• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing

    2022-09-24 08:04:12ChenWang王塵WeiHangFan范偉航YiHongXu許怡紅YuChaoZhang張宇超HuiChenFan范慧晨ChengLi李成andSongYanCheng陳松巖
    Chinese Physics B 2022年9期
    關(guān)鍵詞:李成

    Chen Wang(王塵) Wei-Hang Fan(范偉航) Yi-Hong Xu(許怡紅) Yu-Chao Zhang(張宇超)Hui-Chen Fan(范慧晨) Cheng Li(李成) and Song-Yan Cheng(陳松巖)

    1Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices,School of Opto-electronic and Communiction Engineering,Xiamen University of Technology,Xiamen 361024,China

    2Department of Physics,Semiconductor Photonics Research Center,Xiamen University,Xiamen 361005,China

    Keywords: phosphorus diffusion, activation concentration, co-implanted fluorine, germanium, excimer laser annealing

    1. Introduction

    Germanium (Ge) is regarded as a promising high mobility channel material that can replace silicon for postsilicon complementary metal-oxide-semiconductor (CMOS)processing. It owns high electron and hole mobility, low process temperature as well as high absorption coefficient in optical communication band.[1,2]These advantages make it widely used in many devices, such as photo-detectors,[3]sensors,[4]and metal-oxide-semiconductor field-effect transistors (MOSFETs).[5]N-type doping of Ge with high active dopant concentration is an important issue for both CMOS field-effect transistors and optoelectronic applications. As an example, highly doped n-type layer in PIN photodetector structure or in source/drain region in MOSFET structure has played an important role in the performance of devices. Besides,the n-type doping level as high as 1×1020cm-3activation concentration with low diffusion is usually necessary for a downscaling beyond 15 nm. However, it is hard to fulfill the high level n-type doping in Ge because of low solid solubility and large diffusion coefficient of V-group impurity,[6]which will restrict its applications to some extent. In order to obtain heavy n-type doping in Ge, the combination of ion implantation and post-annealing process is frequently utilized.[7]After ion implantation, the severe crystal damage will be formed and induce a number of point defects consisting of Ge vacancies and self-interstitial Ge atoms. As is well known,the diffusion of most n-type dopants in Ge is based on vacancy-assisted mechanisms in the post-annealing process.[8]Recently, the laser annealing technique has been considered as a very promising method to achieve high carrier concentration doping in Ge beyond the solid solubility limit due to its high temperature (beyond the melting point) and metastable state annealing process.[9]Up to now,many reports[10-14]have been devoted to the obtainment of high n-type doping concentration in Ge by using laser annealing,which is verified to be an efficient means for restoration of ion implantation damages. However,it encounters a contradiction between high activation concentrations needed by high laser annealing energy density and low energy density required by shallow junction(narrow dopant profile).

    The defect engineering was employed to control the impurity diffusion by modulating the number of trapped vacancies through using co-implantation technique.Many elements,such as carbon(C),nitrogen(N),and fluorine(F),have proved to be alternative co-doping ions to suppress dopant diffusion in the post-annealing process.[15-17]Among those elements,theoretical and experimental studies[13,18-22]show that F owns a large electro-negativity and has been confirmed to be one of the best options because of its higher bonding energy with vacancy to form FnVmclusters than n-type dopants.

    In this work, the diffusion and activation of phosphorus in co-implanted P+F Ge after being annealed under different conditions are investigated in detail. Two annealing methods,namely excimer laser annealing(ELA)and rapid thermal annealing(RTA),are used to explore the effects of F on the diffusion and activation of phosphorus in Ge. The evidence and mechanism of F suppressing P diffusion in Ge are suggested by annealing P-only implanted and P+F co-implanted Ge by using ELA and RTA.

    2. Experiments

    A thickness of~450-μm p-Ge with (100) orientation and a resistivity of 0.05 Ω·cm-1 Ω·cm was employed as a substrate. The Ge substrates were cleaned ultrasonically by being immersed in acetone, ethanol, and de-ionized water, each for 10 min. And the sequence was repeated three times. Next,they were dipped into hydrofluoric acid solution (HF:H2O=1:50) for 30 s to etch off the entire native oxide layer. Finally, all samples were rinsed with de-ionized water for 10 min and dried with high purity nitrogen. Before co-implantation,a 13-nm-thick silicon dioxide film was grown on the surface of Ge substrate by radio frequency magnetron sputtering. And then,two kinds of the samples were prepared.Among the samples of the first kind, some substrates could be implanted only by phosphorous ion with injection energy of 30 keV and a dose of 5×1015cm-2. Phosphorus (P) is a preferable implanted dopant into Ge because other n-type doped impurities,such as antimony and arsenic,will generate more ion implantation damages. Moreover, they own higher impurity diffusion coefficient with abundant vacancies. And among the samples of the other kind,some substrates could be co-implanted by phosphorus(P)and fluorine(F).The implantation condition of phosphorous ion is the same as that in the first kind of sample. After P implantation, fluorinions were implanted into Ge substrate with injection energy of 20 keV and a dose of 5×1014cm-2again. Prior to carrying out any post-annealing process, the SiO2film deposited on substrate surface was etched off by using HF:H2O=1:20 solution at room temperature. And then, all of the implanted samples were ultrasonically cleaned in deionized water for 15 min so as to eliminate the intrinsic oxide layer on Ge surface, which is speculated to be the source of oxygen contaminant during the annealing of Ge.[23]

