• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Magnetic Properties of Mononuclear Cobalt(Ⅱ)Spin Crossover Complexes from Complementary Terpyridine Ligand Pairing

    2022-08-09 03:49:40YANGRuiZHANGShuYaWANGRunGuoMENGYinShanLIUTaoZHUYuanYuan
    無機化學學報 2022年8期

    YANG RuiZHANG Shu-YaWANG Run-GuoMENG Yin-ShanLIU Tao*,ZHU Yuan-Yuan*,,

    (1State Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian,Liaoning 116024,China)(2Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering,School of Chemistry and Chemical Engineering,Hefei University of Technology,Hefei 230009,China)

    Abstract:The cobalt(Ⅱ) complexes containing terpyridine(terpy)and its derivatives compose a large family of Co(Ⅱ)SCO-active(SCO=spin-crossover)compounds and the reported cases are mainly built from homoleptic type terpy ligands.Herein we report the SCO properties in three mononuclear cobalt(Ⅱ)complexes constructed from complementary terpy ligand pairing.Their SCO behaviors are largely affected by the substituents of terpy at the 4-position.The archetypical complex 1 and its CF3-substituted one 3 showed a gradual and incomplete spin transition from the low spin state of S=1/2 to the high spin state of S=3/2.The fluorine-substituted complex 2 exhibited a solventdependent spin transition phenomenon.The solvated form which contains three lattice water molecules showed a similar gradually incomplete spin transition.Whereas the entire removal of water molecules resulted in a repeatable thermal hysteresis loop with a width of ca.50 K.Impressively,the adsorption and desorption of water molecules are reversible in structure and magnetism.In addition,absorption spectroscopy and cyclic voltammetry show that the substituent on the ligands can regulate the electronic structures of the central cobalt ion.CCDC:2162742,1(150 K);2162743,2(120 K);2162744,2(299 K);2162745,3(120 K).

    Keywords:spin-crossover;cobalt(Ⅱ)complexes;terpyridine;self-assembly

    Spin-crossover(SCO)complexes belong to a class of interesting compounds whose spin states can be switched through external perturbations including thermal,light,pressure,solvent,magnetic field,etc[1-2].The transition metal complexes with configurations ofd4-7electrons may be located in either the high-spin(HS)or low-spin(LS)state which is dependent on the ligand field strength.The interconversion of two spin states is essentially the consequence of the electron configuration rearrangement in thedorbital which is triggered by the relative energy magnitude of ligand field splitting between thet2gandegmolecular orbitals(Δ)and pairing energy of electrons(P)[3-4].WhenΔis larger thanP,the pairing of electrons is favored,resulting in an LS state.WhenΔis smaller thanP,electrons are inclined to occupy maximumdorbitals and thus prefer the HS state[5-6].Impressively,the transformations in electron configurations result in changes in several physical properties such as magnetic moment,color,dielectric constant,and electrical resistance[3,7].Since the first SCO compound,tris(dithiocarbamato)iron(Ⅲ),was discovered by Cambi et al.in 1931[8],numerous mononuclear,polynuclear,and polymeric complexes have been found to show a variety of SCO properties[9-10].Among them,the vast majority of SCO-active cases are composed of Fe(Ⅱ) and Fe(Ⅲ) complexes[11-13].In contrast,the reported examples of Co(Ⅱ)complexes with SCO behavior are relatively limited[14-15].From the view of electron configuration,the transition in sixcoordinate Co(Ⅱ) complexes from LS to HS state involves a change fromwithS=1/2 to a4T1withS=3/2[16].Due to the larger ligand field splitting energy(Δ)of Co(Ⅱ) ion compared with that of Fe(Ⅱ) ion,organic ligands with relatively stronger ligand field are required to build Co(Ⅱ)SCO-active compounds[6].So that the cobalt(Ⅱ)complexes containing terpyridine(terpy)and its derivatives constitute SCO-active family compounds due to the moderate ligand field strength of these tri-imine type ligands[16-18].Through the suitable substitutions in archetypical terpy and variations of counter anions and lattice solvent[19],the occurrences of SCO behaviour have been revealed in a variety of cobalt(Ⅱ)compounds built from terpy and its derivatives[20-23].However,the majority of compounds are constructed from cobalt(Ⅱ)ion with two equivalent homoleptic terpy ligands so that the formed complexes have anS4improper axis[24].Due to the reversible characteristic of coordination reaction,it is difficult to control the complex that is constituted from two different terpy ligands[25].The exploration of heteroleptic terpy cobalt(Ⅱ)complexes has great significance in research on SCO.These novel structures not only possess the advantage to subtly tuning the ligand field through the introduction of substitution at different positions but also provide a feasible approach to directionally assembling complicated metallo-supramolecular architectures bearing multinuclear paramagnetic centres.In 2016,Chan and co-workers developed a smart strategy for the directional synthesis of transition metal complexes from heteroleptic terpy ligands[26-28].They designed and synthesized a complementary pair of terpy-based ligands,one is the normal terpy ligand and another one has 2,6-dimethoxyphenyl groups at 6,6″-positions of 4'-phenyl-terpy,to afford the directional heteroleptic complexation.By employing this structure as the connection unit,complicated metallo-supramolecular structures including macrocycles,cages,and multi-layered architectures have been accurately selfassembled from multi-components.To the best of our knowledge,there is no study on the magnetic properties of the cobalt(Ⅱ)complexes constructed from complementary terpy ligand pairing.The exploration of SCO behaviour on these novel terpy-based cobalt(Ⅱ)complexes will enrich the cobalt(Ⅱ)SCO-active compound family and find some unexpected properties.In addition,the substituents can influence the SCO behaviour via electronic effect and/or intermolecular weak interactions[29-31].In this contribution,we report the synthesis,characterization and magnetic properties of three mononuclear cobalt(Ⅱ)complexes built from complementary terpy ligand pairing(Scheme 1).

