eq.(7),is given below.whent/=0,

    Since the exact analytical solution of the unsteady continuity equation cannot be obtained easily through the above equations,the differential discrete method of numerical calculation is utilized to approximate to the actual solution. In this way,the thicknesses of the emission layer and the time lapsing can be discretized into grids. The thickness is divided intoMparts and each spatial step is Δz. The time lapsing is divided intoKparts and each temporal step is Δt. In this case, the electron concentration distribution in the emission layer can be discretized as follows:

    whereNis the discretized electron concentration distribution,jis the discretized spatial coordinate,kis the discretized temporal coordinate. Afterward, the continuity equation and boundary conditions can also be represented by the discretized method. Whent=0,the initial value of the electron concentration distribution becomes

    3. Simulation and discussion

    The model of the temporal response characteristic of the laminated GaAs-based photocathode is deduced by numerically solving the unsteady one-dimensional continuity equation. In this case, the relationship between the structural design and the temporal response characteristic can be further investigated through the deduced model. The structural parameters of the photocathode are set to be as follows. The InxGa1-xAs emission layer is divided into 5 sublayers with different In compositions. The thickness values of sublayers each are 0.1μm, 0.1μm, 0.1μm, 0.1μm, and 0.7μm, from bulk to surface,and the In composition values of corresponding sublayers are 0.05, 0.10, 0.15, 0.20, 0.20, respectively.The doping concentration of the entire emission layer exponentially decreases from 1×1019cm-3to 1×1018cm-3,from bulk to surface. Under the ideal assumption, the In composition in the emission layer increases linearly from 0.05 to 0.20 within a thickness of 0.4 μm. Afterwards, a uniform composition In0.2Ga0.8As sublayer of 0.7 μm in thickness adjacent to the varying composition sublayers helps to improve the absorption capability at 1064 nm. For computability, it is assumed that the bandgap changes linearly in the varying composition region. In this case, the built-in electric fieldE2generated by the varying composition is considered to be uniform in the varying composition region.[27,28]Since the outmost and second sublayers are both In0.2Ga0.8As material,it is considered that there is no interface between the two sublayers in simulation. Therefore,the photoelectrons in the second sublayer directly travel across the interface into the outmost sublayer without recombination. In simulation, the refractive index and extinction coefficient of GaAs and AlAs are cited from Ref. [29], while the refractive index and extinction coefficient of InxGa1-xAs are taken from Ref. [30]. According to Eqs.(1)and(2), to reduce the reflectivity and improve the photoresponse at 1064 nm, the thickness values of the GaAs and AlAs in the DBR layer are set to be 76 nm and 90 nm,respectively. The quantity cycle of the DBR layer is set to be 10 and the total thickness of the DBR layer is 1.66μm. Because the propagation time of the incident light in the emission layer and the DBR layer is much less than the temporal response of photocathode, the propagation time is ignored in the simulation. In this case, the optical properties of the photocathode with the mentioned structural design can be simulated to verify the reasonability. As shown in Fig. 2, the FDTD method is utilized to theoretically calculate the reflectivity and the absorptivity spectrum of the photocathode with the above structure. In the process of FDTD simulation, the light source is placed in the vacuum,and the light beam is incident normally on the surface of emission layer.As shown in Fig.2,the reflectivity curve appears as an oscillating curve in the wavelength range above 800 nm, because of the alternant thin films. According to the theory of DBR design, the lowest wavelength valley when the reflectivity curve fluctuates should be located at 1064 nm. The simulated reflectivity curve and absorptivity curve reach a minimum value and a maximum value at 1064 nm, respectively, which proves that the introduction of DBR structure reliably can improve the absorption capability of emission layer at 1064 nm.

    Fig. 2. Simulated reflectivity curve and absorptivity curve of the InxGa1-xAs emission layer with DBR structure.

    Combining the results of FDTD simulation,the temporal response of the photocathode can be calculated by the deduced model. As for the varying-composition InxGa1-xAs emission layer, the band gap, electron mobility, electron diffusion coefficient all depend on In compositionx, and the relationship expressions are given by[31,32]

    Table 1. Parameters used in simulation of quantum efficiency curves.