    After that, the samples with implanted P-only and P+F were annealed by two kinds of annealing methods, namely ELA and RTA,respectively. The annealing conditions of ELA on samples were 100 mJ/cm2and 175 mJ/cm2with one pulse,respectively. The ELA process was performed by a 248-nm KrF excimer laser(Coherent Inc. from USA)with 25-ns pulse duration in nitrogen environment. The light spot size during laser annealing was 5 mm×4 mm. In thexdirection and theydirection, the continuous laser scanning was carried out to include the entire sample. The RTA process condition fixed at 650°C for 15 s under nitrogen atmosphere was chosen because it might be the suitable condition to activate implanted ion and repair the implantation damages.[24]

    The profiles of P and F chemical concentrations with the varied depths were acquired by using dynamic secondary-ionmass spectrometry (SIMS) PHI ADEPT 1010 instrument. A Cs+primary ion beam with an accelerating voltage of 2 kV,a current of 30 nA and an incident angle of 60°was employed.The carrier concentration depth profiles were obtained by the SSM2000 nano-spreading resistance probe (SRP) measurement system. Samples were beveled using a 0.1-micron diamond paste to have a bevel angle of 0.5°and a depth resolution of about 30 nm. For measurement we used tungsten-osmium probes with a load of 5 grams,probe spacing 80μm and 5-mV small bias applied between two probes. The cross-sectional high-resolution transmission electron microscopy (HRTEM)was used on the co-implanted samples to demonstrate the crystal structure of Ge before and after being annealed by 175-mJ/cm2laser. The Raman spectra of the co-implanted samples were measured to display the restoration of the crystalline structure before and after being annealed under different conditions.

    3. Results and discussion

    The profiles of phosphorus and fluorine in the samples implanted with P-only and P+F before and after annealing are characterized by SIMS measurement as shown in Fig. 1.Through integrating SIMS profiles,the real dose of phosphorus and fluorine in implanted sample without annealing are 4.72×1015cm-2and 3.1×1014cm-2after the SiO2has been wiped off, respectively. Moreover, the dose loses and the depths for the samples with implanted P-only and P+F after being annealed under various conditions are calculated and displayed in Table 1. As can be seen in Fig. 1(a), a slight diffusion of phosphorus happens and the dopant dose loss is 11.7% in sample A after being annealed by a 100-mJ/cm2laser. By contrast,there is little diffusion or the rearrangement of phosphorus, and only 4% dopant dose is lost in the sample B. Besides, the diffusion redistribution of fluorine seems to happen in 55-nm depth range with 7% dopant dose lost.Figure 1(b) shows the dopant profiles of samples C and D with ELA at 175 mJ/cm2. In the phosphorus there happens impurity diffusion with a length~141 nm at the concentration of 1×1018cm-3and the dopant dose loss reaches up to 36.2% in sample C with P-only implantation. The sample D with P+F co-implantation, by contrast, exhibits a halved phosphorus dopant dose loss of about 16.9% and a depth of~129 nm. Moreover, the diffusion redistribution of fluorine is enhanced to some extent,and the dopant dose loss increases to 12.3%. Based on the above analysis,the reduced phosphorus dopant depth and dose loss by the co-implanted fluorine element may be attributed to the reduction of the number of vacancies,[13,18]which is consistent with the phenomenon in other reports.[19,20]In order to further clarify the effect of the co-implanted fluorine,the RTA process(at 650°C for 15 s)is also conducted in sample E and sample G,and the profiles of P and F are displayed in Fig.1(c).As we can see from the figure,the phosphorus shows a box-shaped distribution in each of the two samples. An obvious diffusion of the phosphorus with a depth~288 nm occurs, and the dopant doseloss rises up to 73.3%in sample E with P-only implantation. However,sample G with P+F co-implantation,by contrast,shows a reduced phosphorus dopant dose loss of about 56.6% and a depth of~236 nm. It is worth noting that the diffusion of fluorine element is controlled by external diffusion and fluorine dose loss increases up to 95.7%. This interesting phenomenon may be due to the pre-etching of surface SiO2prior to annealing and is consistent with other reported result.[20]In summary,the diffusion of phosphorus can be suppressed to some extent because of the fluorine co-implantation in Ge, whether using ELA process or RTA process.