    1 Experimental

    1.1 Instruments and measurements

    1.1.1 Structural characterization measurements

    Scheme 1 Directional assembly of three mononuclear cobalt(Ⅱ)complexes based on complementary terpy ligand pairing

    NMR spectra were recorded on a Bruker 400,500,or 600 MHz spectrometer.Elemental analysis of carbon,nitrogen,and hydrogen was performed using an Elementary Vario EL analyzer.Fourier transform infrared spectroscopy(FT-IR)data were collected on KBr pellet samples in a range of 4 000-400 cm-1using an IS-50 FT-IR spectrometer.

    1.1.2 Magnetic properties measurements

    Magnetic susceptibility data were collected using a Quantum Design MPMS XL-5 or PPMS-9T(EC-II)SQUID(superconducting quantum interference device)magnetometer.Measurements for all the samples were performed on microcrystalline powder restrained by a parafilm and loaded in a capsule.The magnetic susceptibility data were corrected for the diamagnetism of the samples using Pascal constants and the sample holder and parafilm by corrected measurement.

    1.1.3 X-ray data collection and structure determinations

    Crystals suitable for single-crystal X-ray diffraction were covered in a thin layer of hydrocarbon oil,mounted on a glass fiber attached to a copper pin,and placed under an N2cold stream.The data for three compounds were collected on a Bruker D8 Venture CMOS-based diffractometer(MoKαradiation,λ=0.071 073 nm)using the SMART and SAINT programs.Final unit cell parameters were based on all observed reflections from the integration of all frame data.The structures were solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimization that was implanted in Olex2.For all compounds,all non-hydrogen atoms were refined anisotropically and the hydrogen atoms of organic ligands were located geometrically and fixed under isotropic thermal parameters.For 1,the solvent molecule acetonitrile and substituted phenyl were disordered,and the refined sites occupancy factor(SOF)values for the major and minor components of this rotational disorder were 0.589 and 0.411 for N15,C9-C14,C67-C72,and C121.For 2,guest water molecules were disordered by symmetric elements with occupancy of 0.5 at 120 and 299 K,respectively.For 3,solvent molecule methanol and perchlorate were disordered,the refined values of this rotational disorder were 0.571 and 0.429 for O10-O12,and O14 and C60 were disordered by symmetric elements with occupancy of 0.5.

    CCDC:2162742,1(150 K);2162743,2(120 K);2162744,2(299 K);2162745,3(120 K).

    1.1.4 Powder X-ray diffraction(XRD),calorimetric analysis,and UV-Vis absorption measurements

    XRD patterns were obtained on a D8 ADVANCE X-ray powder diffractometer with CuKαradiation(λ=0.154 18 nm)in a 2θrange of 5°-50°at room temperature.Testing voltage and current were 240 kV and 50 mA,respectively.Thermogravimetry analysis(TGA)was carried out with a TGA/DSC 1(Mettler Toledo)instrument from ambient temperature to 800℃at a warming rate of 5 K·min-1.Differential scanning calorimetry(DSC)was carried out with a DSC 823e(Mettler Toledo)at a cooling/warming rate of 3 K·min-1.The solution UV-Vis absorption spectra were recorded using a TU-1900 spectrophotometer with a sample concentration of 50 μmol·L-1in acetonitrile at ambient temperature.

    1.1.5 Cyclic voltammetry(CV)measurements

    The CV curves of the complexes and their corre-sponding ligands were measured in acetonitrile solution containing 1 mmol·L-1substrates and 0.1 mol·L-1tetrabutylammonium hexafluorophosphate electrolyte.The systems were run in a three-electrode cell(10 mL working volume),using a glassy carbon as a working electrode,Ag/AgCl in 3.5 mol·L-1KCl aqueous solution as a reference electrode,and a platinum plate as a counter electrode.The glassy carbon surface was polished by 0.05 mm alumina,then washed with deionized water before use every time.The solution was degassed by bubbling nitrogen for 15 min before measurements and maintaining inert nitrogen over the solution during the measurements.

    1.2 Preparation of three Co(Ⅱ)complexes

    General procedure.Four terpy-type ligands were prepared according to the literature method and the detailed synthetic procedure and structural characterization were depicted in the Supporting information.The mixed solution(H2O/MeOH,1∶1,V/V,10 mL)of Co(ClO4)2·6H2O(0.01 mmol·L-1)was mixed with a 20 mL acetonitrile solution of L1/L2/L3(0.1 mmol respectively)and L4(31 mg,0.1 mmol),and stirred for 5 h and then filtered.Dark red single crystals were obtained after slow evaporation of the solution at ambient temperature for several days.

    [Co(L1)(L4)]2(ClO4)4·2H2O·3MeCN(1).Yield:75%.IR(KBr pellet,cm-1):3 425(br),3 068(w),2 940(w),2 838(w),1 616(m),1 604(m),1 568(m),1 548(w),1 474(m),1 439(m),1 421(w),1 380(w),1 303(w),1 283(w),1 252(m),1 107(s),1 096(s),1 022(m),999(w),882(w),820(w),785(m),770(m),754(w),734(w),695(w),649(w),624(m),602(w),502(w),440(w).Anal.Calcd.for C122H105Cl4Co2N15O26(%):C,59.59;H,4.27;N,8.55.Found(%):C,60.05;H,4.43;N,9.01.