    Fig. 3. Simulated flux curves of emitted photoelectrons with (a) different surface electron decay time ts and(b)different thickness values of uniform composition In0.2Ga0.8As sublayer.

    The flux curves of emitted photoelectron with different values oftsare simulated and shown in Fig. 3(a), wherein the total thickness of InxGa1-xAs emission layer is set to be 1.1 μm. The wavelength of monochromatic pulse light source is 1064 nm. It can be seen obviously that with the increase ofts, the positions of the peak values severely shift to the right and the full widths at half maximum(FWHM)are broadened. According to the definition, in a certain photocathode structure, the value oftsshould also be determined.Changing the value oftsalone can lead to discrepancies in the simulation results as shown in Fig. 2(a). The value oftsis relevant to the whole photoelectron transport process, especially the thickness of emission layer. In this case, the value oftsis determined by the thickness of emission layer and the relationship is cited from the results of Ref.[24]. The normalized flux curves of emitted photoelectrons with different thicknesses of emission layer are simulated and shown in Fig.3(b). Because the uniform composition In0.2Ga0.8As sublayer is the main part of the emission layer, and has the best absorption at 1064 nm,the thickness of the uniform composition In0.2Ga0.8As sublayerd1is adjusted in simulation. It can be seen that the increase of the thickness significantly worsens the temporal response in terms of the right shift of peak and the broadening of FWHM, as shown in Fig. 3(b). With the increase of thickness of the uniform composition sublayer,more photoelectrons are generated in the deeper region,which weakens the enhancement of DBR layer. Besides, the photoelectrons need more transit time to reach the emitting surface.

    Although the graded-bandgap emission layer and the DBR layer can improve the quantum efficiency, the effect of this laminated structure on the temporal characteristic still needs further studying. Figure 4(a)demonstrates the normalized flux curves of emitted photoelectrons for the varying composition structure and the uniform composition structure. In the simulations, the total thickness of InxGa1-xAs emission layer in the structure with DBR layer is set to be 1.1 μm. In the comparative structure,the entire emission layer is replaced by a uniform In0.2Ga0.8As layer with the same thickness. Besides,tsis set to be 2.4 ps for both structures.[24]It can be clearly observed that the photocathode with graded-bandgap emission layer has better temporal response,because the builtin electric field which is opposite to the direction of electron movement,accelerates the movement of electrons. To reduce the influence of structural difference on the result, the temporal response of the proposed structure is simulated without considering the built-in electric field for comparison. The improvement effect of the built-in electric field on the temporal response can be directly observed. According to the above deduced photoelectron generation rate formula,the existence of DBR layer improves the problem of diffusion velocity by the distributing of the generated electrons. Through the abovededuced model of electron concentration distribution, it can be found that the effect of secondary absorption of DBR layer is determined by the thickness of emission layer. Too thick an emission layer will reduce the light energy entering into the DBR layer and weaken secondary absorption. To verify this conjecture, a new photocathode structure with thinner emission layer is simulated for comparison as shown in Fig.4(b).In this new structure, the total thickness of emission layer is set to be 0.6 μm, and the thickness of the uniform composition In0.2Ga0.8As sublayer decreases to 0.2 μm for reducing the light absorption in the first absorption. Meanwhile, thetsis adjusted to 1.5 ps due to the decrease of emission layer thickness.[24]It can be seen that the improvement effect of the DBR layer on the temporal response becomes more obvious with emission layer thinening, because the proportion of the excited electrons generated by the secondary absorption increases with the thickness of emission layer decreasing.

    Figure 5 shows the time evolutions of the electron concentration distributionn(z,t)in the emission layers with different photocathode structures. The total thickness of the emission layer is set to be 0.6μm to emphasize the effect caused by the DBR structure,andtsis assumed to be 1.5 ps.The emitting surface is located at the origin of abscissa. In Fig. 5(a), it is clear that the initial photoelectron distribution is uniformized by the secondary absorption because of the DBR structure.With the emitting of photoelectron,the electron concentration at the emitting surface decreases rapidly,and a bulge of electron concentration distribution is formed in the bulk as shown in Figs. 5(b)-5(d). In this case, the uniform initial electron concentration distribution can reduce the blocking effect of concentration gradient on photoelectron diffusion. The electron concentration in the In0.15Ga0.85As sublayer decreases faster, due to a mass of photoelectrons passing through the interface between In0.2Ga0.8As sublayer and In0.15Ga0.85As sublayer,and transporting toward the emitting surface. Meanwhile,these figures also demonstrate the characteristics of the DBR layer to enhance the absorption capacity of the emission layer.