    Fig.1. SIMS profiles of P and F accessed from the samples implanted with P-only and P+F before and after one pulse laser annealing at(a)100 mJ/cm2,(b)175 mJ/cm2,and(c)annealing at 650 °C for 15 s.

    Table 1. Dose looses,depths for samples implanted by P-only and P+F under various annealing conditions.

    For further exploring the role of fluorine during the phosphorus diffusion after ELA process, the non-equilibrium mechanism in ultra-fast melting and recrystallization process of co-implanted P+F Ge need further investigating. When the excimer laser with an enough laser energy density irradiates the surface of Ge, a melted zone will be well defined,resulting in an abrupt transition between the liquid and solid phase Ge. In our previous studies,[24,25]an analytical model was proposed to predict the impurity diffusion profiles under various laser annealing energy densities and the impurity diffusion occurring and being controlled in the melting region mostly. Based on this model,[24]the SIMS profiles of P in samples C and D are simulated and fitted after ELA without taking into account the surface recombination or segregation of phosphorus. The well fitting curves (represented by continuous lines)are shown in Fig.2 through optimizing the parameters. Hence, the diffusion coefficient of phosphorus in the melting region of sample C and sample D are obtained to be about 3.94×10-4cm2/s and 3.45×10-4cm2/s, respectively. The reduced diffusion coefficient can be explained below. After being implanted by P ions, the amorphous Ge is formed and the F ions implanted in Ge are more likely to form F interstitials.[13,18,20]And then, the F interstitials will combine with vacancies to form FnVmclusters quickly during the initial phases of laser annealing[20]because FnVmclusters has a higher bonding energy than FGei(F bonding with Ge interstitials).[13,18]Moreover,in the amorphous Ge region,there exist a large number of vacancies and the diffusion of P is vacancy-assisted diffusion during the ELA.[25]However,these FnVmclusters are stable and can possibly stabilize the excess vacancies. Hence,the fewer vacancies can take part in the diffusion of P in the melting region,leading to the shorter P diffusion depth than those without F ions implantation. Besides,in the laser annealing process, the amorphous Ge is gradually crystallized because the interaction between Ge interstitials and FnVmclusters results in the elimination of vacancies and the release of mobile F interstitials. The SiO2capping layer is removed so that it cannot inject interstitials into Ge to help annihilate the vacancies. Moreover, the F atoms will escape from Ge into the outside by high-mobile F interstitials quickly,which is the possible reason for the F dose loss as high as 95.6%after RTA process.

    Fig. 2. Simulated (red solid line) and measured (empty square and empty circle)P profiles of the samples C and D with ELA at 175 mJ/cm2.

    The activation concentrations of phosphorus at a fixed depth of about 30 nm in germanium under different annealing conditions are characterized by the SRP measurement as shown in Fig. 3. For the sample A and sample B with ELA at 100 mJ/cm2, their carrier concentrations are as low as 7.9×1018cm-3and 9.2×1018cm-3, respectively, which can be attributed to the deficient laser energy values needed to annihilate the implantation damages and activate dopants,which will be confirmed by Raman spectrum next. As for the samples C and D each irradiated by an increased laser fluence of 175 mJ/cm2, their activation concentrations of phosphorus are 2.7×1020cm-3and 4.4×1020cm-3, respectively, which is beyond the phosphorus solid solubility limit in Ge in the ELA process.[10]Moreover, the samples E and G with RTA at 650°C for 15 s acchieve their activation concentrations of 4.2×1019cm-3and 5.3×1019cm-3,respectively. The higher carrier concentration in sample G with co-implantation is due to the narrower P profile than the sample E.Furthermore,comparing the ELA method with the RTA method,the ELA combined with co-implanted F ion is a more efficient technique to achieve high-activation-concentration doped n-Ge with narrow dopant profile than those obtained by RTA process.

    Fig.3. Activation concentrations at 30-nm depth,obtained by SRP,for samples A,B,C,D,E,and G respectively.

    The Raman spectra for the as-implanted P+F and P-only samples before and after being annealed under different conditions are characterized and shown in Fig. 4. For the asimplanted P+F and P-only samples without being annealed,the broad peak of amorphous Ge (a-Ge) phase centered at about 270 cm-1indicates that the surfaces of Ge substrates are severely damaged,resulting in the formation of amorphous Ge layer after implantation process. After ELA at 100 mJ/cm2,both of them show that the Ge-Ge optical phonon mode representing crystallized Ge(c-Ge)near 300 cm-1appears while the peak of a-Ge still exists in the spectrum. It can be due to the fact that the deficient laser annealing energy gives rise to the partial restoration of implantation-damaged lattices. When the as-implanted P+F and P-only samples are annealed at 175 mJ/cm2, the peak of a-Ge disappears and only crystal Ge peaks are observed with a low full-width at half-maximum(FWHM)value of about 7.2 cm-1and 7.4 cm-1,respectively.Hence,it can be suggested that the ELA is an effective annealing method to repair the lattice damages induced by mixed ion implantation. It will also be confirmed by the HRTEM image in Fig. 5(b) in the following. Moreover, the Raman spectra of the samples E and G with RTA process also show only c-Ge peaks with an FWHM of about 7.67 cm-1and 7.6 cm-1,respectively.