    [Co(L2)(L4)](ClO4)2·2.5H2O(2).Yield:70%.IR(KBr pellet,cm-1):3 425(br),3 070(w),2 839(w),1 616(w),1 602(m),1 568(m),1 549(m),1 516(w),1 474(m),1 438(m),1 400(w),1 380(w),1 283(w),1 252(w),1 162(m),1 144(s),1 108(s),1 022(m),1 000(w),896(w),850(w),836(m),821(m),785(w),773(w),754(w),735(w),693(m),650(w),625(w),602(w),518(w),483(w).Anal.Calcd.for C58H50Cl2CoFN6O14.5(%):C,57.48;H,4.16;N,6.93.Found(%):C,56.96;H,4.39.N,6.58.

    [Co(L3)(L4)](ClO4)2·H2O·0.5MeOH(3).Yield:71%.IR(KBr pellet,cm-1):3 073(br),2 942(w),2 839(w),1 617(w),1 603(m),1 569(m),1 549(m),1 474(w),1 438(m),1 402(m),1 379(w),1 328(w),1 283(w),1 252(w),1 169(m),1 108(s),1 022(s),880(m),851(w),838(w),820(w),786(m),772(m),754(w),735(w),696(w),669(w),650(m),624(w),602(w),507(w),440(w).Anal.Calcd.for C59.5H49Cl2CoF3N6O13.5(%):C,57.13;H,3.95;N,6.72.Found(%):C,56.68;H,4.29;N,6.34.

    CAUTION!Perchlorates are potentially explosive.Such compounds should be synthesized and used in small quantities,and treated with the utmost care at all times.

    2 Results and discussion

    2.1 Synthesis and structural characterization

    In this work,four terpy-type ligands were synthesized according to the literature method,and the detailed synthetic procedure and NMR characterization are depicted in the Supporting information(Fig.S1-S7)[26,32-33].The preparation of complexes was performed in a mild and facile reaction condition.To acetonitrile solution of L1/L2/L3and L4was added Co(ClO4)2·6H2O mixed solution of methanol and water(the molar ratio of L1/L2/L3,L4,and Co2+was 1∶1∶1),and the selfassembly of heteroleptic complexes took place immediately at ambient temperature.Subsequently,dark red single crystals of complexes 1-3 were obtained by slow evaporation of the resulting solutions.Their structures were determined by single-crystal X-ray diffraction measurement and their crystal data and structure refinement is listed in Table 1.All the complexes crystallized in the triclinic space groupPat the test temperatures and their molecular structures and packing diagrams are illustrated in Fig.1 and 2.Different from that 1 contains two Co(Ⅱ)units,there is only one unique asymmetric unit in 2 and 3(Fig.1).In one unit cell,there are four,two,and two Co(Ⅱ)units in 1,2,and 3,respectively(Fig.2).The structure refinement revealed that there are lattice solvents including water and methanol in 1,water in 2,and water and acetonitrile in 3,respectively.The contents of the solvent were further confirmed by TGA(Fig.S8-S11)and elemental analysis.In addition,the imine-type ligand structure of complexes 1-3 was supported by FT-IR spectra(Fig.S12-S14).The purity of a large number of samples was confirmed by XRD(Fig.S15-S17).

    For all complex cations in this series,the Co(Ⅱ)ion is coordinated by six N atoms from two different types of terpy ligands in a bis-meridional fashion,forming an axially compressed CoN6octahedron.Two 2,6-dimethoxyphenyl in L4and one pyridine in L1/L2/L3provide ancillary ion-dipole interactions during the coordination process.The formed heteroleptic complexes are stabilized byπ-πstacking between parallelly arranged 2,6-dimethoxyphenyl and pyridine by which considerable geometric distortion is generated due to this extra weak interaction(Fig.S18).The distances between 2,6-dimethoxyphenyl and pyridine planes are within 0.339-0.350 nm(Table S1),suggesting that one terpy ligand is tightly embraced by another substituted one throughπ-πstacking interactions.To quantitively analyze the structural distortions,some parameters including Co—N bond lengths,the continuous shape measure(CShM)values that reflect the deviation from idealOhsymmetry,the distortion parameters∑(the sum of the deviation from 90°of the 12cisN—Co—N angles),and the dihedral angles of two ligand planes are summarized in Table 2.The values of these parameters indicate that there exists considerably large geometrical distortion in the coordination sphere of this type of complex.In addition,the overlay of the crystal structures of 2 at 120 and 299 K shows a minor change in deformation,implying the spin state change in this temperature range is insignificant(Fig.S19).

    Table 1 Crystal data and structure refinement for 1,2,and 3

    Fig.1 Crystal structures of(a)1,(b)2,and(c)3

    Fig.2 Projection of the unit cell of 1,2,and 3,where the hydrogen bondings are illustrated

    The average Co—N bond lengths are in a range of 0.204 4-0.205 6 nm,suggesting that the cobalt(Ⅱ)ions in complexes 1-3 approach the LS state at the test temperature.The detailed bond length data of the CoN6coordination sphere in the structures are summarized in Table 3.For comparison of the structural discrimination between these asymmetric Co-terpy complexes and their symmetric analogues,the selective bond length data of four representative mononuclear cobalt(Ⅱ)complexes built from homoleptic ligands are listed in Table S2 as well.It shows that the existence ofπ-πstacking between two ligands causes the enhanced geometrical distortion in the part of cobalt(Ⅱ)ion with 2,6-dimethoxyphenyl substituted ligand L4,reflecting the substantially lengthening Co—N bond lengths.In general,the distances between cobalt(Ⅱ)ions and N atoms from bilateral pyridines in L4are more than 0.225 nm,0.02-0.03 nm longer than that in unsubstituted terpy.Additionally,the two bilateral pyridine rings in L4considerably deviate from the coplanarity than that of L1/L2/L3(Table S3).