    Fig. 4. Simulated flux curves of emitted photoelectrons for (a) different built-in electric field cases and(b)different emission layer thickness values with or without DBR layer.

    Figure 6 shows the relationship between the DBR structure and temporal response under different incident light wavelengths. The total thickness of emission layer is also 0.6 μm andtsis also set to be 1.5 ps. It is noted that the improvement effect of DBR structure on the temporal response is obvious for the 1064-nm-wavelength incident light, while the temporal response of the photocathode with DBR structure is no different from that without DBR structure for the 780-nm-wavelength incident light. Besides, it can also be found that the improvement effect of DBR structure on the temporal response is reduced when the incident light wavelength decreases. Because the InGaAs material has weaker absorption capability for the longer wavelength light,with the wavelength of incident light decreasing,less transmission light can reach the DBR layer and establish the secondary absorption.However,the improvement effect of the DBR structure is determined by the contribution of secondary absorption to total absorption. After the incident light is absorbed completely in the first absorption process,the introduction of DBR layer has no influence on the temporal response.

    Fig.5. Electron concentration distributions in emission layer with and without DBR at time t=0 ps(a),1 ps(b),3 ps(c),and 5 ps(d).

    Fig.6. Simulated flux curves of emitted photoelectrons in emission layer with and without DBR at incident light wavelength of(a)1064 nm,(b)960 nm,and(c)780 nm.

    4. Conclusions

    In this work, a general theory model is deduced to describe the temporal response of the laminated graded-bandgap GaAs-based photocathode with DBR structure.By solving the unsteady continuity equation through numerical computation method, the time-dependent flux of emitted photoelectrons is obtained. Besides, the relationship between the temporal response and the structural parameters including the thickness of emission layer,the built-in electric field and the DBR structure is explored. Meanwhile, the time evolution of electron concentration distribution in the emission layer and the influence of incident light wavelength on the temporal response are also simulated. Through the DBR layer, the discrepancy between the absorption capability of the emitting layer and the temporal response can be resolved. By adjusting the initial electron concentration distribution, the temporal response is improved, with the of DBR layer introduced. Moreover, the improvement effect of the DBR layer on the temporal response is enhanced with the decrease of emission layer thickness or the increase of the incident light wavelength. This theoretical model of temporal response characteristic of the complicated GaAs-based photocathode will contribute to the optimization of cathode structure for near infrared response.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.U2141239 and 61771245)and the Fund from the Science and Technology on Low-Light-Level Night Vision Laboratory of China(Grant No.J20200102).