    Fig.4. Raman spectra of P+F co-implanted and P-only implanted samples before and after being annealed under different conditions.

    Fig. 5. Cross-sectional HRTEM images of co-implanted P+F samples (a)before and after(b)being annealed by laser at 175 mJ/cm2.

    The structures of co-implanted P+F samples before and after ELA at 175 mJ/cm2are explored by cross-sectional HRTEM as shown in Figs.5(a)and 5(b). It can be seen from Fig. 5(a) that a 67-nm-thick amorphous Ge layer is formed with a clear amorphous/crystal interface due to severe damage induced by high energy and dose mixed ion implantation.After ELA at 175 mJ/cm2,almost no extending defect can be detected as shown in Fig.5(b),which indicates that the amorphous Ge layer is transformed into crystal Ge completely. It is consistent with the result of Raman analysis in Fig.4.

    4. Conclusions

    Both excimer laser annealing process and rapid thermal annealing process are utilized to investigate the diffusion and activation of phosphorus in phosphorus and fluorine coimplanted Ge. No matter what annealing methods are used,the co-implanted fluorine can reduce phosphorus diffusion and enhance phosphorus activation during the annealing. It is attributed to the formation of high bonding energy FnVmclusters which can eliminate some excess vacancies resulting in the reduced vacancy-assisted diffusion of phosphorus. The laser density of 100 mJ/cm2is not high enough to crystallize implantation induced amorphous Ge layer while a maximum activation concentration of about 4.4×1020cm-3with a reduced diffusion length and dopant loss is achieved at 175 mJ/cm2in P+F co-implanted Ge. Moreover, the ELA process is more efficient to reduce diffusion length and promote activation concentration than the RTA process. In conclusion, the combination of excimer laser annealing and co-implantation techniques will be a very promising method to fulfill highactivation and shallow-diffusion n-type doping in Ge.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.61904155),the Science and technology Project of Fujian Provincial Department of Education,China (Grant No. JAT200484), the Natural Science Foundation of Fujian Province, China (Grant No. 2018J05115), and the Scientific Research Projects of Xiamen University of Technology,China(Grant No.YKJCX2020078).