    Table 2 Summary of the structural parameters and spin state in the crystal structures of cobalt(Ⅱ)complexes in this work*

    Table 3 Selected bond lengths(nm)for Co—N bonds of complexes 1-3 in the single-crystal structures

    2.2 Magnetic properties

    Variable-temperature magnetic susceptibilities of complexes 1-3 were measured in the solid-state using a SQUID magnetometer.The measurement was performed in sweep mode with a scan rate of 3 K·min-1at a field strength of 5 000 Oe.The solvated samples were sealed with parafilm to prevent solvent loss in the first cycle.At the end of the first heating semi-cycle,all samples were kept at 400 K for 2 h to ensure the complete removal of lattice solvents.Magnetic susceptibilities are displayed in the form ofχMTvsT,whereTis the absolute temperature andχMis the molar magnetic susceptibility.TheχMTvsTplots of complexes 1-3 under successive cooling/heating cycles are illustrated in Fig.3.Although they all displayed spin transition,their SCO behaviors had significant discriminations.For 1 and 3,both were observed to show gradual incomplete SCO behavior.At 2 K,theχMTvalues were 0.41 cm3·mol-1·K for 1 and 0.40 cm3·mol-1·K for 3,respectively.Upon heating to 400 K,it gradually increased to 1.00 cm3·mol-1·K for 1 and 1.19 cm3·mol-1·K for 3,indicating that they don't reach the complete HS state at the test upper limit temperature.After preservation at 400 K,the lattice solvent molecules were fully removed,and the subsequent cycles showed the spin transition behavior of desolvated samples.Their roughly coincident curves reveal that the influence of lattice solvent molecules in two compounds on SCO behavior is minor.

    Fig.3 Plots of the temperature dependence of χMT under 5 kOe dc field for(a)1,(b)2,and(c)3 for successive cycles

    Complex 2 showed an interesting solventdependent SCO behavior.At the beginning of the measurement,theχMTvalue at 300 K was 0.68 cm3·mol-1·K which was far from the saturated value of 2.5 cm3·mol-1·K for the spin-onlyd7cobalt(Ⅱ) ion withS=3/2.Upon cooling,it gradually decreased to 0.45 cm3·mol-1·K at 4 K,reaching a complete LS state withS=1/2.In the following heating semi-cycle,the curve entirely coincided with the cooling one below 300 K.Subsequently accompanied by the temperature rise,theχMTvalue increased quickly and an inflection point was observed at about 350 K.According to the TGA data of 2(Fig.S9),the dehydration occurred at the temperature range of 320-350 K.In combination of variable-temperature susceptibility and TGA data,theχMTvsTcurve above 300 K can be divided into two steps.The dehydration takes place at the first step(300-350 K)and the structural phase transition caused by dehydration possesses considerable contribution to the spin transition.When the temperature was above 350 K,the following measurements revealed the SCO behavior of the desolvated sample.It is found that the dehydration of 2 results in significantly distinct SCO behavior.Upon cooling in the second cycle,theχMTvalue gradually dropped from 1.59 cm3·mol-1·K at 400 K to 0.45 cm3·mol-1·K at 4 K,reflecting the typical SCO of cobalt(Ⅱ)ion from the incomplete HS state to the complete LS state.Unexpectedly,the second cooling and heating semi-cycles didn't overlap in the temperature range of 260-340 K and produced a large apparent thermal hysteresis loop of 50 K.This hysteresis loop was stable and repeatable which was reproduced in the following third cycle.Due to the diffraction data considerably getting worse during the heating process to remove the lattice water molecules,the attempt to get the accurate structure of dehydration crystals was unsuccessful.It is supposed that the removal of lattice solvents makes the stacking of molecules more tightly,leading to enhanced interaction between adjacent complexes which may be the main source of the occurrence of the thermal hysteresis loop.It was found that the adsorption and desorption of water in 2 were reversible[37-38].When the desolvated sample was exposed to air for a period of time,it could readsorb water to the originally solvated state,which was confirmed by the TGA trace of the re-adsorbed sample(Fig.S10).The re-adsorbed sample showed almost identical behaviour of variable-temperature magnetic susceptibilities to that of the pristine one(Fig.S20).DSC measurements of compound 2 were carried out at the temperature area of the thermal hysteresis loops.No noticeable thermal change was observed,suggesting that no apparent structural phase transition occurred in the SCO process(Fig.S21).

    Fig.4 (a)UV-Vis spectra of complexes 1-3 in the 50 μmol·L-1acetonitrile solution at ambient temperature;(b)CV curves of complexes 1-3(1 mmol·L-1)in 0.1 mol·L-1Bu4NPF6/acetonitrile solution on a glassy carbon disk working electrode with a Pt counter electrode and Ag/AgCl reference with the potential sweep rate being 100 mV·s-1

    2.3 Absorption spectra and electronic chemistry

    The influence of substituents on the electronic structures of complexes was further investigated by using absorption spectroscopy and CV.According to the UV-Vis spectra recorded in acetonitrile at ambient temperature,complexes 1-3 showed a broad absorption peak at around 520 nm(Fig.4a).This wide absorption is ascribed to the metal to ligand charge transfer(MLCT)band.Their peak positions were at 515 nm for 1,and 511 nm for 2 and 3.Due to the strong electronwithdrawing effect,the MLCT band experienced a con-siderable blue shift.The strong electron-withdrawing groups of F and CF3benefit the back bonding of cobalt(Ⅱ)ion to ligands,resulting in the enhancement of ligand field strength.The electrochemical properties of complexes 1-3 and the ligands were investigated using CV in acetonitrile.The CV curve of each complex showed the reversible CoⅠ-CoⅡand CoⅡ-CoⅢcouples that centered at about-0.8 and 0.7 V,respectively(Fig.4b and S21)[39].It was found that their anode potential(Epa),cathode potential(Epc),and half-wave potential(E1/2)were all sensitive to the electronic effect of substituents(Table S4).In general,the presence of an electron drawing group pulls more electron density from the metal center,making its redox reaction easier.