    猜你喜歡
    石峰晶晶
    巧算最小表面積
    魔方(節(jié)選)
    貝那普利與美托洛爾慢性心衰的臨床療效分析
    Digging for the past
    紅杜鵑(電影文學劇本)
    影劇新作(2020年4期)2020-12-04 20:22:10
    炎熱的夏天
    The Impact of Dignity on Design Behavior
    青年生活(2019年3期)2019-09-10 16:57:14
    石峰作品
    國畫家(2018年2期)2018-04-25 06:39:20
    銀億股份:于無聲處聽驚雷
    Regional Warming by Black Carbon and Tropospheric Ozone: A Review of Progresses and Research Challenges in China
    在现免费观看毛片| 亚洲性夜色夜夜综合| 欧美日韩黄片免| 成人永久免费在线观看视频| 看黄色毛片网站| 欧美潮喷喷水| 国产成人aa在线观看| 精品一区二区免费观看| 88av欧美| 日韩欧美 国产精品| 精品久久久久久久久久免费视频| 99riav亚洲国产免费| 久99久视频精品免费| 午夜精品在线福利| 欧美成人a在线观看| 日本免费a在线| 国产免费av片在线观看野外av| 欧美日本亚洲视频在线播放| 三级国产精品欧美在线观看| 久久欧美精品欧美久久欧美| 午夜福利高清视频| 欧美又色又爽又黄视频| 91麻豆精品激情在线观看国产| 91麻豆精品激情在线观看国产| 亚州av有码| 一区二区三区四区激情视频 | 免费在线观看成人毛片| 国产视频内射| 女的被弄到高潮叫床怎么办 | 国产精品亚洲美女久久久| av.在线天堂| 欧美最新免费一区二区三区| 精品一区二区三区视频在线观看免费| 五月伊人婷婷丁香| 午夜a级毛片| 亚洲一级一片aⅴ在线观看| 国产黄色小视频在线观看| 久久6这里有精品| videossex国产| 久久草成人影院| 成人亚洲精品av一区二区| 啦啦啦啦在线视频资源| 亚洲av不卡在线观看| av专区在线播放| 麻豆一二三区av精品| 99久久精品一区二区三区| 免费看光身美女| 欧美激情国产日韩精品一区| 麻豆成人av在线观看| 成年版毛片免费区| 一个人看视频在线观看www免费| 国产精品98久久久久久宅男小说| 99久久九九国产精品国产免费| 国产女主播在线喷水免费视频网站 | 国产免费一级a男人的天堂| 成年女人看的毛片在线观看| 永久网站在线| 国产av在哪里看| 美女大奶头视频| 五月伊人婷婷丁香| 久久人人精品亚洲av| 一级a爱片免费观看的视频| 日韩精品青青久久久久久| 日韩中文字幕欧美一区二区| 永久网站在线| 国产视频一区二区在线看| 免费在线观看影片大全网站| 99视频精品全部免费 在线| 亚洲国产精品合色在线| 韩国av一区二区三区四区| 成人美女网站在线观看视频| 日韩在线高清观看一区二区三区 | 人妻夜夜爽99麻豆av| 国产精品综合久久久久久久免费| 我要看日韩黄色一级片| 欧美色视频一区免费| 久久久精品大字幕| 亚洲成人免费电影在线观看| 亚洲av中文av极速乱 | 久99久视频精品免费| 窝窝影院91人妻| 白带黄色成豆腐渣| 国产精品国产三级国产av玫瑰| 午夜亚洲福利在线播放| 国产欧美日韩一区二区精品| netflix在线观看网站| 免费观看在线日韩| 日韩中字成人| a级毛片a级免费在线| 国产一区二区激情短视频| 3wmmmm亚洲av在线观看| 国产欧美日韩精品亚洲av| 亚洲欧美日韩卡通动漫| 中文字幕人妻熟人妻熟丝袜美| 欧美+日韩+精品| 午夜福利18| 天堂动漫精品| 久久久精品欧美日韩精品| 欧美色欧美亚洲另类二区| 久久国产精品人妻蜜桃| 男女啪啪激烈高潮av片| 一夜夜www| 精品一区二区三区视频在线| 韩国av一区二区三区四区| 国产精品无大码| av国产免费在线观看| 日日干狠狠操夜夜爽| 一卡2卡三卡四卡精品乱码亚洲| 成人欧美大片| 国产真实伦视频高清在线观看 | 又爽又黄a免费视频| 久久香蕉精品热| 亚洲精品在线观看二区| 久久99热这里只有精品18| 又黄又爽又刺激的免费视频.