    猜你喜歡
    李成
    Dynamics of bubble-shaped Bose–Einstein condensates on two-dimensional cross-section in micro-gravity environment
    書法欣賞
    祖國(2023年23期)2023-02-25 06:14:50
    懷念李成章教授
    Three-Dimensional Model Reconstruction of Nonwovens from Multi-Focus Images
    李成海就200兆瓦農(nóng)牧光互補項目選址現(xiàn)場辦公
    春燕
    北方音樂(2018年17期)2018-10-31 01:21:04
    杜鵑
    北方音樂(2018年17期)2018-10-31 01:21:04
    莊玉庭先負(fù)李成蹊
    棋藝(2016年4期)2016-09-20 05:38:45
    行吟黔境
    Effect of vegetation on flow structure and dispersion in strongly curved channels*
    99热网站在线观看| 久久女婷五月综合色啪小说| 成年av动漫网址| 国产精品久久久久久久久免| 特大巨黑吊av在线直播| 亚洲精品日本国产第一区| 国产无遮挡羞羞视频在线观看| 日韩亚洲欧美综合| 啦啦啦中文免费视频观看日本| 国产亚洲午夜精品一区二区久久| 久久久久久久久大av| 丰满乱子伦码专区| 青青草视频在线视频观看| 精品久久久精品久久久| 99热6这里只有精品| 纯流量卡能插随身wifi吗| 一级av片app| 一个人免费看片子| 午夜视频国产福利| 国产成人freesex在线| 波野结衣二区三区在线| 国产极品天堂在线| 亚洲欧美成人综合另类久久久| 国产精品偷伦视频观看了| 黄片wwwwww| 日韩一本色道免费dvd| 日本av免费视频播放| 国内揄拍国产精品人妻在线| 搡女人真爽免费视频火全软件| 少妇被粗大猛烈的视频| 男女下面进入的视频免费午夜| 蜜臀久久99精品久久宅男| 久久久久久九九精品二区国产| 亚洲欧美一区二区三区黑人 | 超碰97精品在线观看| 欧美老熟妇乱子伦牲交| 国产精品无大码| 免费大片18禁| 欧美成人精品欧美一级黄| 伦精品一区二区三区| 国产亚洲5aaaaa淫片| a级毛片免费高清观看在线播放| 亚洲欧美中文字幕日韩二区| 欧美日本视频| 美女主播在线视频| 天天躁日日操中文字幕| 老师上课跳d突然被开到最大视频| 黄色日韩在线| 亚洲怡红院男人天堂| 六月丁香七月| 在线观看一区二区三区激情| 在线观看人妻少妇| av在线蜜桃| 国产亚洲91精品色在线| 久久久久精品性色| 国产伦精品一区二区三区四那| 国内少妇人妻偷人精品xxx网站| 大片电影免费在线观看免费| 少妇人妻精品综合一区二区| 亚洲在久久综合| 国产精品无大码| 天美传媒精品一区二区| 亚洲不卡免费看| 女人久久www免费人成看片| 一区在线观看完整版| 亚洲色图综合在线观看| 中文字幕制服av| 女人久久www免费人成看片| 亚洲av成人精品一二三区| 毛片一级片免费看久久久久| 国产日韩欧美亚洲二区| 国产高潮美女av| 一边亲一边摸免费视频| 三级国产精品片| 午夜免费观看性视频| 女性生殖器流出的白浆| 久久99热这里只频精品6学生| 噜噜噜噜噜久久久久久91| 激情五月婷婷亚洲| 免费观看性生交大片5| 欧美日韩视频高清一区二区三区二| 在线观看美女被高潮喷水网站| 日日摸夜夜添夜夜爱| 亚洲综合精品二区| 久久久久网色| 国产精品一二三区在线看| 亚洲av在线观看美女高潮| 男女无遮挡免费网站观看| 日日摸夜夜添夜夜添av毛片| 老司机影院毛片| 天天躁夜夜躁狠狠久久av| 一边亲一边摸免费视频| 天堂俺去俺来也www色官网| 色5月婷婷丁香| 少妇人妻一区二区三区视频| 最后的刺客免费高清国语| 精品亚洲成国产av| 亚洲精品自拍成人| 日日摸夜夜添夜夜爱| 97在线人人人人妻| 国内少妇人妻偷人精品xxx网站| 成人特级av手机在线观看| 国产视频内射| 九色成人免费人妻av| 男男h啪啪无遮挡| 又爽又黄a免费视频| 亚洲电影在线观看av| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日韩亚洲高清精品| 免费观看在线日韩| 日韩av免费高清视频| 最近的中文字幕免费完整| 日日摸夜夜添夜夜添av毛片| 交换朋友夫妻互换小说| 又粗又硬又长又爽又黄的视频| 午夜福利视频精品| 在线免费观看不下载黄p国产| 老熟女久久久| 在线播放无遮挡| 伦精品一区二区三区| 熟女电影av网| 婷婷色麻豆天堂久久| 亚洲av.av天堂| 我要看日韩黄色一级片| 