    3 Conclusions

    In summary,three mononuclear SCO-active cobalt(Ⅱ)complexes have been prepared using the directional synthesis of complementary terpyridine ligand pairing.Complexes 1-3 were all located at complete LS state at low temperature and showed a gradually incomplete spin transition to HS state upon heating to 400 K.Impressively,the fluorine substituted complex 2 exhibited solvent-dependent SCO behavior.When three lattice water molecules were removed,a large thermal hysteresis loop with the width ofca.50 K emerged at the temperature range of 260-340 K.In addition,the influence of substituents was also confirmed using absorption spectroscopy and cyclic voltammetry.This work demonstrates that this strategy is effective in the construction of asymmetric SCO-active cobalt(Ⅱ)complexes with interesting magnetic properties.It also provides the possibility to introduce more functional groups into one SCO compound.The research on Co-terpy SCO compounds bearing multifunctions is in progress.

    Acknowledgments:This work was financially supported by the National Natural Science Foundation of China(Grants No.21771049,21871039,91961114,22025101,22173015).ZHU Yuan-Yuan thanks the financial support from the Fundamental Research Funds for the Central Universities of China(Grants No.PA2021GDSK0063,PA2020GDJQ0028).

    Supporting information is available at http://www.wjhxxb.cn

    777久久人妻少妇嫩草av网站| 免费女性裸体啪啪无遮挡网站| 午夜影院日韩av| 午夜视频精品福利| 国产亚洲精品一区二区www| 校园春色视频在线观看| 一进一出抽搐动态| 操出白浆在线播放| 中国美女看黄片| 午夜精品久久久久久毛片777| 日本 欧美在线| 88av欧美| 亚洲av成人av| 国产欧美日韩精品亚洲av| 99精品欧美一区二区三区四区| 精品电影一区二区在线| 亚洲全国av大片| 国产爱豆传媒在线观看 | 天堂动漫精品| 一区福利在线观看| 国产精品香港三级国产av潘金莲| 亚洲片人在线观看| 亚洲国产看品久久| 巨乳人妻的诱惑在线观看| 国产在线观看jvid| 久热这里只有精品99| 欧美一区二区精品小视频在线| 嫩草影视91久久| 午夜两性在线视频| 一区二区三区高清视频在线| 在线观看www视频免费| 欧美亚洲日本最大视频资源| 男人舔女人的私密视频| 婷婷精品国产亚洲av在线| 国产精品久久久av美女十八| 日韩欧美 国产精品| 又紧又爽又黄一区二区| 日日摸夜夜添夜夜添小说| 级片在线观看| 人人妻人人澡人人看| 国产极品粉嫩免费观看在线| 久久性视频一级片| 母亲3免费完整高清在线观看| 久久久久久大精品| 少妇裸体淫交视频免费看高清 | 亚洲第一av免费看| 日韩欧美一区视频在线观看| 日韩 欧美 亚洲 中文字幕| 日韩欧美 国产精品| 欧美+亚洲+日韩+国产| 日韩精品青青久久久久久| 麻豆久久精品国产亚洲av| 亚洲最大成人中文| 欧美乱色亚洲激情| 欧美精品啪啪一区二区三区| netflix在线观看网站| av电影中文网址| 中文字幕精品免费在线观看视频| 欧美国产精品va在线观看不卡| 日本熟妇午夜| 麻豆成人av在线观看| 侵犯人妻中文字幕一二三四区| 757午夜福利合集在线观看| 激情在线观看视频在线高清| 9191精品国产免费久久| 欧美国产精品va在线观看不卡| 国产高清视频在线播放一区| 一边摸一边做爽爽视频免费| 一边摸一边做爽爽视频免费| 亚洲一区二区三区色噜噜| 