| 国产人妻一区二区三区在| 好男人在线观看高清免费视频| 日韩欧美精品免费久久| 久久6这里有精品| 日韩亚洲欧美综合| 真人一进一出gif抽搐免费| bbb黄色大片| 色视频www国产| 午夜久久久久精精品| 免费在线观看日本一区| 亚洲国产日韩欧美精品在线观看| 国产精品98久久久久久宅男小说| 人妻夜夜爽99麻豆av| 男人舔奶头视频| 国产三级中文精品| 99热网站在线观看| 精品一区二区三区视频在线观看免费| 欧美最新免费一区二区三区| 少妇熟女aⅴ在线视频| 亚洲美女搞黄在线观看 | 天堂av国产一区二区熟女人妻| 久久久久久久久久成人| 欧美高清成人免费视频www| 亚洲av成人精品一区久久| 校园春色视频在线观看| 三级毛片av免费| 亚洲va在线va天堂va国产| 亚洲七黄色美女视频| 国产精品,欧美在线| 91午夜精品亚洲一区二区三区 | 国产伦在线观看视频一区| 日韩 亚洲 欧美在线| 美女 人体艺术 gogo| 国产成人aa在线观看| 久久久国产成人精品二区| 国内精品久久久久精免费| 精品久久久久久久人妻蜜臀av| 18+在线观看网站| 在线a可以看的网站| 国产一区二区三区视频了| 精品一区二区三区人妻视频| 在线观看免费视频日本深夜| 亚洲美女黄片视频| eeuss影院久久| 色综合亚洲欧美另类图片| 亚洲自偷自拍三级| 夜夜爽天天搞| 午夜激情福利司机影院| 韩国av一区二区三区四区| av国产免费在线观看| 国产黄色小视频在线观看| 97超级碰碰碰精品色视频在线观看| 天天一区二区日本电影三级| 国内揄拍国产精品人妻在线| 制服丝袜大香蕉在线| 免费黄网站久久成人精品| 99热精品在线国产| 91在线观看av| 在线观看66精品国产| 亚洲精华国产精华液的使用体验 | 舔av片在线| 欧美性猛交黑人性爽| 欧美性感艳星| 国产一区二区三区在线臀色熟女| 欧美精品国产亚洲| avwww免费| 国产 一区精品| 一区二区三区高清视频在线| 国内少妇人妻偷人精品xxx网站| 日韩一本色道免费dvd| av在线蜜桃| 国产毛片a区久久久久| 中文资源天堂在线| 精品欧美国产一区二区三| 欧美黑人巨大hd| 我要看日韩黄色一级片| 观看美女的网站| 免费人成视频x8x8入口观看| 国产伦人伦偷精品视频| 国产精品嫩草影院av在线观看 | 乱人视频在线观看| 国产高清激情床上av| 高清日韩中文字幕在线| 久久久精品欧美日韩精品| 欧美在线一区亚洲| 日本 av在线| 日本a在线网址| 午夜福利在线观看吧| 好男人在线观看高清免费视频| 午夜激情福利司机影院| 无人区码免费观看不卡| 国产精品永久免费网站| 日韩国内少妇激情av| 欧美最新免费一区二区三区| 少妇高潮的动态图| 色综合色国产| 全区人妻精品视频| 亚洲av五月六月丁香网| 尾随美女入室| 日本免费一区二区三区高清不卡| 日韩欧美一区二区三区在线观看| 亚洲精品粉嫩美女一区| 久久欧美精品欧美久久欧美| 伦理电影大哥的女人| 日韩欧美在线乱码| 亚洲在线观看片| 老女人水多毛片| 九色国产91popny在线| 直男gayav资源| 日韩大尺度精品在线看网址| 免费看光身美女| 日本与韩国留学比较| 