午夜福利影视在线免费观看| 97精品久久久久久久久久精品| 久久精品国产鲁丝片午夜精品| 欧美高清成人免费视频www| 色网站视频免费| 亚洲精品,欧美精品| 成人特级av手机在线观看| 国产精品久久久久久精品电影小说 | 国产一区二区在线观看日韩| 国产精品精品国产色婷婷| 免费在线观看成人毛片| 久久婷婷青草| 一级毛片黄色毛片免费观看视频| 亚洲欧洲国产日韩| 少妇裸体淫交视频免费看高清| 丝袜脚勾引网站| 久久这里有精品视频免费| 日本av免费视频播放| videossex国产| 男女无遮挡免费网站观看| av在线观看视频网站免费| 啦啦啦在线观看免费高清www| 只有这里有精品99| 精品人妻一区二区三区麻豆| 99re6热这里在线精品视频| 夜夜看夜夜爽夜夜摸| 日本与韩国留学比较| 在线观看三级黄色| 大片免费播放器 马上看| 黄色视频在线播放观看不卡| 久久韩国三级中文字幕| 欧美少妇被猛烈插入视频| 久久久久网色| 久久精品熟女亚洲av麻豆精品| 国产精品一区二区性色av| 自拍偷自拍亚洲精品老妇| 黑人高潮一二区| 午夜免费鲁丝| 国产人妻一区二区三区在| 高清在线视频一区二区三区| 人妻制服诱惑在线中文字幕| 欧美日韩一区二区视频在线观看视频在线| 777米奇影视久久| 男人和女人高潮做爰伦理| av线在线观看网站| 亚洲国产高清在线一区二区三| 国产一区亚洲一区在线观看| 久久久久网色| 中文在线观看免费www的网站| 亚洲av日韩在线播放| 欧美另类一区| a级毛色黄片| 久久久欧美国产精品| 国产亚洲5aaaaa淫片| 国产精品女同一区二区软件| 一级黄片播放器| 午夜视频国产福利| 亚洲精品久久久久久婷婷小说| 久久久久久久久大av| 2021少妇久久久久久久久久久| av在线老鸭窝| 久久精品国产亚洲av涩爱| 2022亚洲国产成人精品| 日韩强制内射视频| 在线免费观看不下载黄p国产| 国产av一区二区精品久久 | 久久久精品免费免费高清| 亚洲色图av天堂| 精品国产乱码久久久久久小说| 国产黄片视频在线免费观看| 热re99久久精品国产66热6| 亚洲精华国产精华液的使用体验| 亚洲精品亚洲一区二区| 激情 狠狠 欧美| 色视频www国产| 国产成人一区二区在线| 欧美日韩精品成人综合77777| 欧美xxxx黑人xx丫x性爽| 国产成人a区在线观看| 国产精品一区二区性色av| 国产精品免费大片| 51国产日韩欧美| 伦精品一区二区三区| 街头女战士在线观看网站| 久久人人爽av亚洲精品天堂 | 欧美亚洲 丝袜 人妻 在线| 久久ye,这里只有精品| 国产亚洲一区二区精品| 大香蕉久久网| av免费在线看不卡| 丰满少妇做爰视频| 精品人妻一区二区三区麻豆| 亚洲av二区三区四区| 亚洲欧美日韩无卡精品| 国产av国产精品国产| 国产深夜福利视频在线观看| 最近中文字幕2019免费版| 久久99热这里只有精品18| 欧美日韩视频精品一区| 夫妻午夜视频| 麻豆成人午夜福利视频| 人人妻人人看人人澡| 日本色播在线视频| 国精品久久久久久国模美| 亚洲精品国产av蜜桃| 波野结衣二区三区在线| 久久久久视频综合| 好男人视频免费观看在线| 最近最新中文字幕大全电影3| 边亲边吃奶的免费视频| 我要看日韩黄色一级片| 蜜桃久久精品国产亚洲av| 免费观看在线日韩| 日本vs欧美在线观看视频 | 777米奇影视久久| 夜夜骑夜夜射夜夜干| 秋霞伦理黄片| 国产亚洲5aaaaa淫片| 男女国产视频网站| 国产美女午夜福利| 免费看不卡的av| 日韩av不卡免费在线播放| 久久韩国三级中文字幕| 伊人久久精品亚洲午夜| 欧美性感艳星| 亚洲av中文字字幕乱码综合| 日韩三级伦理在线观看| 精品人妻一区二区三区麻豆| 日韩精品有码人妻一区| 如何舔出高潮| 欧美日韩在线观看h| 女性被躁到高潮视频| 黄色配什么色好看| 免费av中文字幕在线| 久久精品国产a三级三级三级| 国产精品成人在线| 中文乱码字字幕精品一区二区三区| 看十八女毛片水多多多| av国产精品久久久久影院| av专区在线播放| av免费在线看不卡| 久久精品国产鲁丝片午夜精品| 国产黄频视频在线观看| 在线免费观看不下载黄p国产| av.在线天堂| 国产免费视频播放在线视频| 亚洲最大成人中文| 偷拍熟女少妇极品色| 久久国产精品男人的天堂亚洲 | 国产精品麻豆人妻色哟哟久久| 观看av在线不卡| 亚洲人与动物交配视频| 男的添女的下面高潮视频| 成人无遮挡网站| 在线精品无人区一区二区三 | 亚洲av在线观看美女高潮| 国产男女超爽视频在线观看| 日韩不卡一区二区三区视频在线| 国产精品久久久久久av不卡| 免费黄频网站在线观看国产| 亚洲av中文av极速乱| 久久97久久精品| 亚洲精品乱码久久久v下载方式| av.