精品少妇一区二区三区视频日本电影| 搞女人的毛片| 国产成人精品久久二区二区免费| 亚洲av片天天在线观看| 人妻丰满熟妇av一区二区三区| 国产在线精品亚洲第一网站| 欧美黄色淫秽网站| 老司机午夜福利在线观看视频| 成熟少妇高潮喷水视频| 国产片内射在线| 国产v大片淫在线免费观看| 国产成人啪精品午夜网站| 久久久久国产一级毛片高清牌| 老司机福利观看| 99热这里只有精品一区 | 日韩欧美一区视频在线观看| 亚洲精品美女久久av网站| 日韩三级视频一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 欧美日韩黄片免| 国产男靠女视频免费网站| 两个人免费观看高清视频| 亚洲国产精品sss在线观看| 国产精品久久久人人做人人爽| 日韩三级视频一区二区三区| cao死你这个sao货| 桃红色精品国产亚洲av| 99精品久久久久人妻精品| 亚洲人成电影免费在线| e午夜精品久久久久久久| 国产人伦9x9x在线观看| 国产精品野战在线观看| 色婷婷久久久亚洲欧美| 亚洲中文字幕一区二区三区有码在线看 | 亚洲国产精品合色在线| 欧美精品亚洲一区二区| 午夜视频精品福利| 欧美av亚洲av综合av国产av| 少妇被粗大的猛进出69影院| 国产一卡二卡三卡精品| or卡值多少钱| 亚洲九九香蕉| 免费人成视频x8x8入口观看| 中亚洲国语对白在线视频| 国产av又大| 精品久久蜜臀av无| 久久人妻av系列| 好看av亚洲va欧美ⅴa在| 亚洲一区中文字幕在线| 在线观看www视频免费| 99国产极品粉嫩在线观看| 男女做爰动态图高潮gif福利片| 国产三级黄色录像| 午夜福利视频1000在线观看| 亚洲国产精品久久男人天堂| 精品卡一卡二卡四卡免费| 亚洲专区国产一区二区| 91成人精品电影| 在线视频色国产色| 国产蜜桃级精品一区二区三区| 嫩草影院精品99| 午夜福利视频1000在线观看| 成熟少妇高潮喷水视频| 国产精品1区2区在线观看.| 国产成人av激情在线播放| 午夜成年电影在线免费观看| 成人国语在线视频| 最新在线观看一区二区三区| 99久久精品国产亚洲精品| av福利片在线| 精品一区二区三区四区五区乱码| 日韩有码中文字幕| 在线看三级毛片| e午夜精品久久久久久久| 免费看日本二区| 美女扒开内裤让男人捅视频| 99热这里只有精品一区 | 亚洲一区二区三区不卡视频| 亚洲av成人一区二区三| 91在线观看av| 亚洲专区字幕在线| 一本大道久久a久久精品| 国产片内射在线| 欧美大码av| 日韩大尺度精品在线看网址| 怎么达到女性高潮| 成人一区二区视频在线观看| 黄色毛片三级朝国网站| 午夜日韩欧美国产| 好看av亚洲va欧美ⅴa在| 一本综合久久免费| 老司机深夜福利视频在线观看| 亚洲专区字幕在线| 国产亚洲精品av在线| 久久国产精品人妻蜜桃| 黄片播放在线免费| 色综合站精品国产| 亚洲国产毛片av蜜桃av| 天天躁夜夜躁狠狠躁躁| 12—13女人毛片做爰片一| 久久国产精品影院| 国产精品亚洲美女久久久| 国产精品野战在线观看| 9191精品国产免费久久| 91九色精品人成在线观看| 啦啦啦观看免费观看视频高清| 成人18禁在线播放| 久久午夜综合久久蜜桃| 制服人妻中文乱码| 法律面前人人平等表现在哪些方面| 欧美日韩亚洲国产一区二区在线观看| 国产精品 欧美亚洲| 国产成人啪精品午夜网站| 可以免费在线观看a视频的电影网站| 首页视频小说图片口味搜索| 日韩有码中文字幕| 国产真实乱freesex| 久久性视频一级片| 女警被强在线播放| 18禁黄网站禁片午夜丰满| 最近在线观看免费完整版| 操出白浆在线播放| 国产视频内射| 老司机午夜福利在线观看视频| 国产激情久久老熟女| 久久伊人香网站| 国产精品永久免费网站| 欧美最黄视频在线播放免费| 9191精品国产免费久久| 美女国产高潮福利片在线看| 在线观看www视频免费| 身体一侧抽搐| 久久精品人妻少妇| 亚洲精品一区av在线观看| 亚洲美女黄片视频| 日韩欧美一区视频在线观看| 黄片小视频在线播放| 久久久久久久久久黄片| 亚洲精品国产精品久久久不卡| 中文字幕人妻丝袜一区二区| 国产黄a三级三级三级人| 久久久久久久午夜电影| 丝袜美腿诱惑在线| 国产伦人伦偷精品视频| 叶爱在线成人免费视频播放| 极品教师在线免费播放| 国产精品 国内视频| av视频在线观看入口| 成人午夜高清在线视频 | 在线国产一区二区在线| 日韩国内少妇激情av| 777久久人妻少妇嫩草av网站| 亚洲 欧美 日韩 在线 免费| 黄网站色视频无遮挡免费观看| 精品一区二区三区视频在线观看免费| 日韩欧美国产一区二区入口| 亚洲欧美日韩无卡精品| 国产成人系列免费观看| 午夜a级毛片| 18禁国产床啪视频网站| АⅤ资源中文在线天堂| 美女高潮到喷水免费观看| 99国产综合亚洲精品| 黄频高清免费视频| 老鸭窝网址在线观看| 午夜福利视频1000在线观看| 国产视频内射| 窝窝影院91人妻| 久久精品国产99精品国产亚洲性色| 窝窝影院91人妻| 熟女电影av网| 中文字幕人成人乱码亚洲影| 俄罗斯特黄特色一大片| 三级毛片av免费| 看片在线看免费视频| 亚洲精品国产区一区二| 国产91精品成人一区二区三区| 1024视频免费在线观看| 