国产精品久久久久久精品电影| 亚洲内射少妇av| 午夜亚洲福利在线播放| 性色avwww在线观看| av黄色大香蕉| 搡老熟女国产l中国老女人| 欧美日韩综合久久久久久 | 男插女下体视频免费在线播放| 久久草成人影院| 精品久久久久久成人av| 99久国产av精品| 窝窝影院91人妻| 熟女电影av网| 日韩一本色道免费dvd| 国产三级在线视频| 国产精品无大码| ponron亚洲| www日本黄色视频网| 最好的美女福利视频网| 国产在线男女| 成人二区视频| 成人鲁丝片一二三区免费| 99riav亚洲国产免费| 日韩欧美精品免费久久| 精品人妻熟女av久视频| 性欧美人与动物交配| 九色国产91popny在线| 动漫黄色视频在线观看| avwww免费| 舔av片在线| 1024手机看黄色片| 国内精品久久久久精免费| 又黄又爽又免费观看的视频| 1000部很黄的大片| 最新中文字幕久久久久| 91麻豆精品激情在线观看国产| 亚洲性夜色夜夜综合| 久久久国产成人免费| 午夜免费激情av| 欧洲精品卡2卡3卡4卡5卡区| 桃色一区二区三区在线观看| 无人区码免费观看不卡| aaaaa片日本免费| 18禁黄网站禁片午夜丰满| 欧美zozozo另类| 少妇裸体淫交视频免费看高清| 女生性感内裤真人,穿戴方法视频| 美女黄网站色视频| 久久精品久久久久久噜噜老黄 | 亚洲欧美日韩卡通动漫| 日韩欧美免费精品| АⅤ资源中文在线天堂| 草草在线视频免费看| 亚洲国产欧洲综合997久久,| 亚洲在线观看片| 国产男人的电影天堂91| 免费高清视频大片| 免费高清视频大片| 国产不卡一卡二| 免费人成视频x8x8入口观看| 日本黄大片高清| 小蜜桃在线观看免费完整版高清| 免费人成在线观看视频色| av福利片在线观看| 成人国产麻豆网| 最近中文字幕高清免费大全6 | 国产欧美日韩一区二区精品| 日韩一区二区视频免费看| 亚洲av中文av极速乱 | 在线a可以看的网站| 国产精品久久久久久精品电影| 国产真实伦视频高清在线观看 | 亚洲专区中文字幕在线| 国产高潮美女av| 免费看光身美女| 亚洲国产精品合色在线| 日韩一区二区视频免费看| 一卡2卡三卡四卡精品乱码亚洲| 97超级碰碰碰精品色视频在线观看| 午夜精品在线福利| 日本爱情动作片www.在线观看 | 亚洲在线观看片| 亚洲图色成人| 色av中文字幕| 高清在线国产一区| 国产又黄又爽又无遮挡在线| 直男gayav资源| 亚洲国产精品久久男人天堂| 成年女人毛片免费观看观看9| 久久99热6这里只有精品| 麻豆成人午夜福利视频| 在线免费十八禁| 精品日产1卡2卡| 午夜视频国产福利| 黄色一级大片看看| 2021天堂中文幕一二区在线观| 日韩av在线大香蕉| 久久人妻av系列| 精品一区二区三区视频在线观看免费| 99在线人妻在线中文字幕| 国产中年淑女户外野战色| 很黄的视频免费| 欧美3d第一页| 免费av观看视频| 亚洲欧美日韩无卡精品| 性插视频无遮挡在线免费观看| 99久国产av精品| 国产伦精品一区二区三区四那| 国产亚洲精品av在线| 两个人的视频大全免费| 久久亚洲精品不卡| 91久久精品国产一区二区三区| 欧美性猛交╳xxx乱大交人| 校园人妻丝袜中文字幕| 在线观看一区二区三区| 亚洲成av人片在线播放无| 18+在线观看网站| 九色国产91popny在线| 99久久成人亚洲精品观看| 精品久久久久久久末码| 狠狠狠狠99中文字幕| 欧美日韩乱码在线| 女生性感内裤真人,穿戴方法视频| 天堂√8在线中文| 欧美成人性av电影在线观看| 亚洲国产欧美人成| 精品一区二区三区视频在线| 天堂av国产一区二区熟女人妻| 国产精品98久久久久久宅男小说| 老司机深夜福利视频在线观看| 