在线天堂| 色婷婷av一区二区三区视频| 美女cb高潮喷水在线观看| 日韩视频在线欧美| 日日啪夜夜撸| 日韩强制内射视频| 免费在线观看成人毛片| 久久久久久久久久成人| 日日啪夜夜撸| 久久青草综合色| 精品人妻一区二区三区麻豆| 午夜福利网站1000一区二区三区| 日本一二三区视频观看| 精品国产露脸久久av麻豆| 日本爱情动作片www.在线观看| 国产色婷婷99| av播播在线观看一区| 亚洲国产最新在线播放| 一级毛片aaaaaa免费看小| 久久99精品国语久久久| 少妇人妻精品综合一区二区| 日韩av不卡免费在线播放| 日本欧美国产在线视频| 国产成人精品久久久久久| 精品久久久精品久久久| 国产av精品麻豆| 久久韩国三级中文字幕| 成人亚洲精品一区在线观看 | 最近最新中文字幕大全电影3| 少妇人妻 视频| 国产精品久久久久久久久免| av国产免费在线观看| 久久精品久久久久久久性| av网站免费在线观看视频| 日本欧美国产在线视频| 日本黄大片高清| 亚洲国产最新在线播放| 熟女电影av网| 国产亚洲精品久久久com| 欧美日韩综合久久久久久| 男男h啪啪无遮挡| 十八禁网站网址无遮挡 | 午夜老司机福利剧场| 国产伦理片在线播放av一区| 一级毛片 在线播放| 建设人人有责人人尽责人人享有的 | 老熟女久久久| 在线观看av片永久免费下载| 国产av国产精品国产| 一级毛片我不卡| 国产无遮挡羞羞视频在线观看| 美女脱内裤让男人舔精品视频| 丰满乱子伦码专区| 中文字幕免费在线视频6| 国产精品偷伦视频观看了| 欧美xxxx性猛交bbbb| 交换朋友夫妻互换小说| 国产成人aa在线观看| av网站免费在线观看视频| 国产老妇伦熟女老妇高清| 日本免费在线观看一区| 久久久色成人| 亚洲电影在线观看av| 亚洲欧美清纯卡通| 久久国产精品大桥未久av | a 毛片基地| 午夜福利网站1000一区二区三区| 国产 精品1| 成人毛片a级毛片在线播放| 国产亚洲精品久久久com| 国产精品久久久久久久电影| 日韩亚洲欧美综合| 国产女主播在线喷水免费视频网站| 国产精品嫩草影院av在线观看| 高清午夜精品一区二区三区| 国产亚洲精品久久久com| 免费观看av网站的网址| 99久国产av精品国产电影| 欧美xxⅹ黑人| 简卡轻食公司| 亚洲精品久久久久久婷婷小说| 99热6这里只有精品| 日日啪夜夜撸| 建设人人有责人人尽责人人享有的 | 麻豆国产97在线/欧美| 成人一区二区视频在线观看| 在线观看免费高清a一片| 国产成人freesex在线| 天美传媒精品一区二区| 性高湖久久久久久久久免费观看| 王馨瑶露胸无遮挡在线观看| 全区人妻精品视频| 麻豆成人午夜福利视频| 亚洲精品日韩在线中文字幕| 性色av一级| av播播在线观看一区| 免费看av在线观看网站| 男女下面进入的视频免费午夜| 九九爱精品视频在线观看| 草草在线视频免费看| 高清在线视频一区二区三区| 777米奇影视久久| 精品视频人人做人人爽| 国产精品欧美亚洲77777| 国产成人午夜福利电影在线观看| 色视频在线一区二区三区| 亚洲最大成人中文| 一区二区三区免费毛片| 日本-黄色视频高清免费观看| 国产精品久久久久成人av| 国产精品一区二区性色av| 下体分泌物呈黄色| 天天躁夜夜躁狠狠久久av| 一级黄片播放器| 中文欧美无线码| 国产精品久久久久久精品古装| 少妇人妻一区二区三区视频| 在线亚洲精品国产二区图片欧美 | 在线观看免费日韩欧美大片 | 人妻系列 视频| 国产一区二区三区av在线| 国产一级毛片在线| 精品国产三级普通话版| 在线观看人妻少妇| 有码 亚洲区| 国产精品人妻久久久久久| 超碰av人人做人人爽久久| 看免费成人av毛片| 欧美xxxx黑人xx丫x性爽| 肉色欧美久久久久久久蜜桃| 亚洲欧美一区二区三区国产| 欧美精品一区二区免费开放| 亚洲图色成人| 国产男人的电影天堂91| 亚洲人成网站在线观看播放| 久久99热这里只频精品6学生| 成人免费观看视频高清| 最近手机中文字幕大全| 日韩一本色道免费dvd| 麻豆乱淫一区二区| 男女下面进入的视频免费午夜| 极品少妇高潮喷水抽搐| 麻豆国产97在线/欧美| 亚洲精品一二三| 最近中文字幕高清免费大全6| 成人亚洲精品一区在线观看 | 久久女婷五月综合色啪小说| 在现免费观看毛片| 亚洲av中文av极速乱| 亚洲精品中文字幕在线视频 | 国产男女内射视频| 久久亚洲国产成人精品v| 亚洲色图综合在线观看| 日本免费在线观看一区| 国产中年淑女户外野战色| 亚洲激情五月婷婷啪啪| 欧美成人精品欧美一级黄| 亚洲国产精品专区欧美| 日韩一区二区视频免费看| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品乱码久久久v下载方式| 亚洲一级一片aⅴ在线观看| 一级毛片aaaaaa免费看小| 丰满迷人的少妇在线观看| 色综合色国产| 久久99精品国语久久久| 中文字幕亚洲精品专区| 一本—道久久a久久精品蜜桃钙片| 大又大粗又爽又黄少妇毛片口| 