免费看日本二区| 日日爽夜夜爽网站| 欧美日韩精品网址| 午夜a级毛片| 99久久无色码亚洲精品果冻| 狂野欧美激情性xxxx| 亚洲国产日韩欧美精品在线观看 | 久久国产精品男人的天堂亚洲| or卡值多少钱| x7x7x7水蜜桃| 欧美最黄视频在线播放免费| 丝袜在线中文字幕| 深夜精品福利| 青草久久国产| 久久国产精品人妻蜜桃| 精品国产超薄肉色丝袜足j| 热re99久久国产66热| 日本成人三级电影网站| av在线播放免费不卡| 亚洲国产欧美一区二区综合| 在线观看日韩欧美| 国产激情偷乱视频一区二区| 天天躁夜夜躁狠狠躁躁| 亚洲精品国产精品久久久不卡| 麻豆国产av国片精品| 欧美一级毛片孕妇| 亚洲色图av天堂| 午夜免费观看网址| 桃红色精品国产亚洲av| 黄色丝袜av网址大全| 一级黄色大片毛片| 一级a爱片免费观看的视频| 男女之事视频高清在线观看| 桃色一区二区三区在线观看| 精品卡一卡二卡四卡免费| 国产野战对白在线观看| 男女之事视频高清在线观看| 国产亚洲欧美精品永久| 岛国在线观看网站| 在线观看一区二区三区| а√天堂www在线а√下载| 狂野欧美激情性xxxx| 亚洲自偷自拍图片 自拍| 亚洲自拍偷在线| av有码第一页| 午夜老司机福利片| 国产1区2区3区精品| 亚洲 国产 在线| 成人亚洲精品一区在线观看| 日本撒尿小便嘘嘘汇集6| 搡老熟女国产l中国老女人| 丁香欧美五月| 啪啪无遮挡十八禁网站| 级片在线观看| 夜夜看夜夜爽夜夜摸| 国产成年人精品一区二区| 久久久国产成人免费| 男男h啪啪无遮挡| 午夜影院日韩av| 久久亚洲真实| 欧美久久黑人一区二区| 少妇粗大呻吟视频| 91av网站免费观看| 欧美丝袜亚洲另类 | 免费看a级黄色片| 一个人免费在线观看的高清视频| 无人区码免费观看不卡| 国产片内射在线| 黄色成人免费大全| 巨乳人妻的诱惑在线观看| 日韩av在线大香蕉| 欧美大码av| 色哟哟哟哟哟哟| 免费高清在线观看日韩| 在线av久久热| 亚洲午夜精品一区,二区,三区| 男人舔女人下体高潮全视频| 久久精品91无色码中文字幕| 久久国产精品人妻蜜桃| 日韩欧美 国产精品| 听说在线观看完整版免费高清| 桃色一区二区三区在线观看| 女性被躁到高潮视频| 一进一出好大好爽视频| 国产精华一区二区三区| 中文字幕久久专区| 欧美又色又爽又黄视频| 亚洲av第一区精品v没综合| 亚洲av电影不卡..在线观看| 欧美三级亚洲精品| 国产一区二区激情短视频| 很黄的视频免费| 成人国产综合亚洲| 在线免费观看的www视频| 国产极品粉嫩免费观看在线| 中文字幕精品免费在线观看视频| 日本 av在线| 91国产中文字幕| 国产亚洲精品综合一区在线观看 | 日韩欧美三级三区| 亚洲成人久久爱视频| 又黄又粗又硬又大视频| 国产又爽黄色视频| 国产精华一区二区三区| 精品高清国产在线一区| 99re在线观看精品视频| 禁无遮挡网站| 精品高清国产在线一区| 亚洲国产精品sss在线观看| 久久亚洲真实| 脱女人内裤的视频| 天天躁狠狠躁夜夜躁狠狠躁| 高清毛片免费观看视频网站| 看黄色毛片网站| 午夜a级毛片| 18禁黄网站禁片午夜丰满| 国产精品国产高清国产av| 一区福利在线观看| 麻豆国产av国片精品| 黑人操中国人逼视频| 亚洲成人国产一区在线观看| 亚洲欧美激情综合另类| 久久国产精品影院| 听说在线观看完整版免费高清| 国产人伦9x9x在线观看| 免费看a级黄色片| 高清毛片免费观看视频网站| 好看av亚洲va欧美ⅴa在| 国产不卡一卡二| tocl精华| 国产精品 欧美亚洲| av天堂在线播放| 亚洲成av人片免费观看| 欧美不卡视频在线免费观看 | 男女视频在线观看网站免费 | 黄色成人免费大全| 欧美日韩中文字幕国产精品一区二区三区| 老司机午夜福利在线观看视频| 国产视频一区二区在线看| 亚洲av电影在线进入| 日韩欧美国产在线观看| www.自偷自拍.com| 精品久久久久久久末码| 一级毛片高清免费大全| 国产精品香港三级国产av潘金莲| 别揉我奶头~嗯~啊~动态视频| 婷婷亚洲欧美| 90打野战视频偷拍视频| svipshipincom国产片| 99国产极品粉嫩在线观看| 桃红色精品国产亚洲av| 中文亚洲av片在线观看爽| 成人亚洲精品一区在线观看| 一本精品99久久精品77| 国产成人系列免费观看| 免费在线观看黄色视频的| 亚洲精品一卡2卡三卡4卡5卡| 国产精品爽爽va在线观看网站 | 日韩免费av在线播放| 欧美激情高清一区二区三区| 女人被狂操c到高潮| 色哟哟哟哟哟哟| 制服丝袜大香蕉在线| 欧美一级a爱片免费观看看 | 亚洲熟妇熟女久久| 在线播放国产精品三级| 2021天堂中文幕一二区在线观 | 动漫黄色视频在线观看| 99国产精品一区二区蜜桃av| 日日夜夜操网爽| 日本 av在线| 两人在一起打扑克的视频| 亚洲精品中文字幕在线视频| 日本 欧美在线| 久久精品亚洲精品国产色婷小说| 天堂√8在线中文| 亚洲男人的天堂狠狠| 男女午夜视频在线观看| tocl精华| 黄网站色视频无遮挡免费观看| 男女视频在线观看网站免费 | 欧美三级亚洲精品| 欧美成人性av电影在线观看| 久久午夜综合久久蜜桃| 日韩精品免费视频一区二区三区| 老司机午夜十八禁免费视频| 亚洲一区二区三区色噜噜| 