欧美最黄视频在线播放免费| 亚洲久久久久久中文字幕| 日本黄色片子视频| 午夜福利视频1000在线观看| 一级a爱片免费观看的视频| 午夜福利高清视频| 亚洲国产精品合色在线| netflix在线观看网站| 黄色欧美视频在线观看| 国产精品不卡视频一区二区| 亚洲不卡免费看| 国产av一区在线观看免费| 中出人妻视频一区二区| 啪啪无遮挡十八禁网站| 嫩草影院精品99| 日本免费a在线| 97热精品久久久久久| 麻豆精品久久久久久蜜桃| 美女cb高潮喷水在线观看| 波多野结衣高清作品| 欧美精品国产亚洲| 91久久精品国产一区二区三区| 国产视频内射| 国产熟女欧美一区二区| 久久婷婷人人爽人人干人人爱| 日本精品一区二区三区蜜桃| 久久久久久大精品| 狠狠狠狠99中文字幕| 国内精品久久久久久久电影| 又爽又黄无遮挡网站| 久久99热6这里只有精品| 亚洲天堂国产精品一区在线| 内射极品少妇av片p| 日本熟妇午夜| 国产乱人伦免费视频| 不卡视频在线观看欧美| 国产亚洲精品av在线| 日韩一区二区视频免费看| 韩国av一区二区三区四区| 色5月婷婷丁香| 尾随美女入室| 欧美激情国产日韩精品一区| 内射极品少妇av片p| 又粗又爽又猛毛片免费看| 97超视频在线观看视频| 色精品久久人妻99蜜桃| 午夜福利成人在线免费观看| 亚洲成av人片在线播放无| 色哟哟哟哟哟哟| 美女高潮喷水抽搐中文字幕| 亚洲av熟女| 麻豆精品久久久久久蜜桃| 久久久精品大字幕| 伊人久久精品亚洲午夜| 亚洲av中文av极速乱 | 两个人视频免费观看高清| 两人在一起打扑克的视频| 国产亚洲精品综合一区在线观看| 日韩精品中文字幕看吧| 中文在线观看免费www的网站| 国产精品永久免费网站| 男女那种视频在线观看| 老师上课跳d突然被开到最大视频| 久久久久久久久久久丰满 | 日本精品一区二区三区蜜桃| 久久精品久久久久久噜噜老黄 | 免费av毛片视频| 熟女电影av网| 12—13女人毛片做爰片一| 日韩亚洲欧美综合| 男人狂女人下面高潮的视频| 日本在线视频免费播放| 99热这里只有是精品50| 人妻丰满熟妇av一区二区三区| 成人精品一区二区免费| 国产精品国产高清国产av| 波野结衣二区三区在线| 免费观看在线日韩| 国产免费一级a男人的天堂| 国产女主播在线喷水免费视频网站 | 精品人妻偷拍中文字幕| 女同久久另类99精品国产91| 精品不卡国产一区二区三区| 在线天堂最新版资源| 精品人妻视频免费看| 亚洲熟妇中文字幕五十中出| 色哟哟·www| 亚洲va在线va天堂va国产| 国产在线精品亚洲第一网站| 黄色配什么色好看| 亚洲成人久久性| 久久亚洲精品不卡| 91久久精品国产一区二区三区| 亚洲精华国产精华精| 99九九线精品视频在线观看视频| 国产91精品成人一区二区三区| 久久久久久大精品| 国产成人福利小说| 十八禁网站免费在线| 日本一二三区视频观看| 观看免费一级毛片| 免费在线观看影片大全网站| 久久精品久久久久久噜噜老黄 | 日韩精品有码人妻一区| 99国产精品一区二区蜜桃av| 午夜福利成人在线免费观看| 国产美女午夜福利| 久久久久久久久久久丰满 | 黄色欧美视频在线观看| 久久久久免费精品人妻一区二区| 欧美日韩综合久久久久久 | 日韩人妻高清精品专区| 久久精品夜夜夜夜夜久久蜜豆| 一区二区三区激情视频| 久久国产乱子免费精品| 免费看美女性在线毛片视频| 美女高潮的动态| 看免费成人av毛片| 男女做爰动态图高潮gif福利片| 欧美黑人巨大hd| 亚洲久久久久久中文字幕| 三级国产精品欧美在线观看| 有码 亚洲区| 成年免费大片在线观看| 婷婷精品国产亚洲av| 哪里可以看免费的av片| 久久人人爽人人爽人人片va| 