国产高清国产精品国产三级 | 男人和女人高潮做爰伦理| 亚洲精品自拍成人| 亚洲精品国产av蜜桃| 国产精品国产三级国产av玫瑰| 国产伦精品一区二区三区四那| 天堂8中文在线网| 久久久久久久久久久免费av| 男人爽女人下面视频在线观看| 亚洲真实伦在线观看| 久久久久久人妻| 大码成人一级视频| 中国美白少妇内射xxxbb| 午夜福利视频精品| 永久免费av网站大全| 99热这里只有是精品在线观看| 久久久久精品久久久久真实原创| 中文字幕久久专区| 人人妻人人添人人爽欧美一区卜 | 国精品久久久久久国模美| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品成人av观看孕妇| 免费高清在线观看视频在线观看| 国产深夜福利视频在线观看| 精品久久国产蜜桃| 亚洲欧美日韩东京热| 欧美日韩国产mv在线观看视频 | 欧美极品一区二区三区四区| 久久久久视频综合| 亚洲无线观看免费| 一级毛片我不卡| 亚洲精品亚洲一区二区| 九九爱精品视频在线观看| 午夜激情久久久久久久| 伊人久久精品亚洲午夜| 国内精品宾馆在线| 深夜a级毛片| 高清在线视频一区二区三区| av一本久久久久| 黄色配什么色好看| 成年人午夜在线观看视频| 国产真实伦视频高清在线观看| videos熟女内射| 日韩强制内射视频| 欧美最新免费一区二区三区| 熟女人妻精品中文字幕| 最黄视频免费看| 99热这里只有是精品50| 一级二级三级毛片免费看| 人人妻人人澡人人爽人人夜夜| 国产人妻一区二区三区在| 最黄视频免费看| 欧美97在线视频| 少妇裸体淫交视频免费看高清| 国产有黄有色有爽视频| 成年免费大片在线观看| 国产精品国产三级国产av玫瑰| 欧美老熟妇乱子伦牲交| 久久国产亚洲av麻豆专区| 大陆偷拍与自拍| 99热6这里只有精品| 欧美日韩在线观看h| 亚洲成人一二三区av| 亚洲成人中文字幕在线播放| 精品人妻视频免费看| 亚洲欧美日韩另类电影网站 | 久久久久精品久久久久真实原创| 嘟嘟电影网在线观看| 亚洲精品色激情综合| 国产高清三级在线| 日韩成人av中文字幕在线观看| av.在线天堂| 超碰97精品在线观看| 成人国产av品久久久| 尤物成人国产欧美一区二区三区| 黑人猛操日本美女一级片| 成人免费观看视频高清| 久久久久国产精品人妻一区二区| 精品久久久久久电影网| 久久毛片免费看一区二区三区| 美女内射精品一级片tv| freevideosex欧美| 精品人妻一区二区三区麻豆| 欧美性感艳星| 亚洲欧美精品自产自拍| 特大巨黑吊av在线直播| 男女边吃奶边做爰视频| 网址你懂的国产日韩在线| 熟女人妻精品中文字幕| 精品一区二区免费观看| 亚洲精华国产精华液的使用体验| 一区二区三区乱码不卡18| 国产极品天堂在线| 中文字幕人妻熟人妻熟丝袜美| 一级二级三级毛片免费看| 免费观看av网站的网址| 欧美 日韩 精品 国产| 国产男女内射视频| 亚洲经典国产精华液单| 人妻系列 视频| 免费不卡的大黄色大毛片视频在线观看| 亚洲,欧美,日韩| 99久国产av精品国产电影| 婷婷色综合大香蕉| 成年女人在线观看亚洲视频| 亚洲成人手机| 自拍偷自拍亚洲精品老妇| 久久久久久久亚洲中文字幕| 日本av手机在线免费观看| 两个人的视频大全免费| 蜜桃久久精品国产亚洲av| 狂野欧美激情性xxxx在线观看| 99精国产麻豆久久婷婷| 国产精品久久久久久精品古装| 国产亚洲91精品色在线| 性高湖久久久久久久久免费观看| 少妇熟女欧美另类| 日本av手机在线免费观看| 午夜福利在线观看免费完整高清在| 男人狂女人下面高潮的视频| 精品久久久久久久久av| 黑丝袜美女国产一区| 99热这里只有是精品在线观看| 国产精品人妻久久久影院| 久久久久国产网址| 在线免费观看不下载黄p国产| 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩东京热| 亚洲欧美一区二区三区国产| 高清日韩中文字幕在线| 日本黄色日本黄色录像| 简卡轻食公司| 亚洲av男天堂| 日本黄色日本黄色录像| 久久精品夜色国产| 国产精品国产三级国产av玫瑰| 日韩,欧美,国产一区二区三区| 亚洲欧美中文字幕日韩二区| 色婷婷av一区二区三区视频| 99国产精品免费福利视频| 国产精品久久久久久精品电影小说 | 久久久久国产精品人妻一区二区| 十分钟在线观看高清视频www | 免费黄频网站在线观看国产| 免费观看性生交大片5| 国产av精品麻豆| 亚洲人与动物交配视频| 精品久久久久久久久亚洲| 日本欧美视频一区| 美女福利国产在线 | 日韩 亚洲 欧美在线| 成人国产av品久久久| 日韩欧美一区视频在线观看 | 国产成人精品一,二区| 在线观看免费高清a一片| 亚洲真实伦在线观看| 国产淫语在线视频| 国产高清有码在线观看视频| 肉色欧美久久久久久久蜜桃|