亚洲精华国产精华精| 亚洲自偷自拍图片 自拍| 黄色女人牲交| 国产精品美女特级片免费视频播放器 | 亚洲成人国产一区在线观看| 欧美日韩亚洲国产一区二区在线观看| 男人舔奶头视频| 国产熟女午夜一区二区三区| 黑人巨大精品欧美一区二区mp4| 男女之事视频高清在线观看| 黄色毛片三级朝国网站| 美女午夜性视频免费| 欧美黄色淫秽网站| 精品电影一区二区在线| 给我免费播放毛片高清在线观看| 精品少妇一区二区三区视频日本电影| 女人高潮潮喷娇喘18禁视频| 国内精品久久久久久久电影| 精品电影一区二区在线| 国产av又大| 国产午夜福利久久久久久| 中国美女看黄片| 老司机在亚洲福利影院| 日韩av在线大香蕉| 不卡av一区二区三区| 欧美日韩乱码在线| 韩国av一区二区三区四区| 久久久国产精品麻豆| 亚洲av中文字字幕乱码综合 | 亚洲天堂国产精品一区在线| 免费av毛片视频| 国产精品永久免费网站| 久久婷婷人人爽人人干人人爱| 老司机午夜福利在线观看视频| 2021天堂中文幕一二区在线观 | 人人妻人人澡欧美一区二区| 国产真实乱freesex| 悠悠久久av| 麻豆成人午夜福利视频| 亚洲成人久久性| 久久香蕉激情| 侵犯人妻中文字幕一二三四区| 麻豆av在线久日| 又紧又爽又黄一区二区| 亚洲精品久久国产高清桃花| 精品少妇一区二区三区视频日本电影| 亚洲五月天丁香| 国产精品98久久久久久宅男小说| 亚洲黑人精品在线| 看片在线看免费视频| 国产一区二区激情短视频| 免费观看精品视频网站| 长腿黑丝高跟| 脱女人内裤的视频| 亚洲精品国产精品久久久不卡| 久久国产亚洲av麻豆专区| 久久久久久大精品| 在线观看舔阴道视频| 亚洲九九香蕉| 国产伦在线观看视频一区| 18禁美女被吸乳视频| 亚洲自偷自拍图片 自拍| 国产黄色小视频在线观看| 免费在线观看视频国产中文字幕亚洲| 亚洲性夜色夜夜综合| 搡老熟女国产l中国老女人| 精品久久久久久久毛片微露脸| 精品卡一卡二卡四卡免费| 国产精品爽爽va在线观看网站 | 91九色精品人成在线观看| 黄色片一级片一级黄色片| 琪琪午夜伦伦电影理论片6080| 国产成人欧美| 亚洲精品久久成人aⅴ小说| 哪里可以看免费的av片| 欧美成狂野欧美在线观看| 欧美中文综合在线视频| 身体一侧抽搐| 国产精品爽爽va在线观看网站 | 18禁黄网站禁片免费观看直播| videosex国产| 国内久久婷婷六月综合欲色啪| 又黄又粗又硬又大视频| 国产精品一区二区三区四区久久 | 大型黄色视频在线免费观看| 久久精品人妻少妇| 99热只有精品国产| 久久中文字幕人妻熟女| 十八禁人妻一区二区| 欧美另类亚洲清纯唯美| 精品欧美一区二区三区在线| 黄网站色视频无遮挡免费观看| 91麻豆精品激情在线观看国产| 青草久久国产| 国产精品 欧美亚洲| 999久久久精品免费观看国产| 国产又色又爽无遮挡免费看| 久久久久久久精品吃奶| 国产在线精品亚洲第一网站| 精品少妇一区二区三区视频日本电影| 国产一区二区三区在线臀色熟女| 午夜福利成人在线免费观看| 久久久久国产精品人妻aⅴ院| 草草在线视频免费看| 丝袜人妻中文字幕| 老司机午夜十八禁免费视频| 亚洲国产欧美网| 美女免费视频网站| 99riav亚洲国产免费| 校园春色视频在线观看| 白带黄色成豆腐渣| 黄频高清免费视频| √禁漫天堂资源中文www| 美女午夜性视频免费| a在线观看视频网站| 日本熟妇午夜| 亚洲,欧美精品.| 国产成人啪精品午夜网站| 午夜视频精品福利| 十八禁人妻一区二区| netflix在线观看网站| 亚洲熟妇熟女久久| 俄罗斯特黄特色一大片| 国产黄色小视频在线观看| 可以在线观看的亚洲视频| 色哟哟哟哟哟哟| 丝袜人妻中文字幕| 一二三四在线观看免费中文在| 在线观看一区二区三区| 免费看日本二区| 侵犯人妻中文字幕一二三四区| 99国产综合亚洲精品| 亚洲成a人片在线一区二区| 男人舔奶头视频| 99精品欧美一区二区三区四区| 最近在线观看免费完整版| 成年版毛片免费区| 亚洲第一青青草原| 巨乳人妻的诱惑在线观看| 日本一区二区免费在线视频| 国产成人欧美| 三级毛片av免费| 国内少妇人妻偷人精品xxx网站 | 成年人黄色毛片网站| 又紧又爽又黄一区二区| 99在线人妻在线中文字幕| 精品国产乱子伦一区二区三区| 啦啦啦免费观看视频1| 欧美中文日本在线观看视频| 成人特级黄色片久久久久久久| 久久香蕉国产精品| 精品午夜福利视频在线观看一区| 亚洲国产精品sss在线观看| 国产熟女午夜一区二区三区| 国产视频一区二区在线看| 精品国产乱码久久久久久男人| 亚洲在线自拍视频| 亚洲精品久久成人aⅴ小说| 欧洲精品卡2卡3卡4卡5卡区| 美女国产高潮福利片在线看| 变态另类丝袜制服| 亚洲精品av麻豆狂野| 日韩精品免费视频一区二区三区| 欧美日韩福利视频一区二区| 99久久精品国产亚洲精品| 精品高清国产在线一区| 中文字幕人成人乱码亚洲影| www国产在线视频色| 午夜福利高清视频| 久9热在线精品视频| 超碰成人久久| 国产精品久久久久久人妻精品电影| 亚洲专区字幕在线| 国产精品一区二区三区四区久久 | 欧美性猛交黑人性爽| 日日摸夜夜添夜夜添小说| 亚洲片人在线观看| 亚洲avbb在线观看| 动漫黄色视频在线观看| 久9热在线精品视频|