国产亚洲精品久久久com| 99热这里只有是精品50| 麻豆成人av在线观看| 日日撸夜夜添| 色精品久久人妻99蜜桃| 99热这里只有是精品在线观看| 亚洲第一电影网av| 日韩,欧美,国产一区二区三区 | 亚洲不卡免费看| 尾随美女入室| 欧美日韩黄片免| 男人舔女人下体高潮全视频| 成人特级av手机在线观看| 国内精品久久久久久久电影| 一本精品99久久精品77| 国产精品一区二区三区四区免费观看 | 国产伦在线观看视频一区| 国产乱人伦免费视频| 久久国产乱子免费精品| 变态另类丝袜制服| 18禁裸乳无遮挡免费网站照片| 午夜福利成人在线免费观看| 99久久精品一区二区三区| 老司机深夜福利视频在线观看| 两个人的视频大全免费| 免费观看在线日韩| 国产三级中文精品| 搞女人的毛片| 男人舔奶头视频| 免费高清视频大片| 最后的刺客免费高清国语| 中文字幕精品亚洲无线码一区| 赤兔流量卡办理| 国产乱人伦免费视频| 国产蜜桃级精品一区二区三区| 亚洲内射少妇av| 欧美成人一区二区免费高清观看| 一卡2卡三卡四卡精品乱码亚洲| 人人妻人人看人人澡| 日韩一本色道免费dvd| 日本精品一区二区三区蜜桃| 久久久色成人| 级片在线观看| 看十八女毛片水多多多| 黄片wwwwww| 久久久久久大精品| 久久精品国产亚洲网站| 99久久精品一区二区三区| 亚洲av二区三区四区| 久久人人爽人人爽人人片va| 日本撒尿小便嘘嘘汇集6| 小蜜桃在线观看免费完整版高清| 国产精品一区二区性色av| 亚洲av美国av| 亚洲欧美日韩高清专用| 99久久精品一区二区三区| 人人妻人人澡欧美一区二区| 免费观看人在逋| 国模一区二区三区四区视频| 91麻豆av在线| 欧美最新免费一区二区三区| 久久久久久久久久黄片| 日本一二三区视频观看| 欧美最黄视频在线播放免费| 精品国产三级普通话版| 热99在线观看视频| 国语自产精品视频在线第100页| 高清日韩中文字幕在线| 极品教师在线视频| av中文乱码字幕在线| 日本欧美国产在线视频| av天堂中文字幕网| 亚洲av熟女| 国产亚洲精品av在线| 男女边吃奶边做爰视频| 欧美一级a爱片免费观看看| 十八禁网站免费在线| 国产高清三级在线| 婷婷六月久久综合丁香| 一级av片app| 自拍偷自拍亚洲精品老妇| 国产日本99.免费观看| 日日啪夜夜撸| 国产精品美女特级片免费视频播放器| 成人特级黄色片久久久久久久| 色精品久久人妻99蜜桃| 亚洲国产精品合色在线| 国产精品日韩av在线免费观看| 老女人水多毛片| avwww免费| 成人鲁丝片一二三区免费| 两个人的视频大全免费| 1024手机看黄色片| 夜夜看夜夜爽夜夜摸| 99久久无色码亚洲精品果冻| av在线亚洲专区| a级毛片免费高清观看在线播放| 亚洲在线自拍视频| 他把我摸到了高潮在线观看| 亚洲天堂国产精品一区在线| 丰满的人妻完整版| 黄色丝袜av网址大全| 最新中文字幕久久久久| 婷婷丁香在线五月| 亚洲精品日韩av片在线观看| 97超级碰碰碰精品色视频在线观看| 两个人的视频大全免费| 亚洲四区av| 12—13女人毛片做爰片一| 午夜精品久久久久久毛片777| 免费观看在线日韩| 亚洲aⅴ乱码一区二区在线播放| 免费看光身美女| а√天堂www在线а√下载| 色5月婷婷丁香| 亚洲性夜色夜夜综合| 欧美绝顶高潮抽搐喷水| 观看美女的网站| 国产精品人妻久久久久久| 亚洲熟妇熟女久久| 亚洲在线自拍视频| 亚洲精品色激情综合| 精品久久久久久久久久久久久| 亚洲一级一片aⅴ在线观看| 精品人妻一区二区三区麻豆 | 女人被狂操c到高潮| 日日啪夜夜撸| bbb黄色大片| 精品人妻偷拍中文字幕| 乱系列少妇在线播放| 国内少妇人妻偷人精品xxx网站|